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Predicate dispatch is an object-oriented (OO) language mechanism for determining the method

implementation to be invoked upon a message send. With predicate dispatch, each method imple-

mentation includes a predicate guard specifying the conditions under which the method should be

invoked, and logical implication of predicates determines the method overriding relation. Predicate

dispatch naturally unifies and generalizes several common forms of dynamic dispatch, including

traditional OO dispatch, multimethod dispatch, and functional-style pattern matching. Unfortu-

nately, prior languages supporting predicate dispatch have had several deficiencies that limit the

practical utility of this language feature.

We describe JPred, a backward-compatible extension to Java supporting predicate dispatch.

While prior languages with predicate dispatch have been extensions to toy or nonmainstream

languages, we show how predicate dispatch can be naturally added to a traditional OO language.

While prior languages with predicate dispatch have required the whole program to be available

for typechecking and compilation, JPred retains Java’s modular typechecking and compilation

strategies. While prior languages with predicate dispatch have included special-purpose algorithms

for reasoning about predicates, JPred employs general-purpose, off-the-shelf decision procedures.

As a result, JPred’s type system is more flexible, allowing several useful programming idioms that

are spuriously rejected by those other languages. After describing the JPred language informally,

we present an extension to Featherweight Java that formalizes the language and its modular

type system, which we have proven sound. Finally, we discuss two case studies that illustrate the

practical utility of JPred, including its use in the detection of several errors.
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1. INTRODUCTION

Many programming languages offer a form of dynamic dispatch, a declarative
mechanism for determining the code to be executed upon a function invoca-
tion. In this style, a function consists of a set of implementations, each with
a guard specifying the conditions under which that implementation should be
executed. When a function is invoked, all the implementations that are appli-
cable, meaning that their guards are satisfied, are considered. Of the applicable
implementations, the one that overrides all other implementations is selected
to be executed.

For example, a method m in mainstream object-oriented (OO) languages
like Java [Arnold et al. 2005; Gosling et al. 2005] has an implicit guard spec-
ifying that the runtime class of the receiver argument must be a subclass of
m’s enclosing class. A method m1 overrides another method m2 if the enclosing
class of m1 is a subclass of the enclosing class of m2. Multimethod dispatch, as
found in languages like Cecil [Chambers 1992, 1997] and MultiJava [Clifton
et al. 2000, 2006], generalizes the implicit OO guards to support runtime class
tests on any subset of a method’s arguments, and the overriding relation is
likewise generalized to all arguments. As another example, pattern matching
in functional languages like ML [Milner et al. 1997] allows guards to test the
datatype constructor tags of arguments and to recursively test the substructure
of arguments. In that setting, the textual ordering of function implementations
determines the overriding relation.

Dynamic dispatch offers a number of important advantages over manual
dispatch using if statements. First, dynamic dispatch allows the guards on
each implementation to be declaratively specified, and the “best” implementa-
tion is automatically selected for a given invocation. Second, in the presence of
OO-style inheritance, dynamic dispatch makes functions extensible: A function
can be extended simply by writing additional implementations that override
existing ones or handle new scenarios, without modifying any existing code.
Finally, dynamic dispatch supports better static typechecking than manual dis-
patch using if statements. It does so by alleviating the need for explicit run-
time type casts, which subvert the static type system. Static typechecking for
dynamic dispatch additionally ensures that method lookup cannot fail: There
can never be dynamic message-not-understood errors (which occur when no
methods are applicable to an invocation) or message-ambiguous errors (which
occur when multiple methods are applicable to an invocation, but no single
applicable method overrides all others).

In 1998, Ernst et al. introduced the concept of predicate dispatch [Ernst
et al. 1998]. With predicate dispatch, a method implementation may specify an
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arbitrary predicate as a guard. A method m1 overrides another method m2 if
m1’s predicate logically implies m2’s predicate. Ernst et al. provide a number
of examples illustrating how predicate dispatch unifies and generalizes several
existing language concepts, including ordinary OO dynamic dispatch, multi-
method dispatch, and functional-style pattern matching. They also formally
define predicate evaluation and provide a static type system that ensures that
method lookup cannot fail. Finally, Ernst et al. define a conservative algorithm
for testing validity of predicates, which is necessary both for computing the
method overriding relation and for static typechecking.

Despite this strong initial work, and despite additional work on the
topic [Chambers and Chen 1999; Ucko 2001; Orleans 2002], to date predicate
dispatch has had several deficiencies that limit its utility in practice. First,
implementations of predicate dispatch have all been in the context of toy or
nonmainstream languages, and none of these implementations has included
static typechecking. Second, there has been no progress on static typechecking
for predicate dispatch since the original work, and the type system described
there is global, requiring access to the entire program before typechecking can
be performed. This makes it difficult to ensure basic well-formedness proper-
ties of individual classes, and it clashes with the modular typechecking style
of mainstream OO languages. Third, the existing static type system for pred-
icate dispatch is overly conservative, ruling out many desirable uses of predi-
cate dispatch. For example, that type system cannot determine that the pred-
icates x > 0 and x ≤ 0, where x is an integer argument to a function, are
exhaustive and mutually exclusive. Therefore, the type system will reject a
function consisting of two implementations with these guards as potentially
containing both exhaustiveness and ambiguity errors. Finally, little evidence
has been presented to illustrate the utility of predicate dispatch in real-world
applications.

This article remedies these deficiencies. We present JPred, a backward-
compatible extension to Java supporting predicate dispatch. Our contributions
are as follows.

—We illustrate through the design of JPred how predicate dispatch can be
practically incorporated into a traditional OO language. The extension is
small syntactically and yet makes a variety of programming idioms easier to
express and validate.

—We describe a static type system for JPred that naturally respects Java’s
modular typechecking strategy: Each compilation unit (typically a single
class) can be safely typechecked in isolation, given only information about
the classes and interfaces on which it explicitly depends. We achieve mod-
ular typechecking by adapting and generalizing our prior work on modular
typechecking of multimethods [Millstein 2003]. This generalization also al-
lows for modular typechecking in the presence of multiple inheritance (e.g.,
as supported by Java interfaces), a long-standing problem for multimethod-
based languages.

—We describe how to use off-the-shelf decision procedures to determine re-
lationships among predicates. We use decision procedures both to compute
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the method overriding relation, which affects the semantics of dynamic dis-
patch, and to ensure exhaustiveness and unambiguity of functions, which
is part of static typechecking. The use of decision procedures provides pre-
cise reasoning about the predicates in JPred’s predicate language. This con-
trasts with the specialized and overly conservative algorithms for reasoning
about predicates that are used in previous languages containing predicate
dispatch.
Our implementation uses CVC3 [2009], which contains decision procedures
for several decidable theories, including propositional logic, rational linear
arithmetic, and the theory of equality. CVC3 is sound and complete for valid-
ity queries over JPred’s predicate language, so our language and type system
remain well defined and predictable.

—We formalize JPred’s form of predicate dispatch in an extension to Feather-
weight Java [Igarashi et al. 2001]. This formalism models JPred’s modular
type system and its usage of decision procedures, and a type soundness the-
orem proves their sufficiency. To our knowledge, ours is the first provably
sound formalization of predicate dispatch.

—We have implemented JPred as an extension in the Polyglot extensible com-
piler framework for Java [Nystrom et al. 2003]. In addition to the modular
typechecking strategy, we have implemented a simple modular compilation
strategy that compiles JPred source to regular Java source, which can be com-
piled with a standard Java compiler and executed on a standard Java virtual
machine. In this way, JPred source and bytecode files interoperate seamlessly
with Java source and bytecode files, including precompiled Java libraries.

—To demonstrate the utility of JPred in practice, we have undertaken several
case studies using the language, two of which are described here. First, we
have rewritten a Java implementation of a discovery service that is part of
the one.world platform for pervasive computing [Grimm et al. 2004] to use
JPred. Second, we have employed JPred’s support for modularly typesafe
dispatch on interfaces in the implementation of the JPred compiler. We
illustrate and quantify the advantages that JPred provides in both case
studies, including its use in the detection of several errors.

The rest of the article is structured as follows. Section 2 introduces JPred and il-
lustrates its expressiveness by example. Section 3 discusses our modular static
type system for JPred. Section 4 describes how we use off-the-shelf decision pro-
cedures to reason about relationships among predicates. Section 5 overviews
our JPred implementation, including the modular compilation strategy. Sec-
tion 6 presents Featherweight JPred, which formalizes a core subset of JPred.
Section 7 describes the case study illustrating JPred’s effectiveness. Section 8
discusses related work, and Section 9 concludes.

2. JPRED BY EXAMPLE

In this section we overview the JPred language, illustrating its benefits to pro-
grammers via a number of examples. The section ends with a detailed descrip-
tion of the semantics of method invocation in JPred.
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Fig. 1. The abstract syntax of predicate expressions in JPred. The notation pred∗ denotes zero or

more comma-separated predicate expressions. Nonterminals Identifier, Type, IntegerLiteral, and

BooleanLiteral are defined as in the Java Language Specification.

JPred augments the Java language by allowing each method declaration
to optionally include a clause of the form when pred, just before the optional
throws clause. The predicate expression pred is a Boolean expression specifying
the conditions under which the method may be invoked. The abstract syntax
of predicate expressions is given in Figure 1. Predicate expressions comprise
a side-effect-free subset of Java expressions of type boolean and can consist of
literals, references to formals and fields in scope, array accesses, invocations
of pure methods, dynamic dispatch on types, identifier binding, and a host of
Boolean, relational, and arithmetic operations. We call a method containing a
when clause a predicate method.

2.1 Multimethod Dispatch on Classes

2.1.1 Event-Based Systems. Figure 2 illustrates an event-based imple-
mentation of a file editor in Java. The base class Event has a number of sub-
classes, each representing a different possible action desired by the user. The
handle operation is invoked when an event is triggered, and the passed event
is handled differently according to its runtime class. This implementation style
for event-based systems allows multiple clients to handle posted events in dif-
ferent ways within an application. It also allows each client to handle a different
subset of posted events. Finally, the style allows new events to be added to the
system without having to modify all existing clients.

However, this style also has a number of disadvantages. First, the program-
mer has the burden of manually performing event dispatch, and the cases of
the monolithic if statement must be ordered such that the right code will be
executed for each scenario. For example, assuming that SaveAs is a subclass
of Save, the second and third cases in Figure 2 must appear in that order, or
else the handler for SaveAs will never be invoked. Second, the monolithic style
makes the event handlers difficult to reuse and extend by subclasses. For exam-
ple, a subclass cannot easily choose to inherit some of FileEditor’s handlers,
override others, and add new handlers for other events. Third, the heavy use of
runtime type tests and casts provides the potential for dynamic cast failures.
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Fig. 2. A file editor implemented in Java.

Fig. 3. The file editor implemented in JPred.

Finally, there is no static checking to ensure that all possible events are han-
dled and that no handlers are redundant. For example, the handle method in
Figure 2 would still typecheck successfully if the else case were removed, even
though this could cause errors to occur dynamically.

Figure 3 shows how the file editor can be equivalently implemented in
JPred. The first three methods are multimethods [Bobrow et al. 1986], using
JPred’s specializer expression to dynamically dispatch on their arguments in
addition to the receiver. Similar to multimethod notation in Cecil [Chambers
1992, 1997], the predicate e@Open declares the specialized type (or special-
izer) of the target e to be Open: The first method in the figure is only appli-
cable to an invocation of handle if the runtime class of the actual argument
is a subclass of Open. When typechecking the body of the first handle method,
the formal parameter e is considered to have type Open, thereby allowing the
body to access fields and methods that are specific to the Open subclass of
Event.

JPred’s semantics differs from Java’s static overloading mechanism, which
uses the static type of an actual argument expression to statically de-
termine which methods are applicable. For example, a Java method of
the form

void handle(Open e) { . . . }

will never be executed from a handle call site whose actual argument expression
has static type Event, even if at runtime the actual argument is an instance of
Open.
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Fig. 4. An extension to the file editor.

The method overriding relation in JPred is determined by predicate impli-
cation; the textual order of methods is irrelevant. The @ predicate corresponds
to Java’s instanceof expression and has the same semantics. The last handle
method in Figure 3 implicitly has the predicate true. Therefore, the first three
methods each override the last one (since every predicate logically implies
true), and the second method overrides the third (since an instance of SaveAs
can always be viewed as an instance of Save). For example, if an invocation
of handle dynamically has a SaveAs instance as the argument, then the last
three methods in the figure are applicable, since their guards evaluate to true,
and the second method is invoked because it overrides the third and fourth
methods.

The JPred implementation of the editor resolves the problems of the Java
implementation in Figure 2. Each conceptual handler is now encapsulated in
its own method, and its guard declaratively states the conditions under which
that handler should be invoked. JPred’s dispatch semantics naturally matches
programmer intent: The handlers can appear in any order, and JPred automat-
ically invokes the appropriate handler for each scenario.

Further, the code is now statically type safe. There is no potential for dynamic
cast failures. In addition, the JPred typechecker checks that the handlers cover
all possible scenarios and are not ambiguous with one another. This check en-
sures that each dynamic invocation of handle will find a single most-specific
method (according to the method overriding relation) to invoke for the passed
event. As described in Section 3, this check is safely performed modularly, one
compilation unit at a time, along with the usual Java typechecks. The check
catches common errors that go undetected in the Java version in Figure 2.
For example, if the last handle method in FileEditor of Figure 3 is omitted,
the JPred typechecker signals the following error at compile time, because
of the potential for invocations of handle that have no applicable method to
invoke.

