
Statically Scoped Object Adaptation with Expanders

Alessandro Warth Milan Stanojević Todd Millstein
Computer Science Department

University of California, Los Angeles

{awarth,milanst,todd}@cs.ucla.edu

ABSTRACT
This paper introduces the expander, a new object-oriented (OO)
programming language construct designed to support object adap-
tation. Expanders allow existing classes to be noninvasively up-
dated with new methods, fields, and superinterfaces. Each client
can customize its view of a class by explicitly importing any num-
ber of associated expanders. This view then applies to all instances
of that class, including objects passed to the client from other com-
ponents. A form of expander overriding allows expanders to inter-
act naturally with OO-style inheritance.

We describe the design, implementation, and evaluation of eJava,
an extension to Java supporting expanders. We illustrate eJava’s
syntax and semantics through several examples. The statically
scoped nature of expander usage allows for a modular static type
system to prevent several important classes of errors. We describe
this modular static type system informally, formalize eJava and its
type system in an extension to Featherweight Java, and prove a type
soundness theorem for the formalization. We also describe a modu-
lar compilation strategy for expanders, which we have implemented
using the Polyglot extensible compiler framework. Finally, we il-
lustrate the practical benefits of eJava by using this implementation
in two case studies.

1. INTRODUCTION
Inheritance in object-oriented (OO) languages provides a form

of extensibility for classes. A client of a class C can use inheritance
to easily create a customized version of C without requiring source-
code access to or recompilation of C. Further, the modular static
type systems in mainstream languages like Java and C# ensure that
this subclass can be safely used where C was expected.

However, several programming scenarios require forms of object
adaptation, and today’s OO languages do not easily support this id-
iom. For example, consider a database of business objects, which
a particular client wishes to display in an application-specific man-
ner. The client likely needs to add new methods to these objects,
and possibly to make these objects meet a client-specific interface.
Inheritance would allow a new class to have these new behaviors
but would do nothing to augment the existing objects. Design pat-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

terns like adapter and visitor [14] provide protocols that can be
used to achieve the desired extensibility. However, these patterns
are often tedious and error prone to implement, can require advance
planning on the part of the original implementer of the class be-
ing extended, require invasive modifications whenever the adapted
class hierarchy is augmented, and often rely on statically unsafe
constructs like type casts.

In this paper, we introduce the expander, a new language con-
struct that provides explicit support for object adaptation. An ex-
pander is a repository for adding new behaviors to existing classes
and can include new methods, fields, and superinterfaces. Clients
of an expander may make use of these additional behaviors on any
object of the original class (or a subclass), including objects passed
to the client from other components. Expanders also interact in
a natural way with inheritance: expanders can be overridden for
particular subclasses, and message sends dynamically dispatch to
the best method for the given receiver, as with traditional message
sends.

There has been a large body of research into mechanisms for
increasing the extensibility of classes. Expanders are distinguished
by a novel combination of design properties that are targeted to
support object adaptation:

In-place adaptation. An expander updates an existing class
with new behaviors, rather than creating a new class that contains
the additional behaviors. This design choice is critical for support
of object adaptation. In particular, the new behaviors in an ex-
pander are available for use on instances of the original class, re-
gardless of where or when those instances were created.

This design contrasts with the variety of proposals for flexible
class extensibility, including mixins [5, 12], traits [24], proposals
that include a form of dependently typed classes [9, 10, 19, 21], and
parameterized module systems for OO languages [11, 18]. These
works have a very different goal from ours and are quite comple-
mentary. The customizations supported by these languages pro-
vide for fine-grained forms of code reuse across classes and class
hierarchies but do nothing to adapt existing objects. Indeed, typ-
ically some advance planning, for example via the factory design
pattern [14] or a form of module parameterization, is required to
ensure that the full customization of a class can be produced before
any instances are created. In contrast, expanders support object
adaptation and allow multiple clients to view the same object in
different ways, but they do not provide code reuse across classes
and class hierarchies.

Statically scoped adaptation. Expanders target the problem of
adapting existing classes to the needs of new clients, without af-
fecting the behavior of existing clients. This focus led us to a de-
sign whereby each client explicitly imports the expanders that are
needed in order to perform its task; all other expanders are out of

scope and cannot affect the client’s behavior. In addition to making
each client’s behavior easier to reason about, this static scoping of
expanders naturally allows an object to be “expanded” in different
ways by different clients in the same program without any conflict.