FileEditor.pj:2: This method’s associated operation is not fully

implemented.

One way to resolve the problem is to add a default method, which is a

method that has no ’when’ clause.

void handle(Event e) when e@Open {}

^

Finally, unlike the original implementation, the JPred implementation of
FileEditor is easily extensible, allowing for deep hierarchies of event handlers
that share code in flexible ways. Predicate methods have the same properties
as regular methods, and hence they are naturally inherited by subclasses. For
example, an extended version of the editor is shown in Figure 4. This editor
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Fig. 5. Noninvasive visitors in JPred.

provides a more optimized implementation of file opening and additionally
provides printing functionality. JPred dispatches an invocation to one of the
methods in FileEditor whenever no method in PrintingEditor is applicable.
For example, if a PrintingEditor instance is sent a Save instance, the third
method in Figure 3 will automatically be invoked.

In practice, event handlers can be significantly more complicated than the
example shown in Figure 2. For example, a handler may test its current state
in addition to the runtime type of the event, in order to determine how to
handle the event. JPred’s advantages over Java for implementing event-based
systems increase as handlers become more complex. Our case study in Section 7
illustrates JPred’s usage in a real-world event-based system to create reliable
and extensible event handlers.

As a syntactic sugar, JPred supports MultiJava-style syntax for specializer
expressions [Clifton et al. 2000], so the first handle method in Figure 3 can be
equivalently written as follows.

void handle(Event@Open e) { . . . }

MultiJava-style specializers are desugared into a conjunction of JPred spe-
cializer expressions, which are conjoined to the front of any explicit predicate
expression for the method.

2.1.2 Noninvasive Visitors. A well-known limitation of traditional OO lan-
guages is the inability to easily add new operations to existing class hierarchies.
Multimethod dispatch provides a partial solution to this problem [Millstein
2003]. For example, Figure 5 illustrates how multimethod dispatch is used to
add a new typechecking pass to a hypothetical compiler. The compiler contains
a class hierarchy to represent Abstract Syntax Tree (AST) nodes, with base
class Node. The methods in the TypeCheck class dynamically dispatch on differ-
ent subclasses of Node, in order to provide functionality for typechecking the
various constructs in the language being compiled.

Adding new operations to existing classes via multimethod dispatch has sev-
eral advantages over use of the visitor design pattern [Gamma et al. 1995],
which is the standard solution in traditional OO languages. First, the visitor
pattern requires the original implementer of the Node class and subclasses to
plan ahead for visitors by including appropriate accept methods. This is nec-
essary so that nodes can be dynamically dispatched upon via a double dispatch
[Ingalls 1986] protocol. In contrast, a JPred visitor is completely noninvasive,
requiring no special-purpose “hooks” in the original nodes. Second, the visitor
pattern requires all external operations to have the same argument and re-
sult types. This often requires argument and result passing to be unnaturally
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Fig. 6. A class hierarchy for binary search trees.

Fig. 7. Disjunction in JPred predicate expressions.

simulated via fields. In contrast, each JPred visitor operation can naturally
have its own argument and result types, as shown in Figure 5. Finally, the
visitor pattern requires each visitor class to have one method per Node sub-
class, making it difficult for a node to inherit the behavior of its superclass. In
contrast, a JPred visitor naturally supports inheritance among the nodes.

2.1.3 Generalized Multimethods. While a traditional multimethod is ex-
pressed in JPred as a predicate consisting of a conjunction of specializer ex-
pressions on formals, JPred also allows arbitrary disjunctions and negations.
An example of disjunction is shown in Figure 7. The code operates over the class
hierarchy in Figure 6: TreeNode is the base class for binary search tree nodes,
DataNode represents a node in the tree, and EmptyNode is used as a sentinel
when a node lacks a left or right child (or both). The TreeIsomorphism class in
Figure 7 determines whether two binary trees (represented by their root nodes)
are isomorphic. The first two methods in the figure handle scenarios when at
least one of the two given tree nodes is empty. By the semantics of predicate
implication, the first isomorphic method overrides the second one as desired.

The presence of disjunction and negation in predicates means that special-
ized types from a method’s predicate cannot always be used when typechecking
the method’s body. For example, it would be unsafe to allow t1 to be consid-
ered to have static type EmptyNode when typechecking the body of the second
isomorphic method, because that method can be invoked in a scenario where t1
is not an instance of EmptyNode. In JPred we take a simple approach to handling
this issue: Specialized types may never “escape” from underneath disjunction
and negation. Therefore, the specialized types for t1 and t2 are not used when
typechecking the body of the second isomorphic method, while t1 and t2 may
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safely be considered to have static type EmptyNode when typechecking the body
of the first method. It is possible to relax JPred’s requirement, for example, by
allowing a specialized type for a formal that appears in both sides of a disjunc-
tion to be used when typechecking the method body [Ernst et al. 1998]. However,
the current rule handles the common case and is simple to understand.

2.2 Interface Dispatch and Ordered Dispatch

Java implicitly only supports dynamic dispatch on class types because only
classes can contain method implementations. However, the generalization to
multiple or predicate dispatch makes it natural to consider dynamic dispatch
on all types. JPred’s @ predicate supports dispatch on class types, interface
types, and array types. The ability to dispatch on types other than classes is
often useful in practice. For example, it is common for a framework to expose
only interfaces to clients, keeping the underlying implementation classes hid-
den (e.g., Polyglot [Nystrom et al. 2003] and Eclipse [Eclipse 2007]). Without
interface dispatch, clients of these frameworks cannot enjoy the benefits of
multiple dispatch.

Interface dispatch poses a special challenge for modular typechecking of mul-
tiple dispatch, because interfaces support multiple inheritance. This subsection
describes the problem and JPred’s solution.

2.2.1 Interface Dispatch and Modular Typechecking. Consider again the
file editor in Figure 3. The fact that handle is modularly typesafe relies critically
on the fact that classes in Java support only single inheritance. It is the lack
of multiple inheritance that ensures, without knowledge of all classes in the
program, that the first and second handle methods are unambiguous. This is
because the language prevents the existence of a class that subclasses both
Open and SaveAs (assuming neither is a subclass of the other). Consider instead
a variant of our event hierarchy in which Java interfaces are used rather than
classes. With this new hierarchy, there could exist a class that implements both
the Open and SaveAs interfaces. If an instance of such a class were ever passed
to handle, there would be no single most-specific method implementation to
invoke. Therefore, the JPred typechecker signals an ambiguity between the
first two handle methods at compile time.

FileEditor.pj:2: This method is ambiguous with the one at FileEditor.pj:3.

void handle(Event e) when e@Open {}

^

Because of this potential for ambiguities, prior languages supporting mul-
tiple dispatch and modular typechecking have either disallowed interface dis-
patch entirely [Clifton et al. 2006], severely restricted the usage of multiple
inheritance or multiple dispatch [Millstein and Chambers 2002; Baumgartner
et al. 2002], or linearized the semantics of multiple inheritance or multiple
dispatch [Agrawal et al. 1991; Boyland and Castagna 1997].

2.2.2 Modularly Typesafe Interface Dispatch. Our solution to this prob-
lem is based on a simple yet powerful observation: While it is impossible to
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modularly know all the classes (if any) that cause a pair of methods to be am-
biguous due to multiple inheritance, the expressiveness of predicate dispatch
nonetheless allows programmers to modularly resolve all potential ambigui-
ties. Therefore, we need not impose any restrictions or modifications to either
multiple inheritance or predicate dispatch. Instead, we simply leave it to the
programmer to resolve any signaled ambiguities in the manner deemed most
appropriate.

For example, one way to resolve the ambiguity between the first two methods
in Figure 3 is to add the following method.

void handle(Event e) when e@Open && e@SaveAs { . . . }

Because this new method overrides both methods and is applicable whenever
both of them are applicable, the ambiguity between those two methods can
never manifest itself as a runtime ambiguity.

As an alternative to adding a dedicated method to handle the ambiguity,
predicate dispatch also allows a programmer to specify one of the original
ambiguous methods to be favored in the event of an ambiguity. For example,
the programmer could revise the predicate on the second handle method to
be e@SaveAs && !e@Open, thereby explicitly indicating that events implement-
ing both Open and SaveAs should be dispatched to the first handle method; the
second method is no longer applicable.

These two approaches to resolving ambiguities naturally generalize beyond
the case when exactly one argument (in addition to the receiver) is dispatched
upon. In general, given two ambiguous JPred methods with predicates P1 and
P2, their ambiguity can be resolved by adding a third method whose predi-
cate is P1 && P2. Alternatively, the ambiguity can be resolved by modifying the
predicate on the second method to instead be P2 && !P1 (or by modifying the
predicate on the first method symmetrically). We have shown two common ways
for programmers to resolve ambiguities, but variations on these approaches are
possible.

2.2.3 Ordered Dispatch. To mitigate the burden of resolving ambiguities
on programmers, we have introduced a natural syntactic sugar for predicate
methods. This sugar is inspired by pattern matching in functional languages
like ML [Milner et al. 1997], which uses a “first-match” semantics in contrast
to the “best-match” semantics typical of OO languages. We observe that the
best-match semantics of predicate dispatch, based on predicate implication, is
expressive enough to encode the first-match semantics.

Figure 8 illustrates our syntactic sugar, which we refer to as ordered dis-
patch, using a revised version of the FileEditor. Ordered dispatch consists
of a single method declaration with several associated cases. Conceptually, or-
dered dispatch uses a first-match semantics: Upon a message send, each case’s
predicate is tested one-by-one in textual order, and the first case whose predi-
cate is satisfied is invoked. Given this semantics, the code in Figure 8 is mod-
ularly typesafe even if the events are interfaces. For example, if the passed
event implements both Open and SaveAs, the first case in the figure will be
invoked.
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Fig. 8. Ordered dispatch in JPred.

Unlike prior approaches that resolve ambiguities using textual order
[Boyland and Castagna 1997], the introduction of ordered dispatch does not
entail any modifications to JPred’s method-lookup semantics, since ordered
dispatch is purely syntactic sugar. An ordered dispatch of the form

T m(T x) when P1 { . . . } | · · · | when Pn { . . . }

is desugared by the JPred compiler to the following collection of regular JPred
methods, whose textual order is irrelevant.

T m(T x) when P1 { . . . }
T m(T x) when P2 && !P1 { . . . }
· · ·
T m(T x) when Pn && !P1 && · · · && !Pn−1 { . . . }

Therefore, programmers can also easily mix ordered dispatch with regular
JPred methods. As a simple example, in Figure 8 the programmer could choose
to make the last case in the ordered dispatch declaration a separate JPred
method.

2.3 Field Dispatch, Array Access, and Identifier Binding

JPred supports dispatch on the substructure of a method’s arguments, as found
in functional-style pattern matching. This idiom is expressed through predi-
cates on fields. Any field in scope within a method may be dispatched upon in
the method’s predicate, including fields of the receiver argument, visible fields
of the other arguments, visible static fields of other classes, and fields of fields
(recursively).

For example, consider the typechecking visitor in Figure 5, and suppose a
BinaryExpr subclass of Node represents invocations of a binary operator. It is
necessary to know which binary operator is invoked in order to decide how to
typecheck the invocation, and field dispatch provides a natural and declarative
solution, as shown in Figure 9. The example also illustrates another use of
disjunction in predicates.

As another example, Figure 10 uses field dispatch to find the minimum el-
ement of a binary search tree, in the context of the hierarchy in Figure 6. The
code mirrors the way such functionality would be naturally written in a lan-
guage with pattern matching, like ML. As usual, this.left can equivalently
be written as left in the predicate expression.
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Fig. 9. Field dispatch in JPred.

Fig. 10. Another example of field dispatch.

Fig. 11. Narrowing the static type of a field is unsound.

JPred also allows predicates to dispatch on the elements of an array, which
is conceptually a form of field dispatch for arrays. As a simple example, suppose
our DataNode class were revised to represent a node of an n-ary tree, replacing
the left and right fields with a children field of type TreeNode[]. In this case,
the predicate on the first getMin method in Figure 10 would be changed to the
predicate this.children[0]@EmptyNode in order to test whether the leftmost
child is empty. As in Java, JPred performs no static array-bounds checking,
instead deferring such checking to runtime.

Unlike specialized types for formals, specialized types for fields and array
elements are never used when typechecking the associated method body. For
example, this.left is still considered to have static type TreeNode when type-
checking the body of the first getMin method in Figure 10, even though the
method can only be invoked when this.left is an instance of EmptyNode. The
unsound method in Figure 11 illustrates why this rule is necessary. Since the
static type of n.left is TreeNode, the first statement in the body of unsound
typechecks. If the static type of this.left is narrowed to its specialized type
DataNode, then the return statement also typechecks. However, the return
statement will dynamically attempt to access the data field of an EmptyNode
instance on an invocation dn.unsound(dn), where dn has static type DataNode.