This design contrasts with the inter-type declarations in aspect-
oriented languages like AspectJ [17], which also allow existing
classes to be augmented with new methods, fields, and superin-
terfaces. While aspects can be used for object adaptation, such
adaptation affects all clients of a class implicitly, including existing
ones. While such power can be quite useful, it also makes it dif-
ficult to understand how a given client will behave without global
knowledge of all aspects in the program.

Modular type safety. The existence of multiple versions of a
class has the potential to cause erroneous or undesirable behavior
at run time, whereby a field or method of one version is expected
but another is actually used. This problem is exacerbated in the
presence of inheritance, since subclasses of the original class may
add behaviors that clash with those added by an expander. Aside
from violating programmer expectations, these kinds of problems
also potentially compromise type safety, for example if a field of
one type is expected but a field of a different type is actually used.

Because of the static scoping of expanders as described above, it
is possible to perform modular static checking to guarantee type
safety in the presence of expanders. The scoped nature of ex-
panders ensures that the run time behavior of a class that passes
the static checks will be the same regardless of what unknown
classes and expanders are ultimately linked into the final appli-
cation. To our knowledge, this guarantee of modular type safety
is unique among languages that are expressive enough to support
object adaptation, including the AspectJ language described above
and the recent work on Classboxes [4, 3].

We have instantiated our notion of expanders in the language
eJava, a backward-compatible extension to Java. We have designed
a modular type system for eJava as well as a modular compilation
strategy from eJava to Java, and we have implemented both in the
Polyglot extensible compiler framework [20]. We have also for-
malized eJava as an extension of Featherweight Java (FJ) [16] that
we call Featherweight eJava (FeJ), and we have proven its modular
type system sound.

Finally, we have used our eJava implementation to gain expe-
rience with the language and gauge its practical utility. First,
we have used eJava to build a small application that employs
Java’s Swing library to display some existing business objects in an
application-specific manner, and we compare the benefits and lim-
itations against an implementation in pure Java. Second, we have
performed an exploratory study on the Eclipse integrated develop-
ment environment [7]. We identify several Java-based extensibility
idioms used in the implementation of Eclipse, and we explore the
ways in which expanders can allow these idioms to be more natu-
rally and reliably expressed.

The rest of the paper is structured as follows. Section 2 in-
troduces expanders by a number of examples. Section 3 details
eJava’s method-lookup semantics and associated static typechecks.
Section 4 describes the FeJ formalism, which provides a more pre-
cise description of the language and its modular type system. Sec-
tion 5 describes the modular compilation strategy for eJava, as im-
plemented in the eJava compiler. Section 6 discusses our two ex-
periments with the language. Section 7 compares expanders with
related work, and Section 8 concludes.

2. EXPANDERS

Expr

void display(OutputStream os)

Plus

Expr op1()
Expr op2()

void display(OutputStream os)

Value

Int

int intValue()
void display(OutputStream os)

Flt

float fltValue()
void display(OutputStream os)

Figure 1: An expression hierarchy.

This section informally describes the capabilities of expanders
and their interaction with the other features of Java. As a running
example, consider a Parser class that parses a simple language of
expressions supporting integers, floating-point numbers, and addi-
tion. The Parser has a parse method that accepts a String and
produces an abstract syntax tree (AST), which is represented using
the Expr class hierarchy shown in Figure 1. We illustrate eJava’s
expressiveness and flexibility by considering a number of ways in
which clients may wish to employ this parser as part of a larger
application. To reuse the parser, clients must first customize it to
their needs. eJava allows each client’s customizations to be ex-
pressed declaratively, without modifying or requiring access to the
source code of the parser or the Expr hierarchy, without requiring
any advance planning by the implementer of the parser, and without
interfering with the customizations of other clients.

2.1 Noninvasive Visitors with Expanders
It is natural for clients to wish to augment the Expr hierarchy

with new methods, in order to perform new passes over the AST.
For example, suppose a client wishes to add an eval method that
evaluates an expression and returns the resulting value. One ap-
proach would be to create a subclass EvalExpr of Expr that in-
cludes such a method, as well as new classes like EvalPlus and
EvalInt. However, the lack of multiple implementation inheri-
tance in Java would require this approach to duplicate a signifi-
cant amount of code. For example, EvalPlus must inherit from
EvalExpr in order to override its eval method, but then it can-
not also inherit from Plus, forcing the client to duplicate all of the
existing capabilities of addition expressions. Worse, this approach
would not allow the existing Parser class to be reused, since it cre-
ates instances of the original expression classes rather than the new
ones.