In the previous example, an invocation dn.unsound(dn) causes this.left
and n.left to have the same l-value, so assigning to one of them implicitly
causes the value of the other to change. By forcing a field expression to retain
its original static type, JPred ensures type soundness, regardless of how the
expression’s value is updated through aliases. In JPred, the code in Figure 11
is rejected because this.left.data fails to typecheck; this.left has static type
TreeNode and hence does not have a data field.
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Formal parameters and local variables in Java do not suffer from this aliasing
problem: The only way to make a variable x refer to a different object is by
assigning to x itself. It is for this reason that the types of formal parameters
may be safely narrowed to their specialized types when typechecking a method
body, even in the presence of mutation. This observation provides a mechanism
for safely narrowing the types of fields and array elements that have specialized
types as well. JPred allows a specializer expression to bind a new identifier
to the specialized target’s value, and this identifier may be referenced in the
associated method body. We refer to the new identifier as a specialized name.
Specialized names have the same semantics as local variables, so it is sound
to narrow the type of a specialized name to the specialized type of its target.
For example, the following variant of the method in Figure 11 is allowed by the
JPred typechecker and is perfectly sound.

class DataNode extends TreeNode {
int sound(DataNode n) when l as this.left@DataNode {
n.left = new EmptyNode();
return l.data;

}
}

In the example, the method body is able to access the data field of this.left’s
specialized name l, because l is considered to have static type DataNode. While
an invocation dn.unsound(dn) still causes this.left and n.left to have the
same l-value, these expressions do not have the same l-value as l. Therefore,
assigning to n.left does not affect the value of l. As with specialized types,
we do not allow new identifiers bound in predicates to escape from underneath
disjunction and negation.

JPred also allows a target to be bound to a new identifier using the Identifier
as tgt syntax, without providing a specializer for the target. In that case, the
new identifier acts simply as a convenient shorthand for use in the method’s
body. For the purposes of determining predicate implication, such a predicate is
considered equivalent to the predicate true, since it always succeeds (modulo
null dereferences and array-bounds violations, which JPred, like Java, does not
statically prevent).

2.4 Equality

Functional languages like ML allow formals and (the analog of) fields to be
tested against constants via pattern matching. JPred can express this idiom
via equality testing against literals and other compile-time constant expres-
sions. For example, FileProtocol in Figure 12 implements a finite-state ma-
chine (FSM) that checks that users of the file editor in Figure 2 never attempt
two opens or two closes in a row. Typical for the implementation of FSMs in
Java, the states are represented by compile-time constant fields, WANT OPEN and
WANT CLOSE. JPred allows each transition of the FSM to be encapsulated in its
own method, and the equality predicate is used to declaratively test the current
state.
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Fig. 12. A finite-state machine in JPred.

Fig. 13. Extending a finite-state machine in JPred.

Unlike a corresponding implementation with functional-style pattern match-
ing, the FSM in Figure 12 is easily extensible. For example, Figure 13 extends
the FSM to additionally check that a modified file is saved before it is closed.
One new state and two new transitions are added to the FSM.

As in Java, the == operator may also be used to compare objects for reference
equality. For example, we can provide special-purpose behavior for null values.
Consider the handle functionality in Figure 3. As currently written, if handle
is passed a null event, the only applicable method will be the last one in the
figure. (Recall that the @ predicate has the same semantics as Java’s instanceof
expression. Therefore, null@T is false for every type T.) For safety, that method’s
body should test whether e is null before attempting to access one of its fields
or methods. As a declarative alternative in JPred, we can provide a separate
method to handle the erroneous situation when e is null, which overrides the
last handle method.

void handle(Event e) when e==null { . . . }

JPred’s equality predicate is more general than its analog in functional-style
pattern matching, since JPred allows targets to be compared against one an-
other. An example is shown in Figure 14, where the equals method inherited
from Object is overridden. The first method’s predicate shows that JPred sub-
sumes alias dispatch [Leavens and Antropova 1999; Assaad and Leavens 2001],
in which method implementations can be specialized to particular alias scenar-
ios of their arguments. The second method’s predicate tests equality of the fields
of arguments to determine applicability. It also illustrates that specialized types
and identifiers that escape to the method body may also be used later in the
predicate expression: The data field of o may only be accessed because the type
of o has been narrowed to DataNode. As shown in the example, JPred meth-
ods may override any existing methods, including those in the Java standard
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Fig. 14. Another example of equality predicates in JPred.

Fig. 15. Linear inequalities in JPred.

library. If neither method in the figure is applicable to some invocation, then the
default equals method in Object will automatically be selected for execution
(assuming TreeNode does not contain an overriding equals method).

2.5 Linear Arithmetic and Partially Abstract Methods

JPred supports arithmetic inequalities in predicate expressions, via the various
relational and arithmetic operators shown in Figure 1. All arithmetic expres-
sions in a predicate are required to be linear. The JPred typechecker enforces
this requirement by checking that, for every predicate expression of the form
pred1 * pred2, at least one of the two operands is a compile-time constant ex-
pression as defined by Java [Gosling et al. 2005]. Forcing arithmetic to be linear
ensures that testing relationships among predicates, such as logical implica-
tion, remains decidable.

Figure 15 illustrates a simple example of linear inequalities in JPred. The
contains operation checks whether a given data element is in a binary search
tree. The figure shows the implementation of contains for DataNode; the imple-
mentation for EmptyNode is the base case and simply returns false. By predicate
implication, none of the methods in the figure overrides any of the others. Fur-
ther, JPred’s static typechecker is able to verify that the three methods are both
exhaustive and unambiguous, ensuring a single most-specific method to invoke
for every possible type-correct argument value.

As another example, consider an nth method on tree nodes, which takes an
integer argument n and returns the nth smallest element (counting from zero)
in the tree. It may be desirable to make the nth method in the TreeNode class
abstract, thereby forcing each subclass to provide an appropriate implementa-
tion. At the same time, it is likely that all subclasses will act identically when
nth is passed a negative integer as an argument. Therefore, it would be nice to
write the code to handle this erroneous scenario once, allowing all subclasses
to inherit that functionality. In essence, we would like to make TreeNode’s nth
method partially abstract.

Figure 16 shows how inheritance of predicate methods in JPred naturally
allows operations to be declared partially abstract. The first nth method in
TreeNode is declared abstract, but it is partially overridden by the second
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Fig. 16. Partially abstract methods in JPred.

method, which handles the error case. Subclasses of TreeNode inherit the sec-
ond method, but they are still obligated to provide implementations of nth that
handle situations when the integer argument is nonnegative; the static type
system described in Section 3 enforces this obligation.

Partially abstract operations are particularly useful for large class hierar-
chies. For example, TreeNode could represent a base class for many different
kinds of binary trees (binary search trees, heaps, etc.). Although each binary
tree will have a different implementation of nth, they can all share code to han-
dle the error case, which is nicely modularized. In contrast, Java and its type
system force the programmer either to make TreeNode’s nth method (fully) ab-
stract or to implement it for all possible integer values. Many other operations
besides nth naturally have error scenarios and hence would also benefit from
being partially abstract.

2.6 Pure Methods

It is often useful to invoke methods within a predicate expression. For example,
a class’s fields are typically kept private, so clients of the class must access these
fields indirectly through getter methods. Therefore, clients who wish to dispatch
on the values of fields must be able to invoke these getter methods in predicates.
As another example, although the == operator can be used to compare objects
for pointer equality in a predicate expression, as shown earlier, it is typically
desirable to compare objects for logical equality using the equals method from
java.lang.Object.

JPred therefore allows methods to be invoked within predicate expressions.
However, JPred requires such methods to be side-effect-free. Side effects in
predicates would cause several problems. Because JPred makes no guarantees
about the order in which predicates are evaluated, it would be difficult for pro-
grammers to understand the impact of any side effects in predicates. Similarly,
side effects could cause the evaluation of a predicate expression to affect the
values of other predicate expressions (including itself). This could lead to a sit-
uation where the method selected by dynamic dispatch is invoked in a context
where its associated predicate expression no longer holds.1

To enforce the lack of side effects, JPred requires any method invoked within
a predicate expression to have been declared pure. The static typechecker en-
sures that each method declared pure is side-effect-free. Our current implemen-
tation uses a simple set of rules that is easy to understand. First, a pure method
may not assign to fields or to array elements; assignment to local variables is

1Unfortunately, it is possible for such a situation to arise even without side effects in predicates,

in the presence of multithreading.
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allowed freely. Second, a pure method may not invoke non-pure methods. Third,
a pure method may not invoke any constructors. Finally, since it is not possible
to statically know which method implementation is invoked upon a message
send, any method that overrides a pure method must itself be declared pure.

Although these rules are fairly restrictive, they support a variety of useful
kinds of method calls in predicates, including the two scenarios mentioned
before. For example, the implementer of the BinaryExpr AST node used in the
typechecking visitor of Figure 9 could make the operator field private, instead
providing an appropriate accessor method.

public pure Operator getOperator() { return this.operator; }

In that case, the typechecking visitor can access the node’s operator via the
invocation n.getOperator(). As another example, the two equals methods in
Figure 14 could be declared pure and thereby employed in predicates. Others
have proposed more precise analyses for ensuring purity of Java methods (e.g.,
Salcianu and Rinard [2005]), which we could adapt if desired.

2.7 Method Invocation Semantics

We end this section by describing more precisely the semantics of method invo-
cation in JPred. To simplify the discussion, we assume that all methods have
a when clause and that MultiJava-style specializers have been desugared. A
method without a when clause is equivalent to one with the clause when true.

Consider a message send of the form e1.m(e2, . . . , en) appearing in some JPred
program. At compile time, static overload resolution is performed exactly as in
Java, based on the name m and the static types of e1, . . . , en. This has the effect
of determining which method family [Clifton et al. 2006] (a collection of methods
of the same name, number of arguments, and static argument types) will be
invoked dynamically.2

At runtime, each expression ei is evaluated to produce a value vi and the
single most-specific applicable method belonging to the statically determined
method family is invoked. A method is applicable if its associated predicate
expression evaluates to true in the context of the given actual arguments
v1, . . . , vn. A method is the single most-specific applicable method if it is the
only applicable method that overrides all other applicable methods. Finally,
one method m1 overrides another method m2 if either of the following holds.

—Method m1’s receiver class is a strict subclass of m2’s receiver class.

—Methods m1 and m2 are declared in the same class, and m1’s predicate expres-
sion logically implies m2’s predicate expression. We use off-the-shelf decision
procedures, which are discussed in Section 4, to test predicate implication.

For example, consider the invocation treeIso.isomorphism(en, dn) in the con-
text of the class in Figure 7, where treeIso, en, and dn have runtime types
TreeIsomorphism, EmptyNode, and DataNode, respectively. The second and third

2A method family has also been known as a generic function [Bobrow et al. 1986; Moon 1986], but

we avoid that terminology to prevent confusion with Java 1.5’s notion of generics.
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Fig. 17. A problem with the symmetric approach to method lookup.

methods in the figure are applicable, and the second method is the single most-
specific applicable one.

If there are no applicable methods for a message send, a message-not-
understood error occurs. If there is at least one applicable method but no single
most-specific applicable method, a message-ambiguous error occurs. The mod-
ular static type system in Section 3 ensures that these kinds of errors cannot
occur.

JPred’s method-lookup semantics can be viewed as a generalization of the
encapsulated style of multimethod dispatch [Castagna 1995]. In this style, dis-
patch consists of two phases. In the first phase, ordinary OO-style dispatch finds
the receiver argument’s class. In the second phase, the single most-specific ap-
plicable method in the receiver class is selected, recursively considering meth-
ods in the superclass if no methods in the receiver are applicable.

Other multimethod semantics could instead be generalized in JPred with-
out affecting our results. For example, we could generalize the symmetric mul-
timethod semantics, in which the receiver argument is not treated specially.
This semantics is used in multimethod languages such as Cecil and MultiJava.
In the symmetric approach to JPred dispatch, a method m1 would be consid-
ered to override another method m2 only if m1’s receiver class is a (reflexive,
transitive) subclass of m2 and m1’s predicate expression logically implies m2’s
predicate expression.

We chose the encapsulated style in JPred for several reasons. First, the en-
capsulated style is arguably quite natural in a language like Java, which is
already heavily receiver-centric. Further, the encapsulated style reduces the
dependence of classes on their superclasses: A class’s methods cannot be am-
biguous with any methods in superclasses. Finally, receiver-based encapsu-
lation can sometimes make the symmetric semantics impossible to satisfy, as
shown in Figure 17. Under JPred’s invocation semantics, D’s m method overrides
C’s m method. In contrast, under the symmetric semantics, neither of the two
methods in the figure is considered to override the other: A message-ambiguous
error will occur if m is ever invoked on a D instance whose f and g fields are both
instances of String.

Therefore, under the symmetric semantics a static typechecker must reject
the program in Figure 17. If f were accessible from D, then the implementer of
D could resolve the ambiguity and allow the program to typecheck by adding a
new method as follows.

void m() when f@String && g@String { . . . }
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Since f is private to C, however, there is no way for the implementer of D to
resolve the ambiguity. Indeed, under the symmetric semantics, every m method
in class D (except a method whose predicate is logically false) is ambiguous
with C’s m method.

3. STATIC TYPECHECKING

This section informally describes our extensions to Java’s static type system
to support predicate methods. A key feature is the retention of Java’s modu-
lar typechecking approach, whereby each compilation unit can be typechecked
separately, given type information about the other compilation units on which
it depends. The section ends with a discussion of the interaction between pred-
icate methods and Java’s generics.