The standard approach to this problem is the visitor design pat-
tern [14], which allows clients to easily add new functionality to ex-
isting classes externally. However, this approach requires the origi-
nal implementer of the expression hierarchy to have anticipated the
need for visitors, by providing a Visitor class and the appropriate
accept methods for each kind of expression. The visitor pattern
also has other, more minor, problems, for example the fact that
every external operation must have the same argument and result
types.

Therefore, clients are often forced to add new functionality us-
ing utility classes such as Evaluator, shown in Figure 2. While
this approach allows the “method” to be added without modifying
existing code, it has several drawbacks. Since the method is placed
in the Evaluator class, dynamic dispatch on the Expr instance
must be performed manually via runtime type tests and type casts.
These type tests must be executed in the correct order (from most-
to least-specific), which is easy to get wrong for large and com-

// file Evaluator.java
package eval;
import ast.*;
public class Evaluator {
public static Value eval(Expr e) {
if (e instanceof Value)
return (Value)e;

else if (e instanceof Plus) {
Plus p = (Plus)e;
Value v1 = eval(p.op1());
Value v2 = eval(p.op2());
// ...

}
else throw new EvalError();

}
}

Figure 2: An external evaluator for Exprs in Java.

// file Calculator.java
package calc;
import parse.Parser;
import ast.*;
import eval.Evaluator;
public class Calculator {
public void process(String s) {
Expr e = new Parser().parse(s);
Value ans = Evaluator.eval(e);
ans.display(System.out);

}
}

Figure 3: A client of the evaluator in Figure 2.

plex type hierarchies. Further, using utility classes like Evaluator
forces clients to distinguish syntactically between calls to external
methods of Expr like eval and calls to ordinary methods of the hi-
erarchy like display. This difference is illustrated by the sample
client in Figure 3, which implements a calculator application using
Parser and Evaluator.

Expanders in eJava provide a natural solution to these problems.
An expander is a repository for augmenting an existing class in
several different ways, including the introduction of new methods,
without requiring source-code access to the original class. For ex-
ample, an expander that adds an eval method to Expr would look
as follows:

expander EX of Expr {
public Value eval() {...}

}

This expander is given the name EX and is declared to expand the
Expr class. The body of the expander then provides the new eval
method, just as it would be declared in the original class. For ex-
ample, the method has an implicit receiver argument of type Expr
which can be referenced as this in the method’s body. An ex-
pander can declare any number of new methods.

We could choose to implement the semantics of expression eval-
uation entirely within the eval method of the above expander. This
implementation would perform manual type tests and casts on this
to determine how evaluation should proceed, analogous to the code
in Figure 2. However, expanders support a better solution through

// file EX.ej
package eval;
import ast.*;
public expander EX of Expr {
public Value eval() { throw new EvalError(); }

}
public expander EX of Value {
public Value eval() { return this; }

}
public expander EX of Plus {
public Value eval() {
Value v1 = op1().eval();
Value v2 = op2().eval();
// ...

}
}

Figure 4: An external evaluator for Exprs in eJava.

expander overriding, as shown in Figure 4. In addition to the ex-
pander for Expr, the compilation unit (i.e., file) shown includes two
expanders that provide overriding implementations of eval for par-
ticular subclasses of Expr. We say that the three expanders are in
the same expander family, which is a collection of expanders of the
same name. Each expander family has a unique top expander: all
other expanders in the family augment a type that is a subclass of
the top expander’s type. Therefore, the first expander in the figure
is the top expander for EX.

The use of expander overriding obviates the need for
instanceof tests and type casts. Instead, the method implementa-
tions make use of Java’s ordinary dynamic dispatch on the receiver
argument, just as if they were declared in the original expression
classes.

We allow methods in expanders to override methods in other
expanders, as the example shows. However, a method in an ex-
pander cannot override an ordinary method of the associated class.
This restriction is the product of a tradeoff between modular com-
pilation and external method overriding that has been previously
recognized [6].1 Further, we disallow overriding expanders from
declaring members that are not declared in the top expander. This
simplification ensures that an expander family presents a unique
“interface” to clients, and results in no loss of expressiveness since
clients can always create another expander for a particular subclass
of the top expander’s associated class.

An expander does not have privileged access to its associated
receiver class, instead obeying the same visibility rules as other
clients of the class. This restriction ensures that an expander does
not break any internal invariants of existing classes. An expander
as well as its members can have the usual Java privacy modifiers.
These modifiers are interpreted relative to the expander’s location,
rather than that of the original class. For example, a method with
package visibility in an expander is only accessible within the pack-
age in which that expander (not the class it expands) was declared.