3.1 Typechecking Message Sends

Message sends are typechecked in JPred exactly as in Java; no modifications
are required. As mentioned in Section 2.7, Java’s static overload resolution is
performed to determine which method family a message send invokes, based
on the message name, number of arguments, and static types of the argument
expressions. As usual, the result type of the method family is then used as the
type of the entire message send expression.

3.2 Typechecking Method Declarations

Typechecking for method declarations is augmented to reason about when
clauses. First we describe the local checks performed on each predicate method
in isolation. Then we describe the checks ensuring that a method family’s meth-
ods are exhaustive, so that message-not-understood errors cannot happen at
runtime. Finally, we describe the checks ensuring that a method family’s meth-
ods are unambiguous, so that message-ambiguous errors cannot happen at
runtime.

3.2.1 Local Checks. Local checks on a predicate method are largely
straightforward. The main new requirement is that the method’s associated
predicate expression typechecks successfully and has the type boolean. The
predicate expressions (see Figure 1) that are also legal Java expressions are
typechecked exactly as they are in Java. Arithmetic predicate expressions are
additionally checked to be linear, as described in Section 2.5.

Specializer expressions of the form tgt@Type are typechecked like Java’s
instanceof expression. Namely, the static type of tgt must obey the rules for
casting conversion to Type [Gosling et al. 2005], which ensure that it is possible
for the runtime class of tgt to be a subtype of Type. Specializer expressions of
the form Identifier as tgt@Type are typechecked identically, and additionally the
specialized name Identifier is given the static type Type. An identifier binding
of the form Identifier as tgt is typechecked by typechecking the target as in Java
and additionally giving Identifier the static type determined for the target. It
is an error if an identifier is bound more than once in a predicate. Specialized
types for formals and type bindings for identifiers that can escape to the method
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body are used when typechecking the method body. They also propagate from
left to right during the typechecking of the predicate itself.

A predicate method may not be declared abstract. However, concrete predi-
cate methods are allowed in abstract classes, and they can be used to implement
partially abstract methods, as shown in Figure 16. Consistent with Java, a pred-
icate method may have weaker access restrictions than overridden methods in
superclasses, and it may declare a subset of the exceptions declared by over-
ridden methods in superclasses. However, we require a predicate method to
have the same access modifiers and declared exceptions as all other methods
belonging to the same method family that are in the same class. It is possible to
relax this rule, analogous with Java’s requirements. For example, it would be
sound to allow the first check method in Figure 12 to be declared public, since
the two methods it overrides are both implicitly package-visible.

We have decided not to allow this relaxation, since it requires the ability
to statically evaluate predicate expressions in order to be useful. For example,
if the first check method were declared public, an invocation of check from
outside of FileProtocol’s package could only be allowed to typecheck if the
JPred typechecker could statically prove that the argument event is an instance
of Open or a subclass and the receiver’s state field is equal to WANT OPEN. Rather
than forcing the type system to incorporate a conservative analysis for statically
evaluating predicate expressions, our current rule gives up a bit of flexibility,
keeping the type system simple yet still backward-compatible with Java’s type
system.

Finally, the typechecker ensures that a method’s associated predicate is satis-
fiable, meaning that there is at least one possible context in which the predicate
evaluates to true. A predicate is determined to be unsatisfiable if its negation
is logically valid. This check is not required for soundness but it provides useful
feedback for programmers. Since a method with an unsatisfiable predicate can
never be invoked, the predicate likely is the result of a programmer error.

The check for predicate satisfiability is particularly useful for methods that
employ the ordered dispatch syntactic sugar discussed in Section 2.2.3. In this
context, the satisfiability check plays exactly the role of the match redundant
warnings provided by languages like Standard ML [Milner et al. 1997], which
warn about unreachable cases of a function. For example, suppose the order of
the second and third cases were swapped in Figure 8. Assuming that SaveAs
is a subtype of Save, the SaveAs case would now be unreachable. The JPred
typechecker correctly signals an error, because the desugared version of the
predicate e@SaveAs is now e@SaveAs && !e@Open && !e@Save, which is unsat-
isfiable.

3.2.2 Exhaustiveness Checking. Exhaustiveness checking ensures that
message-not-understood errors will not occur in well-typed programs: Each
type-correct tuple of arguments to a message has at least one applicable method.
Such checking is already a part of Java’s modular typechecks. For example,
a static error is signaled in Java if a concrete class does not implement an
inherited abstract method because that situation could lead to a dynamic
NoSuchMethodException, the equivalent of our message-not-understood error.
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JPred naturally augments Java’s class-by-class exhaustiveness checking. As
in Java, for each concrete class C we check that C implements any inherited ab-
stract methods. For example, assuming that TreeNode’s contains method is de-
clared abstract, DataNode in Figure 15 will be checked to implement contains
for all possible scenarios. In JPred we must also check that C implements any
inherited partially abstract methods. For example, DataNode will be checked to
implement the partially abstract nth method in Figure 16 for all nonnegative
integer arguments. Finally, in JPred we must check that C fully implements
any new method families declared in C (i.e., methods in C that have no over-
ridden methods in superclasses). For example, FileEditor in Figure 3 will be
checked to implement the new handle method family for all possible pairs of
argument events.

All of these checks are performed in a uniform way. To check exhaustiveness
of a method family from a class C, we collect all of the concrete methods of
that method family declared in C and inherited from superclasses of C. If at
least one of these methods is a regular Java method (i.e., it has no when clause),
then exhaustiveness is assured and the check succeeds. Otherwise, all of the
methods are predicate methods, and the check succeeds if the disjunction of all
of the methods’ predicates is logically valid.

For example, consider exhaustiveness checking of handle in Figure 3. Since
the last method has no when clause, the check succeeds. As another example,
consider exhaustiveness checking of contains for DataNode in Figure 15. None
of the declared methods is a regular Java method, but the disjunction of the
methods’ predicates is logically valid (since one integer is always either equal
to, less than, or greater than another integer), so the check succeeds.

Our exhaustiveness checking algorithm is conservative in the face of partial
program knowledge, which is critical for modular typechecking. For example,
consider again exhaustiveness checking for handle in Figure 3, and suppose
that the last method were missing. In that case, our typechecker would signal
a static exhaustiveness error, since the disjunction of the remaining methods’
predicates is not valid. Indeed, it is possible that there exist concrete subclasses
of Event other than Open, Save, and SaveAs, and these events may not be visible
from FileEditor. Indeed, these events may not even have been implemented
when FileEditor is typechecked and compiled.

Java and MultiJava share JPred’s conservatism, and in fact those languages
are strictly more conservative than JPred. Both Java and MultiJava always
require the existence of a default method, which handles all possible argu-
ments of the appropriate type, to ensure exhaustiveness. In contrast, JPred
can sometimes safely ensure exhaustiveness without forcing the existence of
a default method, as shown in the preceding contains example. Ernst et al.’s
exhaustiveness checking algorithm for predicate dispatch [Ernst et al. 1998]
safely requires fewer default methods than JPred, but the algorithm requires
whole-program knowledge.

3.2.3 Ambiguity Checking. Ambiguity checking ensures that message-
ambiguous errors will not occur in well-typed programs: If a type-correct tuple
of arguments to a message has at least one applicable method, then it has
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a single most-specific applicable method. Again, such checking is already a
part of Java’s modular typechecks. In particular, Java signals a static error if
a class contains two methods of the same name, number of arguments, and
static argument types. Languages that support multiple inheritance, like C++
[Stroustrup 1997], perform additional ambiguity checks modularly.

JPred performs ambiguity checking for each class C by comparing each pair
of methods declared in C that belong to the same method family. The algorithm
for checking each method pair generalizes our earlier algorithm for modular
ambiguity checking in Extensible ML (EML) [Millstein et al. 2004] to handle
JPred’s predicate expressions, which subsume EML’s pattern-matching facility.
Consider a pair of methods m1 and m2. If each method overrides the other then
the methods have the same logical predicate and hence are ambiguous. This
check subsumes Java’s check for duplicate methods. If one method overrides
the other but not vice versa, then one method is strictly more specific than the
other, so the methods are not ambiguous.

Finally, suppose neither method overrides the other. Then m1 and m2 are
predicate methods, with predicates pred1 and pred2, respectively. There are
two cases to consider. If the methods are disjoint, meaning that they cannot
be simultaneously applicable, then they are not ambiguous. The methods are
disjoint if pred1 and pred2 are mutually exclusive: ¬(pred1∧ pred2) is valid.
If the methods are not disjoint, then the methods are ambiguous unless the
set m of methods that override both m1 and m2 is a resolving set, meaning
that at least one member of m is applicable whenever both m1 and m2 are
applicable. The set m, with associated predicates pred, is a resolving set if
((pred1 ∧ pred2) ⇒ ∨

pred) is valid.
Consider ambiguity checking for check in FileProtocol of Figure 12. There

are ten pairs of methods to consider. The first four methods each override the
last method, but not vice versa, so these pairs are unambiguous. The pair con-
sisting of the first and second methods passes the check similarly, as does the
pair consisting of the third and fourth methods. Finally, each of the first two
methods is disjoint from each of the third and fourth methods. Therefore, am-
biguity checking for check in FileProtocol succeeds.

To illustrate resolving sets, consider an OpenAs subclass of Open, which copies
a file to a new name and opens it, and suppose FileProtocol contained a method
of the following form.

void check(Event@OpenAs o) { . . . }
In that case, the JPred typechecker would signal a static error indicating that
the new method is ambiguous with the first check method in Figure 12: The
methods are not disjoint and there are no methods that override both of them,
so the test for a resolving set fails trivially. Indeed, the two methods will cause
a dynamic message-ambiguous error if check is ever passed an OpenAs event
when the receiver is in the WANT OPEN state. However, the ambiguity would be
resolved, and typechecking would succeed, if FileProtocol additionally con-
tained a method of the following form.

void check(Event@OpenAs o) when state==WANT OPEN { . . . }
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Fig. 18. Predicate dispatch and generics.

JPred’s ambiguity checking algorithm is naturally modular: Only pairs of
methods declared in the same class are considered. The semantics of method
invocation described in Section 2.7 ensures that two methods declared in dif-
ferent classes cannot be ambiguous with one another. If one method’s class is
a strict subclass of the other method’s class, then the first method overrides
the second. Otherwise, neither method’s class is a subclass of the other, so the
methods are guaranteed to be disjoint.

JPred’s modular ambiguity checking algorithm is similar to the original am-
biguity algorithm for predicate dispatch [Ernst et al. 1998]. However, that al-
gorithm is performed on all pairs of methods belonging to the same method
family in the entire program. Further, that algorithm does not check for a set
of resolving methods, instead conservatively rejecting the program whenever
two methods are not in an overriding relation and are not disjoint.

3.3 Generics and Predicate Dispatch

Java’s generics are naturally handled by the rules just described. The key
requirement, mentioned in Section 3.2.1, is that specializer expressions obey
Java’s rules for casting conversion. In other words, JPred allows specializing an
object of type T1 to the type T2 if and only if Java allows an object of type T1 to
be cast to T2. Figure 18 illustrates some simple examples of predicate methods
that typecheck successfully in JPred.

In order to interoperate with legacy code written before the advent of gener-
ics, and because generics in Java are implemented via type erasure, casts in
Java may be (partially) unchecked. An unchecked cast can succeed dynam-
ically even though the given object does not in fact have the cast-to type,
thereby potentially causing future runtime type errors. For example, a cast
to ArrayList<String> dynamically only requires the given list’s class to be a
subtype of ArrayList, regardless of the type of its elements. Later code may
then erroneously assume that the list only contains strings. The Java type-
checker signals a static warning whenever a program contains an unchecked
cast.

As a result, dynamic dispatch in JPred may also be unchecked. For exam-
ple, suppose we modify the specializer on the second m1 method in Figure 18
to be ArrayList<String>. This revised code typechecks in JPred, because Java
allows an object of type List<T> to be cast to ArrayList<String>. Therefore,
l is considered to have type ArrayList<String> when typechecking the body
of the second m1 method. However, at runtime the dynamic dispatch (i.e., the
generated instanceof test and subsequent cast) succeeds as long as the given
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list is an ArrayList, regardless of the type of its elements. As in Java, the
JPred typechecker signals a static warning whenever a program contains an
unchecked specializer expression. While it is possible to statically prevent un-
sound type tests, as others have done [Emir et al. 2007], we have chosen to
retain consistency with Java’s semantics.

Exhaustiveness and ambiguity checking proceed as described in Section 3.2,
except that we always use the erased types for specializers when performing
the checking. This ensures, for example, that if a message has two meth-
ods, one dispatching on ArrayList<String> and the other dispatching on
ArrayList<Integer>, these methods will be found to be ambiguous. Indeed,
due to Java’s type erasure, these specializers have the exact same effect dy-
namically.

4. AUTOMATICALLY REASONING ABOUT PREDICATES

As described in Sections 2 and 3, both the dynamic and static semantics of
JPred rely on the ability to test relationships among predicate expressions. All
of these tests reduce to the ability to check validity of propositional combina-
tions of formulas expressible in JPred’s predicate language. Prior languages
containing predicate dispatch have used their own specialized algorithms for
conservatively checking validity of predicates [Ernst et al. 1998; Ucko 2001;
Orleans 2002]. In contrast, JPred employs general-purpose off-the-shelf deci-
sion procedures, which are more flexible and precise than these specialized
algorithms.

In particular, we rely on an automatic theorem prover that consists of a
combination of decision procedures for various logical theories. Using an auto-
matic theorem prover as a black box allows us to easily incorporate advances
in decision procedures as they arise. For example, efficient decision procedures
for propositional satisfiability is an active area of research. Using an automatic
theorem prover also makes it easier to augment our language with new kinds of
predicates. Rather than being forced to extend a specialized validity algorithm
to handle the new predicates, we have the simpler task of deciding how to
appropriately represent the new predicates in the logic accepted by the prover.

In this section we describe the interface between JPred and an automatic
theorem prover. First we describe CVC3 [2009], which is the automatic theorem
prover that our implementation uses. Then we describe how JPred’s predicate
expressions are represented in CVC3’s input language. Finally we describe
the axioms we provide to CVC3 so it can reason precisely about objects and
classes.

4.1 CVC3

CVC3 is an automatic theorem prover in the Nelson-Oppen style [Nelson and
Oppen 1979]. The theorem prover integrates separate decision procedures for
several decidable theories, including:

—real and integer linear arithmetic;

—equality with uninterpreted function symbols;

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 2, Article 7, Pub. date: February 2009.



7:26 • T. Millstein et al.

—arrays;

—records; and

—user-defined inductive datatypes.

CVC3’s input language allows expression of first-order logic formulas over the
aforementioned interpreted theories. While this logic is undecidable in general,
we only employ the quantifier-free subset of CVC3’s input language, on which
CVC3 is sound, complete, and fully automatic. In a typical usage, various formu-
las are provided as axioms, which CVC3 assumes to be true. These user-defined
axioms, along with the axioms and inference rules of the underlying theories,
are then used to automatically decide whether a query formula is valid.

For our purposes, there is nothing special about CVC3. There are several
automatic theorem provers of comparable expressiveness to CVC3 for example,
Simplify [Detlefs et al. 2005] and Verifun [Flanagan et al. 2003]. Moving to one
of these provers would merely require us to translate the queries and axioms
we provide to CVC3 (see the next two subsections) into the input language
of the new prover. In fact, the original implementation of the JPred compiler
employed CVC3’s predecessor, CVC Lite [Barrett and Berezin 2004], which has
a slightly different input language.

4.2 Representing Predicate Expressions

Before translating a predicate expression into the syntax of CVC3’s input lan-
guage, we convert it to internal form. This conversion process canonicalizes
the predicate expression so it can be properly compared to a predicate expres-
sion of another method. First, we replace the ith formal name with the name
argi everywhere.3 Second, we replace any compile-time constant expressions
with their constant values. Third, we convert targets to their full names, for
example, adding a prefix of this if it was left implicit. Fourth, we substitute
any use of a bound identifier in the predicate expression with the identifier’s
associated target expression, which is itself recursively internalized. Finally,
we remove identifier bindings. Ordinary identifier binding expressions are re-
placed by true, and specialized identifier bindings simply have the binding
removed, leaving the specializer expression.

It is straightforward to translate predicate expressions in internal form into
the syntax of CVC3’s input language. All of our allowed unary and binary oper-
ators (see Figure 1) are translated to their counterparts in CVC3, as are array
accesses and all of the literals except null. The literal null and all variables
and field accesses appearing in a given predicate expression are translated to
themselves; they are treated as variable names by CVC3. For example, the tar-
get this.data is treated as an atomic variable name, with no relation to the
target this. A pure method call is translated to a call of an associated uninter-
preted function symbol, with the receiver argument treated as an ordinary ar-
gument to the function. Finally, a specializer expression tgt@Type is translated

3The actual internal-form argument names are slightly more complicated, to prevent accidental

clashes with other variable names in the program. We elide the issue of name mangling throughout

this section.
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as instanceof(tgt, Type), where instanceof is a distinguished function symbol
that we declare.

For example, consider the containsmethods in DataNode of Figure 15. During
static ambiguity checking, the first and second methods are tested for disjoint-
ness by posing the following query to CVC3.

NOT(arg1 = this.data AND arg1 < this.data)

Here = is CVC3’s analog of Java’s == operator. CVC3 easily proves this formula
to be valid because of the relationship between = and <, so the methods are
proven to be disjoint and hence unambiguous.

4.3 Axioms

Consider testing disjointness of the first and fourth checkmethods in Figure 12.
After converting their predicates to internal form, we pose the following query
to CVC3.

NOT((instanceof(arg1, Open) AND this.state = 0) AND instanceof(arg1, Close))

Since instanceof is an uninterpreted function symbol, CVC3 does not know
anything about its semantics. Therefore, CVC3 cannot prove that the preceding
formula is valid, even though the two methods are in fact disjoint.

To address this issue, we provide CVC3 with axioms about the semantics of
instanceof. These axioms effectively mirror the relevant portion of the asso-
ciated JPred program’s subtype relation in CVC3. We call a target a reference
target if it has reference type. Let F be a query formula provided to CVC3. We
consider in turn each pair ({T1, T2}, tgt), where T1 and T2 are distinct class or
interface names mentioned in F and tgt is a reference target mentioned in F .

—If T1 is a subtype of T2, we declare the axiom instanceof(tgt, T1) =>
instanceof(tgt, T2), where => is the logical implication operator in CVC3.

—Otherwise, if T2 is a subtype of T1, we declare the axiom instanceof(tgt, T2)
=> instanceof(tgt, T1).

—Otherwise, if both T1 and T2 are classes, we declare the axiom
NOT(instanceof(tgt, T1) AND instanceof(tgt, T2)). This axiom models
the fact that classes support only single inheritance.

For the previous check example query, we automatically produce the follow-
ing axiom.

NOT(instanceof(arg1, Open) AND instanceof(arg1, Close))

In the presence of this axiom, CVC3 can now prove that the aforesaid query is
valid, and hence the JPred typechecker will correctly conclude that the first and
fourth check methods in Figure 12 are disjoint. Our axioms for instanceof are
similar to the implication rules used to rule out infeasible truth assignments
in Ernst et al.’s special-purpose algorithm for validity checking [Ernst et al.
1998].
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The axiom-generation scheme is easily augmented to properly handle array
types. To complete the semantics of instanceof, we also include two other kinds
of axioms. First, for each type T in a query formula F , we declare the axiom
NOT(instanceof(null, T)). This axiom reflects the fact that JPred’s special-
izer expression evaluates to false whenever the target is null. The axiom allows
JPred to properly conclude that the handle method near the end of Section 2.4,
which tests whether the argument event is null, is disjoint from each of the
first three handle methods in Figure 3. Second, for every reference target tgt
in F , we declare the axiom instanceof(tgt, T) OR tgt = null, where T is the
static type of tgt. For the special reference target this, which can never be null,
we leave off the second disjunct in this axiom.

Finally, a few other kinds of axioms are required to relate objects to their
substructure. For example, we provide CVC with axioms that relate reference
targets and their fields. For each set of targets {tgt1, tgt2, tgt1. f , tgt2. f } men-
tioned in a query formula F , we declare the following axiom.

tgt1 = tgt2 => tgt1. f = tgt2. f

This axiom allows JPred to properly conclude that the first equals method in
Figure 14 overrides the second one.

5. IMPLEMENTATION

We have implemented JPred in the Polyglot extensible compiler framework for
Java [Nystrom et al. 2003]. The base Polyglot compiler supports only Java 1.4,
but our extension for JPred is implemented as an extension to another Polyglot
extension that supports Java 1.5 features [Polyglot for Java 5 2009], including
generics and the for-each loop.

5.1 Typechecking

The local checks on predicate methods, described in Section 3.2.1, are performed
on each predicate method as part of Polyglot’s existing typechecking pass. In a
subsequent pass, we partition a class’s methods by method family: Each method
family’s methods, where at least one of the methods is a predicate method,
are collected in a dispatcher; the methods belonging to the same dispatcher
are called dispatcher mates [Clifton 2001]. Finally, we perform exhaustiveness
and ambiguity checking on each dispatcher in a class, using the algorithms
described in Section 3. This checking involves sending queries to CVC3 using
the translation and axioms described in Section 4. As part of ambiguity checking
we compute the method overriding partial order, which is also used during code
generation.

5.2 Code Generation

We generate code for JPred in two steps. First we rewrite all of the JPred-specific
AST nodes into Java AST nodes. Then we use an existing pass in Polyglot to
output a source-code representation of Java AST nodes. The resulting .java
files can be compiled with a standard Java compiler and executed on a standard
Java virtual machine.
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Fig. 19. The translation of the isomorphic methods in Figure 7 to Java.

Our modular compilation strategy generalizes that of MultiJava [Clifton
2001] to handle JPred’s predicate language. First, there are several modifica-
tions to each method m associated with a dispatcher. We modify m to be declared
private and to have a unique name. If m has a predicate pred, we add a new
local variable at the beginning of m’s body for each identifier bound in pred that
escapes to the body. The new local variable is initialized with the identifier’s
corresponding target, which is first cast to the associated specialized type, if
any. Static typechecking has ensured that this cast cannot fail dynamically. If
a formal parameter is specialized in pred and this specialized type escapes to
the body, we replace the formal’s original static type in m with the specialized
type. Finally, m’s associated when clause is removed.

For example, Figure 19 illustrates the Java translation of the isomorphic
methods from Figure 7. In the first method, the static argument types have been
narrowed to reflect their specialized types. In the second method, which corre-
sponds to the original method with predicate t1@EmptyNode || t2@EmptyNode,
the argument types are unchanged because neither specializer escapes to the
body.

To complete the translation from JPred to Java, we create a dispatcher
method for each dispatcher d . The method has the same name, modifiers, and
static argument and return types as the original methods associated with d .
Therefore, compilation of clients of the method family is completely transpar-
ent to whether or not the method family employs predicate dispatch. The body
of the dispatcher method uses an if statement to test the guards of each as-
sociated method one by one, from most- to least-specific, in some total order
consistent with the method overriding partial order. The first method whose
guard evaluates to true is invoked. Static ambiguity checking ensures that this
method is in fact the single most-specific applicable method. If all the methods
in d are predicate methods and there exist inherited methods belonging to the
same method family, the last branch of the dispatcher method’s if statement
uses super to recursively invoke the superclass’s dispatcher method. Static ex-
haustiveness checking ensures that an applicable method will eventually be
found.

Figure 20 contains the dispatcher method for the methods in Figure 19. The
dispatcher method is given a canonical set of formal names. Each method’s
predicate is tested by converting the predicate to internal form, described
in Section 4.2, and replacing each specializer expression with its equivalent
instanceof expression. Although not necessary in this example, the internal
form of a predicate is also augmented with casts, wherever a target is sub-
stituted for its corresponding specialized name and wherever a formal with a
specialized type that can escape to the body is referenced. Similarly, a formal
with an escaping specialized type must be cast to the specialized type before
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Fig. 20. A dispatcher method for the methods in Figure 19.

Fig. 21. The syntax of FJPred.

invoking a predicate’s associated method, as shown in the first branch of the if
statement. As before, static typechecking has ensured that none of these casts
can fail.

Because the original methods are now private, calls to them from the dis-
patcher method are statically bound and therefore do not incur the performance
overhead of dynamic dispatch. A Java compiler can inline these methods in the
dispatcher method to further reduce overhead.

6. FEATHERWEIGHT JPRED

This section overviews Featherweight JPred (FJPred), an extension of Feath-
erweight Java (FJ) [Igarashi et al. 2001] that formalizes predicate dispatch in
JPred. We have formalized the syntax, dynamic semantics, and static seman-
tics of FJPred and have proven a type soundness theorem. We provide the most
relevant portions of the formalism here; the full details are available in our
companion technical report [Frost and Millstein 2005].

As far as we are aware, FJPred is the first provably sound formalization of
predicate dispatch. The concept of multiple dispatch has been formalized in
several ways, along with associated type soundness results [Castagna et al.
1995; Castagna 1997; Millstein and Chambers 2002; Millstein et al. 2004]. The
original work on predicate dispatch [Ernst et al. 1998] presented a formalization
of predicate dispatch but did not prove type soundness.

6.1 Syntax

Figure 21 gives the syntax of FJPred, which augments FJ with interfaces and
method predicates. The metavariables C, D, and E range over class names, I and
J over interface names, f and g over field names, m and n over method names, and
x and y over parameter names. FJPred has analogous notational conventions
and sanity conditions to those in FJ. Like FJ, we use D as a shorthand for a
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Fig. 22. The subtyping relation.

sequence of elements from domain D, using the appropriate separator depending
on context. Also as in FJ, we abuse this shorthand for convenience when clear
from context. For example, T x in the syntax of method declarations is shorthand
for a comma-separated sequence of formal parameter declarations. We comment
on other conventions throughout as necessary.

For uniformity, all methods have a predicate; a method with the predicate
true has the same semantics as a regular Java method. Also, the syntax groups
all methods of the same method family in each class as a single declaration. In
particular, the notation T m(T x) when P {return t;} abbreviates the follow-
ing method declaration.

T m(T1 x1, · · · Tn xn) when P1 {return t1;} · · · when Pm {return tm;}
Having all methods for a given method family in one declaration simplifies the
formal semantics. However, method lookup is still independent of the textual
order; FJPred does not support JPred’s ordered dispatch syntactic sugar (but
its desugaring is expressible).

Method predicates include type tests on formals and conjunctions, disjunc-
tions, and negations of such tests. We omit the other constructs supported by
JPred predicates, as they do not exacerbate the issue of modular typechecking
in interesting ways, which is the focus of our formalization.