Figure 5 shows the new version of our calculator application that
uses EX (instead of Evaluator). In order to make use of the “ex-
panded” view of the expression hierarchy, the expander family EX
must be explicitly used, with a syntax analogous to Java’s import
statement. The methods declared for the EX expander family are
thereby made available for use, via the same syntax as if they were

1Expanders are still allowed to overload methods of their associ-
ated classes.

// file Calculator.ej
package calc;
import parse.Parser;
import ast.*;
use eval.EX;
public class Calculator {
public void process(String s) {
Expr e = new Parser().parse(s);
Value ans = e.eval();
ans.display(System.out);

}
}

Figure 5: A client of the evaluator in Figure 4.

declared in the original classes. This is illustrated by the invocation
e.eval() in the figure. Without the use statement, that invocation
would fail to typecheck, since Expr does not originally support an
eval method.

The explicit import of expanders via use is critical for supporting
safe modular reasoning about clients. For example, any client of the
expression hierarchy that does not use EX cannot be affected by the
methods introduced by the EX expander family. Similarly, there can
exist multiple expander families that augment the expression hier-
archy with an eval method. Different clients in the same program
can use the version of expression evaluation that suits their needs,
without interfering with other clients. The rules for method lookup,
as well as our static typechecks to ensure that method lookup will
always succeed at run time, are described in Section 3.

An expander can be used to add functionality to any class, in-
cluding final classes. For example, one could implement an
expander of Java’s String class that adds a helper method like
removeWhitespace(). Clients can then use this expander and in-
voke removeWhitespace on any value of type String, including
string literals. Because an expander does not have privileged access
to the class being expanded, this expander cannot violate any of the
internal invariants of Java’s String class.

2.2 Adapting with Expanders
While the ability to add methods to existing classes from the out-

side is very useful, often it is not enough on its own. For example,
suppose that our Calculator class is to be used within an appli-
cation in which all console output must be enqueued in a printing
thread via the enqueue() method of the Printer class:

public static void enqueue(Printable p) {...}

This method takes an instance of the Printable interface, which
is declared as follows:

public interface Printable { void print(); }

In Java, a programmer could use the adapter design pattern [14]
to adapt existing instances of Expr and subclasses to support the
Printable interface. To do so, the programmer would create a
wrapper class PrintableExpr for Expr that meets the Printable
interface and implements the associated methods by appropriately
forwarding to the methods of the underlying expression. Whenever
an instance of Expr or a subclass needs to be treated as Printable,
it would first be adapted by explicitly constructing an instance of
PrintableExpr, passing the adaptee object as a parameter.

Expanders provide a simpler and more natural solution to
this problem, as shown in Figure 6. An expander can use the

// file PX.ej
package exprAdapt;
import ast.*;
import printer.Printable;
public expander PX of Expr implements Printable {
public void print() { display(System.out); }

}

Figure 6: Adapting Exprs to Printables with expanders.

// file Calculator.ej
package calc;
import parse.Parser;
import ast.*;
import printer.Printer;
use eval.EX;
use exprAdapt.PX;
public class Calculator {
public void process(String s) {
Expr e = new Parser().parse(s);
Value ans = e.eval();
Printer.enqueue(ans);

}
}

Figure 7: A fancier calculator, which uses both evaluation and
printing functionality.

implements clause to declare that the class being expanded (and
its subclasses) meets any number of new interfaces. The interface
can be implemented by a combination of methods already declared
or inherited in the original class and methods declared in the ex-
pander. Overriding expanders can also be used in conjunction with
the ability to meet new interfaces. For example, we could provide
an overriding expander to define print specially for Plus expres-
sions.

Figure 7 shows an upgraded version of our Calculator class,
which uses both evaluation and printing functionality. The compi-
lation unit now uses both EX and PX, allowing Expr instances to
be viewed as containing both eval and print methods, as well
as meeting the Printable interface. Therefore, the e instance of
Expr is a typesafe argument to enqueue, without requiring any ex-
plicit adaptation as would be necessary with the adapter design pat-
tern. It is important to note that the implementer of the Printer
class need not know about the existence of either the Expr hierar-
chy or its PX expander. All that the enqueue method of Printer
requires is that the given argument meets the Printable interface;
our modular compilation strategy described in Section 5 ensures
that this requirement is satisfied.

2.3 Adding State with Expanders
Expanders can also be used to add state to existing classes. An

example is shown in Figure 8, which augments the expression hi-
erarchy with type information. A type field is added to Expr
(and subclasses) to store an expression’s type, along with a getter
method and a method to compute the type.