An FJPred program is a pair of a type table, which maps type (class or inter-
face) names to their declarations, and a term. The rules assume a fixed global
type table T T , although a few of the judgments additionally include an explicit
type table in the context.

6.2 Subtyping

The subtyping relation among types is defined by the rules in Figure 22. The
rules extend those of FJ to handle interfaces in a straightforward manner. The
rules use an explicit type table in the context, which shadows the implicit global
type table; the reason for this will be clear later.
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Fig. 23. Evaluating predicates.

Fig. 24. Predicate validity.

6.3 Reasoning About Predicates

Figure 23 provides the rules for evaluating predicates; the judgment T T ; � |=
P formalizes the conditions under which a predicate evaluates to true. As
usual, � denotes a type environment, which maps variables to types. Intu-
itively, � provides the runtime classes of the actual arguments to a method,
which is necessary to determine if a dynamic dispatch in the method’s predicate
succeeds.

As described earlier, determining the method overriding relation as well as
reasoning about exhaustiveness and ambiguity of method families reduce to
checking validity of propositional formulas, and our implementation uses CVC3
for this purpose. It is beyond the scope of this formalization to formally model
the particular decision procedures used by CVC3 in order to prove a query valid.
Instead, we formalize the consequence of a validity query. Figure 24 defines
our notion of validity. The judgment x |= P indicates that a logical formula P,
which uses the same syntax as FJPred predicates, is valid, where x are the
free variables in P. The associated rule defines a formula to be valid if in all
extensions of the current program, for all assignments of classes to the free
variables in P, the formula evaluates to true.

The use of all extensions T T ′ of T T reflects the modularity of validity check-
ing. For example, consider the formula ¬(x@Open ∧ x@SaveAs), where Open and
SaveAs are interfaces. Even if a given type table has no class that implements
both of these interfaces, our rule ensures that the formula will not be consid-
ered valid. Quantifying over all extensions of T T formalizes the conservative
nature of the validity check: We must always assume the possibility of a class
that implements both Open and SaveAs.4

4It would be slightly more accurate to quantify over all extensions of a subset of T T . Intuitively, this

subset includes only the types mentioned in the formula P and their supertypes, as these are the

only types that CVC3 is given information about. Our technical report [Frost and Millstein 2005]

formalizes this approach, but the two notions of validity can be shown equivalent, so we employ

the simpler version here.
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Fig. 25. Method lookup rules.

6.4 Dynamic Semantics

As in FJ, the dynamic semantics of FJPred is formalized with a small-step oper-
ational semantics whose main judgment has the form t1 −→ t2. The majority
of the rules are identical to those of FJ except for minor adaptations to account
for the presence of interfaces. The only interesting rule is the one for method
invocation.

u = new D(. . . ) mbody(m, C, D) = (x, t0)

(new C(v)).m(u) −→ [x 	→ u, this 	→ new C(v)]t0

The mbody function performs method lookup via predicate dispatch, given
the runtime classes of the receiver and the other arguments. The rules defining
mbody and a helper function are defined in Figure 25. The first rule applies
when the receiver class contains a single applicable method that overrides all
other applicable methods in that class. The first two premises in the rule identify
the method, and the third premise indicates that the method is applicable: Its
predicate evaluates to true in the context of the given actual argument classes.
The final premise uses the overridesIfApplicable helper function to check that
the method strictly overrides all other applicable methods. The judgment P1

.=P2

holds if P1 and P2 denote the same textual predicate from the program, and
P1⇒P2 abbreviates the predicate ¬P1∨P2.

The second and third mbody rules handle the situation when there are no
applicable methods in the receiver class; either there are declared methods for
the invoked method family but none are applicable, or there are no declared
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Fig. 26. Typechecking methods.

methods for the given method family. In both cases, lookup proceeds recursively
in the direct superclass.

6.5 Static Semantics

As usual, the typechecking rules for expressions are formalized by a judgment of
the form � � t : T. Again, the associated rules are straightforward adaptations
of the FJ rules. This includes the rule for typechecking method invocations,
which is unaffected by whether or not the methods in the invoked method
family employ predicate dispatch.

� � t0 : T0 mtype(m, T0) = T→T
� � t : S T T � S<:T

� � t0.m(t) : T

As in FJ, the mtype helper function looks up the declared argument and result
types of a method m in some type T, searching the supertypes if no method
declaration is found. We augment the function in the obvious way to handle
interfaces.

The top rule in Figure 26 defines how methods are typechecked. The first
premise typechecks each predicate, using the rules defined in the middle of
the figure. These rules simply ensure that the only variables a predicate refers
to are the associated method’s formals. For simplicity, our formalism does not
model typechecks on predicates that are unnecessary for soundness, such as the
check for satisfiability. The second and third premises ensure that the method
bodies are all type-correct. The body of a method is typechecked in the context
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of the declared static types of the formals. It would be safe to sometimes narrow
these types based on the type tests in the method’s predicate. The full JPred
language does so, but we have elided it for simplicity.

The final premise performs ambiguity checking on each pair of predicates,
as specified informally in Section 3.2.3 and formally in the bottom rule in
Figure 26. The rule for ambiguity checking first requires that the two given
predicates P1 and P2 are not logically equivalent unless they are the same tex-
tual predicate. The second premise uses a comprehension notation to collect the
subset Q of predicates defined in the current method declaration that override
both P1 and P2. The final premise then ensures that Q is a resolving set for P1 and
P2: Whenever both P1 and P2 are satisfied, then so is at least one predicate in
Q. This check subsumes two special cases discussed explicitly in Section 3.2.3.
First, if P1 overrides P2, then P1 is in Q so the last premise holds and the methods
are considered unambiguous, and similarly for the case when P2 overrides P1.
Second, if P1 and P2 are disjoint, then P1∧P2 is logically false, so the last premise
holds vacuously and the methods are considered unambiguous.

Finally, the rules for typechecking classes and interfaces are presented
in Figure 27. The first rule in the figure typechecks classes. The first three
premises are adapted from FJ, ensuring that the constructor has the appropri-
ate form and typechecking each method declaration; the fields helper function
obtains a class’s fields (including inherited ones) and is defined as in FJ. The all-
MethodNames function returns the names of all methods declared in the given
class and in any of its (transitive) supertypes. Each of the associated method
families is then checked for proper method overriding and for exhaustiveness.

The rules for method overriding are shown in the middle of Figure 27. Anal-
ogous with the rule for method overriding in FJ, we require that a class’s su-
pertypes agree with the class on each method’s type. We also require a class’s
supertypes to agree with the class on each method’s formal-parameter names,
which are accessed by the mformals helper function (definition not shown).
Requiring agreement on formal-parameter names simplifies exhaustiveness
checking by ensuring that all method predicates have the same free variables.

The rule for exhaustiveness checking is shown at the bottom of Figure 27 and
formalizes the checking described in Section 3.2.2. The mpreds function returns
all predicates associated with a method of the given method family in the given
class and in all superclasses. The method family is deemed exhaustive for that
class if the disjunction of all of these predicates is valid.

6.6 Type Soundness

We have proven a type soundness theorem for FJPred using the standard
“progress and preservation” style [Wright and Felleisen 1994]. As in the presen-
tation of FJ, the theorems assume that TD OK holds for each class or interface
declaration TD in T T .

THEOREM 6.1 (PROGRESS). If � t : T, then either t is a value, t contains a
subexpression of the form (S)(new C(v)) where T T � C�<:S, or there exists some
term s such that t −→ s.
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Fig. 27. Typechecking classes and interfaces.

THEOREM 6.2 (TYPE PRESERVATION). If � � t : T and t −→ s, then there exists
some type S such that � � s : S and T T � S<:T.

The full proofs of these theorems are available in our companion technical
report [Frost and Millstein 2005]. The interesting part of the progress proof
involves showing that method lookup always succeeds on well-typed programs,
which requires proving the sufficiency of the exhaustiveness and unambiguity
typechecks. The type preservation proof is a straightforward generalization of
that for FJ.

7. CASE STUDIES

This section describes two case studies that we undertook to evaluate JPred’s
effectiveness in practice. First, we rewrote portions of one.world, a framework
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Fig. 28. The interface for event handlers in one.world.

for pervasive computing applications written in Java, to exploit JPred’s predi-
cate dispatch. Second, we rewrote the JPred compiler itself to employ JPred’s
interface dispatch, after this capability was added to the language. A third case
study focusing on interface dispatch is described elsewhere [Frost and Millstein
2006].

7.1 Event Handlers in One.world

7.1.1 System Description. The one.world system is a framework for
building pervasive applications in Java, designed and implemented by oth-
ers [Grimm et al. 2004]. Users build applications in one.world as collections of
components that communicate through asynchronous events. Each component
C imports a set of event handlers, to which C can pass events, and likewise
exports a set of event handlers, to which others can pass events meant for C.

The one.world system is implemented as a class library in Java 1.4. Users
write one.world components by subclassing from the abstract Component class.
Event handlers in one.world use the same style as the event handlers in our
FileEditor example in Figure 2. In particular, one.world event handlers meet
the simple interface shown in Figure 28: An event handler provides a handle
method, which is passed the event that occurs. A component’s exported event
handlers are typically implemented as inner classes. The set of handlers that
a component imports is initially decided during static initialization, but it can
also be modified dynamically. Having all event handlers meet the same interface
facilitates such dynamic rebinding.

The one.world system includes a set of basic services that helps programmers
build applications that meet the unique demands of pervasive computing. These
services are themselves written in the component-based style described earlier.
One such service is a discovery service, which allows a component to query for
event handlers that satisfy a particular description; the querying component
can then import the resulting event handler(s) and begin communication. A
canonical example is a component that queries for a printer in the current
environment, which can subsequently be sent files to be printed. The discovery
service in one.world supports several varieties of querying and communication,
which are described elsewhere [Grimm 2002].

7.1.2 Case Study Overview. In this case study, we rewrote the event han-
dlers in the implementation of one.world’s discovery service to use JPred. We
started with the discovery service implementation from the most recent version
of one.world, version 0.7.1, which is freely available for download [oneworld
2008]. The discovery service implementation consists of two components,
DiscoveryClient and DiscoveryServer, totaling 2120 noncomment, nonblank
lines of code (LOC). Together the two components include 11 event handlers as
inner classes totaling 876 LOC, or 41% of the code.
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Fig. 29. An event handler in DiscoveryClient.

Figure 29 shows the Java implementation of an event handler of average
complexity in DiscoveryClient.5 Handlers typically subclass from the abstract
AbstractHandler class, which in turn implements the EventHandler interface.
AbstractHandler’s handle method invokes an abstract helper method handle1,
which is implemented by each concrete subclass in order to provide the sub-
class’s event-handling functionality. A handle1 method should return true if
the associated subclass was able to successfully handle the given event, and
false otherwise. The implementation of AbstractHandler is discussed further
in Section 7.1.3.

Figure 30 illustrates how we implement MainHandler from Figure 29 in
JPred. All of the advantages of JPred for event-based systems, as described
in Section 2.1, apply to our one.world case study. Unlike the Java version, the
JPred implementation is declarative and statically typesafe, removing a large
source of potential runtime errors. The JPred implementation is also extensi-
ble, opening up the possibility of fine-grained handler reuse in one.world. For
example, a subclass of DiscoveryClient could contain an inner handler that

5In examples throughout this section, we elide comments and code used for debugging.
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Fig. 30. The translation of the code in Figure 29 to JPred.

subclasses from MainHandler (if it were not declared final), inherits some of
MainHandler’s handle1 methods, overrides others, and handles new scenarios
with additional handle1 methods.

The JPred style of implementing event handlers is very natural. This is
illustrated by the fact that the original implementers of the discovery service
often manually simulated JPred-style decomposition, as shown in Figure 31. To
manage the complexity of event handling in ServerManager, the code has been
divided into two layers. The handle1 method manually dispatches on the event
(and on the event field of a RemoteEvent) in order to invoke an appropriate
private helper method (whose implementation is not shown), which actually
handles the event. With JPred, each helper method is instead declared as one
or more handle1methods, each declaratively specifying its dispatch constraints.
JPred automatically dispatches to the appropriate handler, obviating the need
for the original handle1method, which performs the dispatch manually. Indeed,
as described in Section 5.2 the JPred compiler will generate a dispatcher method
that is almost identical to the handle1 method in Figure 31.

The handlers in Figure 30 that only dispatch on the event’s runtime type
could be implemented in MultiJava. In fact, MultiJava has been successfully
used to implement other event-based systems [Clifton et al. 2006], and this
experience led us to use an event-based system for the current case study.
The handlers that dispatch on fields cannot be directly expressed in MultiJava.
Instead, helper methods must be created to perform field dispatch. For example,
the translation to MultiJava of the fourth and fifth methods in Figure 30 is
shown in Figure 32. This style is tedious and forces the dispatching logic to be
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Fig. 31. Another event handler in DiscoveryClient.

Fig. 32. Simulating field dispatch in MultiJava. Tuple is a superclass of Event and is the static

type of the tuple field of InputResponse.

spread across multiple method families. Further, as we show in Section 7.1.3,
some predicates cannot be expressed at all in MultiJava.