2.4 Expanding Interfaces
Expanders can also be used to add functionality to interfaces.

For example, Figure 9 uses an expander to add a printAll method

// file TX.ej
package types;
import ast.*;
public expander TX of Expr {
private Type type = null;
public void typecheck() { type = new ErrType(); }

public Type type() {
if (type == null)
typecheck();

return type;
}

}
public expander TX of Int {
public void typecheck() { type = new IntType(); }

}
public expander TX of Flt {
public void typecheck() { type = new FltType(); }

}
public expander TX of Plus {
public void typecheck() {
Type t1 = op1().type();
Type t2 = op2().type();
// ...

}
}

Figure 8: Adding state in an expander.

// file IX.ej
import java.util.*;
public expander IX of Iterable {
public void printAll() {
Iterator it = iterator();
while (it.hasNext())
System.out.println(it.next());

}
}

Figure 9: An expander for an interface.

to instances of Java’s Iterable interface that prints all elements of
the iterable collection. The expander makes use of the iterator
method defined for Iterable.

An expander for an interface is not tied to a particular class hier-
archy. Instead, it can be applied to an instance of any class that im-
plements its associated interface. This interface acts as the abstract
“requirements” of that expander, so the expander can be considered
to be parameterized by the classes that it expands.

Further, other expanders can be used to increase the applicabil-
ity of an interface-based expander. As shown earlier, an expander
can adapt an existing class to support a new interface. This capa-
bility can therefore be used to allow an existing class to meet the
requirements of an interface-based expander.

As an example, consider the task of implementing an alterna-
tive to the queue-based Printer class with an expander. Figure 10
shows SPX, the safe printing expander, which augments instances
of the Printable interface with “safe-printing” functionality (the
safePrint method uses the Printable class as a lock to en-
sure that no two Printable objects are ever printed to the con-
sole at the same time). Although Expr does not originally imple-

// file SPX.ej
package printer;
public expander SPX of Printable {
public void safePrint() {
synchronized (Printable.class) { print(); }

}
}

Figure 10: SPX, the safe printing expander.

// file FancyCalculator.ej
package client;
import ast.*;
import fancyParse.Parser;
import fancyAST.Minus;
use eval.EX;
expander EX of Minus {
public Value eval() {...}

}
public class FancyCalculator {
public void process(String s) {
Expr e = new Parser().parse(s);
Value ans = e.eval();
ans.display(System.out);

}
}

Figure 11: Adding a new expander to an existing expander
family.

ment Printable, its instances can be augmented by SPX provided
we first adapt them to the Printable interface by using PX, the
Printable expander from Figure 6.

2.5 Locally Augmenting Expander Families
In the examples so far, all expanders in a given family were de-

clared in the same compilation unit. However, it is possible for
an expander family’s associated class hierarchy to be augmented
by clients with new subclasses. When this happens, it is often de-
sirable to augment the expander family with overriding expanders
to provide special-purpose behavior for these classes. To this end,
eJava allows a client of an expander family to locally augment that
family with overriding expanders for new types. The additional
expanders are hygienic: they only affect the expander family’s be-
havior within the current compilation unit.

For example, suppose a client of the original expression hierar-
chy adds a subclass Minus of Expr and creates a new parser to han-
dle subtraction. Figure 11 shows how a client of the EX expander
can update it to handle Minus appropriately. The call to eval in
FancyCalculator will dynamically dispatch to the new eval im-
plementation whenever the receiver is an instance of Minus.

3. METHOD LOOKUP AND MODULAR
TYPECHECKING

eJava’s rules for method lookup are a natural generalization of
those of Java. At compile time, each message send expression in a
program is determined to refer to a unique method family, or else
a static error is signaled. At run time, the most-specific method
for the given receiver argument in the statically determined method
family is selected and invoked. We discuss each of these phases

in turn, along with the corresponding static checks to ensure that
method lookup always succeeds at run time. The section ends by
illustrating a type hole that can arise in other languages for object
adaptation, which our semantics for method lookup safely avoids.

3.1 Static Method Family Selection
Each method in eJava, and in Java, can be thought of as belong-

ing to a unique method family. The method family of a method m1
is determined as follows. If m1 overrides a method m2, then m1 is in
the same method family as m2. Otherwise, m1 belongs to a different
method family. The Java typechecker statically ensures that there
is a single best method family for each message send expression in
a program, as discussed in the Java Language Specification [15],
§15.12. In the presence of static overloading, a method family is
essentially defined by the method’s name, number of arguments,
and static argument types. An error is signaled if either there are no
applicable method families for a given message send or there are
multiple applicable families but no most-specific one.

In eJava, we first use Java’s rules to find a most-specific method
family for a message send, completely ignoring expanders. If a
unique such method family exists, we are done. If there are multi-
ple such families but no most-specific one, then an ambiguity error
occurs, as in Java. However, if there are no applicable method fam-
ilies, we then search for a unique applicable method family in the
expanders that are used by the current compilation unit, signaling
a compile-time error otherwise. As in Java, the method family as-
sociated with a method in an expander is defined by the method’s
name, number of arguments, and static argument types, and addi-
tionally by the name of the enclosing expander. The rules for stati-
cally determining to which field declaration a field access refers are
analogous, as are the rules that determine whether an object can be
viewed as implementing a particular interface.

To illustrate these rules, consider statically determining the
method family for the invocation e.eval() in Figure 5:

• Given the definitions of the Expr class (Figure 1) and the EX
expander family (Figure 4), the invocation is statically de-
termined to invoke the method family consisting of the three
eval methods in the EX expanders.

• If the use EX; statement were omitted from Figure 5, the
eJava typechecker would signal a static error, since there is
no applicable method family for the invocation.

• If the original Expr class contained a (possibly abstract)
zero-argument eval method, then that method’s associated
family would be selected, even in the presence of the use
EX; statement.

• Suppose there existed another expander EX2 that also de-
fines a zero-argument eval method for Expr. If Figure 5
were augmented to include the statement use EX2;, the
eJava typechecker would signal a static error, since the eval
method families in EX and EX2 are ambiguous. However, the
error is only signaled because of the call to eval. If that
call were removed, EX and EX2 could both be used without
problems, allowing other members of these expanders to be
accessed.

Finally, we also provide a mechanism for the programmer to ex-
plicitly specify the intended method family, which is useful for han-
dling ambiguous situations. If the receiver in a method invocation
has the form expr with X, where expr is an eJava expression and
X is an expander name, then only the expander X is searched for an
appropriate method family; neither the original class of the receiver

nor any other expanders are considered. For example, in the sce-
nario described in the last bullet above, the programmer can cause
static method-family selection to succeed by explicitly declaring
which expander is intended, e.g., (e with EX2).eval(). The
with expression can also be used to multiply expand an expression.
For example, the expander SPX can be used to adapt an expression
e of type Expr via the syntax (e with PX) with SPX, thereby
allowing the safePrint method to be invoked.

3.2 Dynamic Method Selection
Run-time method lookup in eJava is defined as in Java: the

dynamic class of the receiver argument is used to find the most-
specific applicable method from the statically determined method
family, and that method is then invoked. For example, if the run-
time class of e in Figure 5 is Plus, then the first and third eval
methods in Figure 4 are applicable, and the latter is the most-
specific applicable method. Any local overriding expanders are
taken into account when a client invokes a method family in an
expander, allowing the new methods to be dispatched to appropri-
ately.

As part of modular static typechecking of each class, Java en-
sures that each method family is exhaustive and unambiguous,
thereby guaranteeing that run-time method lookup on that family
will always succeed. For example, Java checks that a concrete
class C declares or inherits a concrete method for every method
family declared in a superinterface. This check ensures exhaustive-
ness: instances of C and its subclasses are guaranteed to have at
least one applicable method in each inherited method family. Java
lacks multiple inheritance of classes, so there is no possibility of
run-time ambiguities.

eJava includes additional modular static requirements on ex-
panders, in order to continue to ensure that run-time method lookup
always succeeds. First, an expander cannot contain an abstract
method, even if the class being expanded is abstract. This require-
ment ensures exhaustiveness in the presence of any unknown con-
crete subclasses of that class, which must always be assumed to
exist given only a modular view of the program. Second, an over-
riding expander can only expand a class, not an interface. This re-
quirement prevents ambiguities that are not modularly detectable,
which can occur if an unknown class implements multiple inter-
faces. Both requirements are analogous to requirements that exist
in prior languages that allow methods to be defined external to their
classes [6].

3.3 Preventing Accidental Method Overriding
Our method lookup rules rely on the way in which a program’s

methods are partitioned into method families. A key property of
eJava is the ability to modularly determine the method family to
which a method belongs. A method’s associated method family is
defined to be the same as that of any method that it overrides, and
the methods that a particular method overrides can be determined
based on information that is available in the static scope where the
method is declared. This property of eJava is shared by Java, but
it is not shared by other languages that support forms of object
adaptation, including AspectJ [17] and Classboxes [4, 3].