Although our case study only involves rewriting the implementation of
one.world’s discovery service, the ways in which we employ JPred are more
general. JPred would provide similar benefits for other services provided
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Table I. Quantitative Results

Java JPred

methods 22 91

total LOC 765 742

avg LOC 35 8.2

max LOC 175 52

instanceofs 80 6

casts 87 22

compile time (sec) 14.1 15.8

theorem prover queries n/a 557

by one.world as well as for applications written by programmers on top of
one.world. Further, our usage of JPred would apply to the implementation
of event-based systems other than one.world. The event-based style has been
recommended for the implementation of many important classes of applica-
tions, from Internet services [Pai et al. 1999; Welsh et al. 2001] to sensor net-
works [Hill et al. 2000; Gay et al. 2003].

7.1.3 Results.

—Quantitative Results. We can quantify several properties of the original and
rewritten discovery service implementation, which are described in Table I.
“Java” refers to the original implementation of the code, and “JPred” refers to
the version rewritten in JPred. Twenty-two original methods were rewritten to
use JPred’s features. These include eleven handle1 methods and eleven helper
methods like handleBindingResponse, whose usage is illustrated in Figure 31.
These methods have an average size of 35 LOC, with the biggest method being
175 LOC. In the JPred implementation, the elimination of manual dispatching
logic causes the number of methods to quadruple and the total code size to be
reduced slightly, leading to corresponding reductions in the average and maxi-
mum method sizes. The small method sizes indicate that each logical handler is
relatively simple. JPred allows these conceptually distinct handlers to be writ-
ten as distinct methods, whose headers declaratively specify their applicability
constraints and whose bodies are easy to understand.

The table shows the number of instanceofs and casts present in the original
and rewritten methods. Almost all of the manual event dispatching is obvi-
ated by the JPred style. The six remaining instanceofs could be removed by
introducing helper methods to perform the type dispatch declaratively, but in
these cases it seemed unnatural to do so. The bulk of the remaining casts are
related to issues other than event dispatch. For example, the one.world code
was written in Java 1.4 and so requires some casts due to the lack of generics.

Table I also includes the time to compile each discovery service implemen-
tation. We compiled the Java version with the base Polyglot compiler and the
JPred version with our extension to Polyglot, measuring the time to output
Java source in each case. The number in each column is the real time averaged
over five runs of the compilers on a lightly loaded, modern PC running Linux.
Both versions require an additional 1.4 seconds to compile the resulting Java
source to bytecode using Sun’s javac compiler. Finally, this case study makes
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Fig. 33. The need for negation predicates in the case study.

Fig. 34. The translation of the code in Figure 33 to JPred.

heavy use of predicate dispatch, requiring 557 queries to the automatic theorem
prover.

—Expressiveness. Figure 30 shows event handlers that employ conjunctions of
specializer expressions and equality tests against constants. Many of JPred’s
other idioms are also utilized in this case study. For example, the portion of
Figure 31 that is elided by an ellipsis looks as follows.

if (eev.x instanceof LeaseDeniedException ||
eev.x instanceof LeaseRevokedException ||
eev.x instanceof ResourceRevokedException ||
eev.x instanceof UnknownResourceException) {

. . .

}
JPred’s disjunction predicate allows this event dispatch to be declaratively
specified.

JPred’s negation predicate, in conjunction with ordered dispatch, is also used
several times. For example, the event-handling code from DiscoveryServer
shown in Figure 33 naturally requires negation predicates. The handler main-
tains an integer field that records the handler’s “state,” one of several constants
represented by static, final fields (e.g., ACTIVE, IN-ACTIVE, CLOSING). If the han-
dler is not active, then the action to be performed does not depend on the passed
event. Otherwise, event dispatch is performed via a large if statement, as
usual. The JPred version of this code is shown in Figure 34. Ordered dispatch
naturally encodes the dispatch on state, and a helper method handleActive is
used to dispatch on the event (via several predicate methods) when the state is
active.

Other idioms, including null dispatch, linear arithmetic, and alias dispatch,
are also necessary for the case study. An example of the first two idioms oc-
curs in DiscoveryClient’s MainHandler, in place of the second-to-last ellipsis
in Figure 29. After declaring and initializing a variable entry, both entry and
the AnnounceEvent ae are dispatched upon, as shown in Figure 35. JPred’s
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Fig. 35. Null dispatch and linear arithmetic in the case study.

predicate language is expressive enough to allow this code to be modularized
into its conceptual handlers.

Of the 91 methods in the JPred implementation of the discovery service’s
event handling, only 38 of them either have no predicate or perform MultiJava-
style multimethod dispatch. Therefore, MultiJava is unable to express 53 of
the methods, or 58%. Of these 53 methods, 44 of them consist of conjunctions of
formal and field dispatches, where each dispatch is either a runtime type test or
an equality comparison against a constant. Although MultiJava cannot express
these methods directly, it can simulate them by creating appropriate helper
methods to perform the dispatch, as shown in Figure 32. However, in many
cases, MultiJava would require multiple helper method families to properly
simulate a single JPred method, making MultiJava’s solution tedious and un-
natural. The final 9 methods, or 10% of the total, rely on predicates that cannot
be declaratively expressed in MultiJava, even with unlimited helper methods.

A few expressiveness limitations of JPred arose in the course of the case
study. First, there was one case where disjunction would have been used but our
rule that conservatively disallows identifier bindings from escaping disjunction
was too restrictive. It would be straightforward to extend JPred to resolve this
problem.

Second, there was one event handler where it would have been natural to
put two method invocations in the handler’s predicate. However, both method
invocations employ a String literal as an argument, and our implementation
does not currently support strings in predicates. Both methods satisfy our defi-
nition of purity as described earlier, under the reasonable assumption that the
equals method of Java’s String class and the containsKey method of Java’s
HashMap class are also pure.

Finally, there were two cases of event dispatch that did not occur at “top
level” in a method. One of these is shown in Figure 35. Because there are several
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Fig. 36. An ambiguity found in the discovery service.

statements (represented by the initial ellipsis in the figure) before the dispatch
code, a helper method family handleAnnounceEvent was created in the JPred
implementation, which is invoked after those statements in order to dispatch
on entry and ae.

—Errors Found. During the course of the case study, we found ambiguity errors,
nonexhaustive errors, and unprotected casts. We discuss each in turn.

One redundancy was found during the case study. An ambiguity er-
ror was signaled by the JPred typechecker when the handle1 method of
DiscoveryClient’s InputHandlerwas rewritten to use JPred. This method is the
largest of the 20 methods we translated, at 181 LOC. The relevant code snippet
is shown in Figure 36. Not only are there two handlers for the case when the
event is an ExceptionalEvent whose x field is a LeaseRevokedException, but
the handlers have different behavior. The first handler returns true, while the
second one falls through and eventually returns false. The method is so com-
plex that even this simplest kind of ambiguity was not caught by the original
implementers. The comment in the second handler is in the original code and
suggests an unsuccessful attempt to find a related error, most likely without
realizing that the second handler is redundant and can therefore never be exe-
cuted. The author of this code unfortunately does not recall the circumstances.

Seven potential nonexhaustive errors were found during the case study.
These correspond to situations where a target is assumed to have one of a
finite number of runtime types or values, and no default case is provided to
handle situations when this assumption is false. One example is shown in Fig-
ure 35, which was described earlier. The code does not handle the case when
entry is nonnull and ae.capacity is a negative number other than the two
constants that are explicitly tested. This nonexhaustive error was found auto-
matically by JPred when typechecking the handleAnnounceEvent method fam-
ily. Of course, the original programmer could have known about the potential
error and simply decided that the missing scenarios were impossible. However,
ignoring these scenarios makes the code brittle in the face of changes to the
surrounding system; such changes can occur frequently and dynamically in
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Fig. 37. An unprotected cast found in the discovery service.

one.world applications. JPred forces the programmer to explicitly address all
possible scenarios.

In some sense, all of the original handlers in the Java implementation are al-
ready guaranteed to be exhaustively implemented, since the Java typechecker
ensures that handle1 returns a Boolean value on all feasible paths. However,
the Java style of event handling encourages shortcuts that make this check-
ing insufficient. In our example, all the handlers corresponding to the code in
Figure 35 share a single return true; statement. Therefore, the missing case
also returns true, even though it should in fact return false to indicate that the
event could not be handled. In JPred, each handler is naturally defined in its
own method that must explicitly return true or false, so there is no incentive to
take such a shortcut.

Lastly, several unprotected casts were discovered during the case study. Typ-
ically unprotected casts arose when the programmer assumed a correlation be-
tween the properties of two different targets. An example from DiscoveryClient
is shown in Figure 37. It is assumed that when the LeaseEvent’s type is
LeaseEvent.CAN-CELED, the event’s closure is a LocalClosure. If this is not the
case, a dynamic cast failure will result. In the case study, we removed 11 unpro-
tected casts from the discovery service. JPred’s style encourages such dispatch
assumptions to be documented in a method’s header and makes it natural to
do so.

—Handler Reuse. In addition to making one.world services like the discovery
service more understandable and reliable, JPred opens up new possibilities for
handler reuse. An example appears in the implementation of AbstractHandler.
As mentioned earlier, AbstractHandler’s handle method invokes the abstract
method handle1, which all subclasses must implement. This structure is used
precisely because the Java style of event handling makes handler inheri-
tance awkward. The handle1 helper method allows subclasses to “inherit” from
AbstractHandler the functionality for handling erroneous scenarios, as shown
in Figure 38.

The original developers could have done away with handle1, removed the
first three lines from the handle method in Figure 38, and required subclasses
to simply override handle. However, in Java this design would require each
subclass to use super to explicitly invoke the superclass handler whenever none
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Fig. 38. AbstractHandler’s handle method.

Fig. 39. AbstractHandler’s handle method in JPred.

of the subclass’s handlers is applicable, which is tedious and could easily be
accidentally omitted. Even with the handle1 helper method family, subclasses
must still explicitly return false to invoke the inherited error handler.

In contrast, JPred can support the desired handler inheritance in the natu-
ral way, as shown in Figure 39. The handle1 method family is no longer neces-
sary. AbstractHandler provides two handlers, one for ExceptionalEvents and
another for unexpected events. These handlers are implicitly inherited by sub-
classes, who can add new handle methods for particular scenarios of interest.
The inherited handlers are automatically dispatched to whenever no method
in a subclass is applicable; there is no need for the subclass to explicitly invoke
inherited handlers by either invoking super or returning false. This design
in JPred easily generalizes to support deep hierarchies of handlers with fine-
grained code reuse, an idiom which is too unwieldy to consider in Java.

7.2 Interface Dispatch in the JPred Compiler

As mentioned earlier, the JPred compiler is written as an extension in Poly-
glot [Nystrom et al. 2003]. There are several natural opportunities for employ-
ing predicate dispatch in the implementation of a Polyglot extension itself, most
notably in the code for a new compiler pass. Polyglot supports the easy addition
of new visitors [Gamma et al. 1995] over the abstract syntax tree (AST) nodes.
The visitors that come with Polyglot often must employ instanceof tests and
type casts in order to provide specialized behavior for each kind of AST node.
Therefore, we implemented the visitors in the JPred compiler in JPred, allow-
ing the dispatch constraints to be declaratively specified and statically checked
for exhaustiveness and unambiguity, similar to the style illustrated by our hy-
pothetical TypeCheck visitor in Figure 5.
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Fig. 40. A simple usage of class dispatch in the JPred compiler.

Fig. 41. Interface dispatch version of Figure 40.

When we first implemented these visitors, JPred did not support interface
dispatch. Therefore, the only way to obtain the benefits of predicate dispatch
was to dispatch directly on AST node implementation classes. However, Polyglot
uses a hierarchy of Java interfaces to represent the various AST nodes, with the
parallel hierarchy of implementation classes meant to be hidden from clients.
This strict separation of interface and implementation is critical to a number
of Polyglot’s extensibility mechanisms. By violating the intended Polyglot style,
our visitors were extremely brittle in the face of later evolution or extension to
the compiler.

After we added support for modularly typesafe interface dispatch in the
JPred compiler, as described in Section 2.2, we were able to rewrite the com-
piler itself to exclusively employ interface dispatch instead of class dispatch for
the purposes of dispatching on AST nodes. In total, there were 28 method fam-
ilies whose method implementations were converted from using class dispatch
to using interface dispatch. In 14 of these cases, the method family contained
only a single predicate method (in addition to one or more methods without a
predicate). For the most part, converting these cases was as simple as replac-
ing each textual class dispatch in the predicate by the corresponding interface
dispatch; Polyglot’s naming convention is that N c is the name of the node class
implementing interface N. For example, Figure 40 shows some code using class
dispatch, and Figure 41 shows the version modified to employ interface dis-
patch.

The other 14 method families we modified each contained between 2 and
12 predicate methods, with a median of 5. To handle these method families,
we converted class dispatches to interface dispatches as shown before, and
we additionally used the ordered dispatch syntactic sugar to allow modular
ambiguity checking to succeed. Figure 42 shows a simple example involving
two predicate methods, and Figure 43 shows the version modified to employ
interface dispatch.

In Figure 43, the use of ordered dispatch resolves the potential ambiguity
between the first two methods: The first method will be invoked if an instance of
a class implementing both Unary and Binary is ever passed to checkLinearity.
However, in this case we are simply assuming that such a scenario cannot oc-
cur, since it does not make sense for an AST node to represent both a unary
and a binary expression. Indeed, this scenario would likely be indicative of a
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Fig. 42. An example with multiple predicate methods.