To illustrate this distinction, consider again the Expr class hier-
archy (Figure 1) and the EX expander family (Figure 4). As men-
tioned earlier, if another expander EX2 for Expr also defines an
eval method, this method (and any eval methods in overriding
expanders for EX2) is considered to belong to a different method
family from the eval methods for EX. If these methods were all
considered part of the same method family, there could be run-time
ambiguities that are not modularly detectable, for example because

there are two eval methods defined for the class Expr.
Worse, there may be no ambiguity for a given receiver argument

to eval, but clients will simply get unexpected behavior at run time.
For example, suppose EX2 defines an eval method for some sub-
class SpecialPlus of Plus. If both eval methods were considered
part of the same method family, a client that uses EX and invokes
eval on an instance of SpecialPlus would unexpectedly execute
the method from EX2. Aside from potentially having the wrong be-
havior, this situation is not modularly typesafe, since for example
the eval methods in EX2 could well have a different return type
from those in EX. Since neither EX nor EX2 is aware of the other
modularly, this clash eludes modular typechecking.

Analogous conflicts can occur between a class and an expander,
instead of between two expanders. For example, consider a client
that uses an expander to class C that provides a print method, and
uses the expander’s functionality to display an array of Cs in an
application-specific way. By our semantics, this print method is
considered to be in its own method family. Therefore, even if the
array contains some instances of D, a subclass of C that provides its
own print method that does not conform to our application’s stan-
dards, the client will behave as expected, using only the expander’s
implementation of print. On the other hand, by Classboxes’ se-
mantics D’s print method would be considered part of the same
method family as the expander’s print method, and our applica-
tion would behave incorrectly. This could not have been prevented
by the programmer without requiring global knowledge.

To our knowledge, eJava is the only language for object adap-
tation that modularly ensures the absence of accidental overriding
errors, and hence modularly ensures type safety. Two aspects in As-
pectJ that define the same method for a given class can easily cause
conflicts, and similarly for two classboxes that refine a given class
in the same way. These kinds of errors can only be detected with
the knowledge of all aspects or classboxes in the program that can
affect a given class. For example, in the Classbox/J implementa-
tion, clashes involving incompatible return types are only detected
by the regular Java typechecker, which runs after the Classbox/J
compiler weaves all refinements in the program for a given class
into that class’s declaration. The next section formalizes our mod-
ular type system for eJava and proves its soundness.

4. FEATHERWEIGHT EJAVA
This section describes Featherweight eJava (FeJ), an extension

of Featherweight Java (FJ) [16] that formalizes our notion of ex-
panders and its associated modular type system. Aside from mak-
ing the eJava language semantics precise, FeJ also allows us to
prove a type soundness theorem, which validates the sufficiency
of our modular type system for ruling out run-time type errors, in-
cluding problems with accidental overriding. The full details of
FeJ and its type soundness proof are available in our companion
technical report [28].

4.1 Syntax
The syntax of FeJ is shown in Figure 12. We use notational

conventions and sanity conditions analogous to those of FJ. For
example, the syntax D denotes a sequence of zero or more elements
of the domain D. Also, an FeJ program consists of a type table T T ,
which maps class, interface, and expander names to their associated
declarations, and an expression. We comment on other conventions
as necessary throughout this section.

FeJ augments FJ with interfaces and expanders. For simplicity,
the expander declaration both provides the top expander and all
overriding expanders (via the O portion of the declaration); local
overriding expanders are not modeled. The eJava language largely

TD ::= class C extends D implements I {T f; K M}
| interface I extends I {MH}
| expander X of T implements I {T f=v; M} O

O ::= of C {M}
K ::= C(T f) {super(f); this.f=f;}
M ::= T m(T x) {return t;}
MH ::= T m(T x);
T ::= C | I | TX

t ::= x | t.f | t.m(f) | new C(t)
| (T) t | t with X | peel t

v ::= new C(v) | v with X

Figure 12: The syntax of Featherweight eJava.

S<:T

T<:T

S<:T T<:U

S<:U

T T (C) = class C extends D implements I {...}
C<:D

T T (C) = class C extends D implements I {...}
C<:Ii

T T (I) = interface I extends J {...}
I<:Ji

T T (X) = expander X of T implements I {...} O

TX<:Ii

S<:T

SX<:TX

Figure 13: Subtyping in FeJ.

infers where “expansion” and “unexpansion” must occur as part of
static method family selection, as described in the previous section.
FeJ programs are explicit about expander usage: there are no use
declarations, an object is expanded via the with expression, and an
expanded object is “unexpanded” via the peel expression. Simi-
larly, we include an explicit type TX for objects of type T that are
expanded by expander X.