Fig. 43. Interface dispatch version of Figure 42.

program error. If desired, the programmer can catch such errors at runtime by
adding a new method with predicate e@Unary && e@Binary this appropriately
handles the erroneous scenario. However, this approach becomes prohibitively
burdensome as the number of interfaces dispatched upon increases. This limi-
tation is not unique to JPred. For example, manual dispatch in Java using an
if statement that performs a linear sequence of instanceof tests suffers from
the same problem.

When converting a set of predicate methods to use ordered dispatch, care
must be taken to ensure that the previously unordered methods are placed
in the appropriate textual order. The compile-time check for unsatisfiable
method predicates described in Section 3 turned out to be a useful sanity
check for proper textual ordering. With this check, the JPred compiler was
able to debug itself! In particular, running the JPred compiler on itself caused
the unsatisfiability check to fail for an ordered dispatch declaration in which
a predicate of the form p@PredicateSpecial was being tested after a predi-
cate of the form p@PredicateTarget, where PredicateSpecial is a subinter-
face of PredicateTarget. It was easy to miss this error by manual inspection
because the erroneous ordered dispatch declaration consisted of nine cases,
of which the two cases causing the error were textually the third and eighth
ones.

Finally, Table II contains the quantitative results comparing the compilation
of the original version of JPred, compiled with itself, and the modified version of
JPred containing only interface dispatch, compiled with itself. The possibility
of multiple inheritance requires somewhat more queries to the automatic theo-
rem prover in order to ensure unambiguity, causing a small increase in overall
compile time.

8. RELATED WORK

There have been several previous languages containing a form of predicate
dispatch. The original work by Ernst et al. [1998] was discussed in the Intro-
duction and throughout the article. They implemented predicate dispatch in an
interpreter for Dubious [Millstein and Chambers 2002], a simple core language
for formal study of multimethod-based languages. That implementation did not
include their static type system.
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Table II. Quantitative Results

Compile Time (secs) Theorem Prover Queries

JPred-orig 45.9 217

JPred-interface 47.3 310

The predicate language of Ernst et al. is more general than ours, including
arbitrary Boolean expressions from the underlying host language. They also
support predicate abstractions, which are predicate expressions that are given
a name and then referred to in method predicates by name. However, their
algorithms for reasoning about predicates only precisely handle propositional
logic and specializer expressions, treating all other kinds of predicates as black
boxes that are related only by AST equivalence. This substantially limits the
ways in which their predicate language can be used. For example, two meth-
ods with predicates x == 3 and x == 4 would be considered ambiguous. In
contrast, JPred’s use of off-the-shelf decision procedures supports precise rea-
soning over JPred’s predicate language. Also, as mentioned in Section 3, the
static type system described by Ernst et al. is global, while ours retains Java’s
modular typechecking strategy. Finally, Ernst et al. formalized their semantics
for predicate dispatch but did not prove a soundness result.

Ucko [2001] describes an extension of the Common Lisp Object System
(CLOS) [Steele Jr. 1990; Gabriel et al. 1991] to support predicate dispatch.
Similar to the work of Ernst et al., arbitrary Lisp expressions are allowed as
predicates. Again a special-purpose algorithm is used for checking validity of
predicates. The algorithm is not described in detail, but it appears to only pre-
cisely handle propositional logic, specializer expressions, and equality against
constants. Static typechecking is not supported. Ucko applies predicate dispatch
to enhance the extensibility of an existing computer algebra system written in
CLOS. He shows how predicate dispatch is used in the enhanced system to
implement symbolic integration and another mathematical function.

Fred [Orleans 2002] is a language that unifies predicate dispatch with fea-
tures of aspect-oriented programming (AOP) [Kiczales et al. 1997]. Like pred-
icate dispatch, methods have predicates associated with them, and logical im-
plication determines method overriding. Like AOP, there is a notion of an
“around” method, which is a special method that is always considered to over-
ride nonaround methods, thereby supporting the addition of new cross-cutting
code. The language is implemented as a library extension to Scheme [Abelson
et al. 1998]. Similar to the two languages described earlier, a special-purpose
validity checking algorithm is used which handles propositional logic, special-
izer expressions, and a limited form of equality. There is no static type system.
Instead, the language reports method lookup errors dynamically.

Chambers and Chen [1999] describe an algorithm to construct efficient dis-
patch functions for predicate dispatch. The algorithm computes a directed
acyclic graph (DAG) called a lookup DAG, which determines the order in which
targets are tested. Each node of the lookup DAG is in turn implemented by a
decision tree which determines the order of tests to be performed on a given
target (e.g., tests that a target is an instance of C1 before testing that it’s an
instance of C2). The authors show performance improvements of up to 30% on
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a collection of large Cecil programs. Our compilation strategy likely generates
less efficient code than the algorithm of Chambers and Chen. At the same time,
our strategy interacts well with Java’s modular compilation strategy, and it is
essentially what a Java programmer would write by hand. Although Chambers
and Chen describe their algorithm as a global one, it could probably be adapted
to replace our per-class dispatch methods.

A predicate class [Chambers 1993] is a precursor to predicate dispatch that
allows an instance of a class C to be considered an instance of some subclass D
whenever a given predicate is true. Methods may dispatch on D, and this has
the effect of dispatching on whether or not a C instance satisfies D’s predicate.
Predicate dispatch is more general, allowing predicates that relate multiple
arguments to a method. Logical implication is used to determine the subclass
relation among predicate classes, analogous with the use of logical implica-
tion to determine method overriding in predicate dispatch. However, predicate
classes require the implication relationships among predicates to be explicitly
declared by the programmer. Similarly, the programmer must declare informa-
tion about other relationships among predicates, such as disjointness, for use
in static typechecking. Classifiers [Hosking et al. 1990] provide similar capa-
bilities to predicate classes but they use the textual order of methods to define
the overriding relation, as in functional languages.

Several OO languages, including Objective Caml (OCaml) [Rémy and Vouil-
lon 1998], JMatch [Liu and Myers 2003], and Scala [Emir et al. 2007], include
a form of pattern matching inspired by functional languages. Pattern match-
ing in these languages is independent of the language’s OO dynamic dispatch
mechanism. Further, the set of cases in a pattern-matching expression is not
extensible, and the textual order of cases defines the overriding relation. An
exception is OOMatch [Richard and Lhotak 2008], an extension of Java that in-
tegrates pattern matching with ordinary dynamic dispatch in a manner similar
to JPred’s predicate methods.

The patterns supported by pattern matching in these languages are less ex-
pressive than JPred’s predicate language. However, each language has some-
thing to offer that is missing in JPred. Pattern matching in OCaml is a first-class
expression and need not appear at the top level of a function’s implementation.
JMatch’s patterns support a sophisticated form of bidirectional computation,
as in logic programming languages, which enables idioms like declarative it-
eration over a collection. Scala and OOMatch respectively provide extractors
and deconstructors, which are programmer-defined patterns for a class. These
constructs enable pattern matching on objects of a class without requiring the
class’s underlying representation to be exposed to clients.

Several languages, including XStatic [Gapeyev and Pierce 2003],
CDuce [Benzaken et al. 2003], and HydroJ [Lee et al. 2003], support pattern
matching for XML-like [Bray et al. 2006] data. The patterns in these languages
overlap with JPred’s predicate language; for example, JPred’s disjunction pred-
icate corresponds to union patterns for XML data. However, each can express
things that the other cannot. The XML languages lack support for relational
and arithmetic predicates as well as predicates that relate multiple arguments
to a function. JPred lacks support for arbitrary regular expressions. Most of the
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languages proposed for manipulating XML data are based on functional lan-
guages, and their pattern-matching constructs therefore have the same style as
pattern matching in OCaml and JMatch. An exception is HydroJ, an extension
of Java with support for XML data. HydroJ unifies XML pattern matching with
Java’s OO dispatch and uses a form of predicate implication as the overriding
relation. Like JPred, HydroJ adapts our prior work on modular typechecking
of multimethods [Millstein et al. 2002] to support modular typechecking of
patterns.

Our previous languages MultiJava [Clifton et al. 2006] and Extensible ML
(EML) [Millstein et al. 2004] support modular typechecking in the presence of
multimethods. MultiJava’s multimethod dispatch can be viewed as the subset
of JPred supporting only conjunctions of specializer expressions on classes and
equality tests against constants, and only for formal parameters. MultiJava also
supports open classes, that is, the ability to add new methods to existing classes
noninvasively. JPred does not support open classes, but it would be straight-
forward to add them. EML subsumes MultiJava’s predicate language, addi-
tionally containing the ML-style pattern-matching idioms of identifier binding
and dispatch on substructure. JPred extends EML’s pattern language to in-
clude dispatch on interfaces and array types, array access expressions, pure
methods, disjunction and negation, equality and other relational predicates,
linear arithmetic, and predicates that relate multiple arguments, while retain-
ing modular typechecking and compilation. JPred safely relaxes the modularity
requirements of MultiJava and EML, for example, not always requiring a de-
fault method. This relaxation allows new programming idioms to be expressed,
including partially abstract methods. JPred’s use of off-the-shelf decision pro-
cedures is also novel.

9. CONCLUSIONS AND FUTURE WORK

We have described JPred, a practical design and implementation of predicate
dispatch for Java. JPred naturally augments Java while retaining its modular
typechecking and compilation strategies. This contrasts with the global type-
checking and compilation algorithms of prior languages containing predicate
dispatch. JPred uses off-the-shelf decision procedures to reason about predi-
cates, both for determining the method overriding relation and for static ex-
haustiveness and ambiguity checking. This contrasts with the special-purpose
and overly conservative algorithms for reasoning about predicates that are
used by prior languages with predicate dispatch. We formalized a core subset
of JPred as an extension to Featherweight Java and proved a type soundness
theorem. We also performed case studies that demonstrate the practical util-
ity of JPred on existing Java applications, including its use in the detection of
several errors.

JPred could be extended in several ways. The predicate language currently
only supports literals of integer and Boolean type. It would be useful to support
the other Java literals along with their associated operations. The ability to de-
fine Ernst-style predicate abstractions [Ernst et al. 1998] would be convenient
and would not cause any technical problems. Finally, support of Scala-style
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extractors [Emir et al. 2007] would make predicate dispatch more expressive
in the face of class encapsulation.
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Oriented (ECOOP’97), M. Akşit and S. Matsuoka, Eds. Lecture Notes on Computer Science,

vol. 1241. Springer, 220–242.

LEAVENS, G. T. AND ANTROPOVA, O. 1999. ACL — Eliminating parameter aliasing with dynamic

dispatch. Tech. rep. 98-08a, Department of Computer Science, Iowa State University, Ames, Iowa.

February.

ACM Transactions on Programming Languages and Systems, Vol. 31, No. 2, Article 7, Pub. date: February 2009.



7:54 • T. Millstein et al.

LEE, K., LAMARCA, A., AND CHAMBERS, C. 2003. HydroJ: Object-Oriented pattern matching for

evolvable distributed systems. In Proceedings of the ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications.

LIU, J. AND MYERS, A. C. 2003. JMatch: Iterable abstract pattern matching for Java. In Proceedings
of the International Symposium on Practical Aspects of Declarative Languages (PADL), V. Dahl

and P. Wadler, Eds. Lecture Notes in Computer Science, vol. 2562. Springer, 110–127.

MILLSTEIN, T. 2003. Reconciling software extensibility with modular program reasoning. Ph.D.

thesis, Department of Computer Science and Engineering, University of Washington.

MILLSTEIN, T. 2004. Practical predicate dispatch. In Proceedings of the Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’04).

MILLSTEIN, T., BLECKNER, C., AND CHAMBERS, C. 2002. Modular typechecking for hierarchically ex-

tensible datatypes and functions. In Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP’02). ACM SIGPLAN Not. 37, 9, 110–122.

MILLSTEIN, T., BLECKNER, C., AND CHAMBERS, C. 2004. Modular typechecking for hierarchically

extensible datatypes and functions. ACM Trans. Program. Lang. Syst. 26, 5, 836–889.

MILLSTEIN, T. AND CHAMBERS, C. 2002. Modular statically typed multimethods. Inf. Comput. 175, 1,

76–118.

MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. 1997. The Definition of Standard ML (Re-
vised). The MIT Press.

MOON, D. A. 1986. Object-Oriented programming with Flavors. In Proceedings of the Conference
on Object-Oriented Programming Systems, Languages and Applications. ACM Press, 1–8.

NELSON, G. AND OPPEN, D. C. 1979. Simplification by cooperating decision procedures. ACM Trans.
Program. Lang. Syst. 1, 2, 245–257.

NYSTROM, N., CLARKSON, M. R., AND MYERS, A. C. 2003. Polyglot: An extensible compiler framework

for Java. In Proceedings of the 12th International Conference on Compiler Construction (CC).
Springer.

oneworld. 2008. one.world home page. http://cs.nyu.edu/rgrimm/one.world.

ORLEANS, D. 2002. Incremental programming with extensible decisions. In Proceedings of the 1st
International Conference on Aspect-Oriented Software Development. ACM Press, 56–64.

PAI, V. S., DRUSCHEL, P., AND ZWAENEPOEL, W. 1999. Flash: An efficient and portable Web server. In

Proceedings of the USENIX Annual Technical Conference (USENIX-99). USENIX Association,

199–212.

Polyglot for Java 5. Polyglot for Java 5 homepage. http://www.cs.ucla.edu/~milanst/projects/

polyglot5.
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