4.2 Subtyping
FeJ’s subtyping judgment formalizes the relationship between

expanded and unexpanded objects; it is shown in Figure 13. The
first three rules are from FJ, and the following two rules are natu-
ral extensions to handle Java-style interfaces. The next rule is the
essence of object adaptation: an expanded object can be typed with
any interface that is implemented by the associated expander, al-
lowing the expanded object to be passed wherever values meeting
that interface are expected. The final rule extends this ability for
object adaptation to instances of any subtype of the type being ex-
panded in an expander declaration.

t−→ t′

f ields(X) = T f=v

(v with X).fi −→ vi

f ields(X) = T g=v f /∈ g

(v with X).f−→ v.f

v = new C(v) mbody(m,X,C) = (x,t0)
(v with X).m(u)−→ [x 7→ u,this 7→ v with X]t0

v = v’ with X’ mbody(m,X,Object) = (x,t0)
(v with X).m(u)−→ [x 7→ u,this 7→ v with X]t0

T T (X) = expander X of T implements I {T f=v; M} O

m is not defined in M

(v with X).m(u)−→ v.m(u)

peel (v with X)−→ v

t0 −→ t′0
t0 with X−→ t′0 with X

t0 −→ t′0
peel t0 −→ peel t′0

Figure 14: FeJ evaluation rules.

A notable absence from the subtyping relation is the axiom
TX<:T. Omitting this rule forces an expanded object to be unex-
panded via peel before it is passed where a value of the original
type is expected. It also ensures that methods in an expander will
not be treated as overriding methods in the unexpanded type. Both
of these behaviors mirror the semantics and implementation strat-
egy of the eJava language. Despite the absence of this subtyping
relationship, values of type TX may still access methods and fields
of the original type T, as we show below. In this way, for example,
an expanded type may “inherit” methods from the original type in
order to meet a new interface.

4.3 Dynamic Semantics
Figure 14 provides the small-step operational semantics of FeJ

and makes use of the helper rules in Figure 15. We only present
the rules that relate to expanders; the rest of FeJ is identical to FJ.
The first two rules define field lookup for expanded objects. If the
expander defines the field being accessed, then its associated value
is returned. Otherwise, field lookup proceeds in the unexpanded
object.

The rules for method lookup on expanded objects are described
next, and they depend on the mbody helper function, which finds
the best implementation of the method m for class C in expander X.
There are four cases. If X has an overriding expander for C contain-
ing a method m, then that method’s body is returned. If X either has
an overriding expander for C but that expander does not override m,
or if X has no overriding expander for C, then we recursively search
for an overriding expander for C’s direct superclass D. Finally, if C
= Object, then recursion ends and the body of the m method in the
top expander is returned. Although Object may not be a subtype

f ields(X) = T f = v

T T (X) = expander X of T implements I {T f = v; M} O

f ields(X) = T f=v

mbody(m,X,C) = (x,t)

T T (X) = expander X of T implements I {T f=v; M} O

of C {M′} ∈ O U m(U x) {return t;} ∈ M′

mbody(m,X,C) = (x,t)

T T (X) = expander X of T implements I {T f=v; M} O

of C {M′} ∈ O m is not defined in M′

T T (C) = class C extends D · · ·
mbody(m,X,C) = mbody(m,X,D)

T T (X) = expander X of T implements I {T f=v; M} O

C is not defined in O

T T (C) = class C extends D · · ·
mbody(m,X,C) = mbody(m,X,D)

T T (X) = expander X of T implements I {T f=v; M} O

U m(U x) {return t;} ∈ M

mbody(m,X,Object) = (x,t)

Figure 15: Helper rules for FeJ evaluation.

of the type of the expander, static typechecking ensures that mbody
is always used in a type-correct manner.

Given this mbody function, the third rule in Figure 14 looks up
the appropriate method body in X for the unexpanded object’s run-
time class C. The next rule handles the case when the expanded
value itself has the form v’ with X’. In that case, the top ex-
pander’s method is always invoked, without considering overriding
expanders. This semantics makes sense since the run-time type of
the expanded value has the form TX

′
, and such a type cannot be a

subtype of any class type according to our subtype relation, so we
are guaranteed that no overriding expanders are applicable. The
semantics is encoded by invoking mbody with Object as the third
argument. Finally, if the expander X does not define m, then lookup
proceeds in the unexpanded object.

The rest of the rules in Figure 14 define the semantics of with
and peel, which are straightforward.

4.4 Static Semantics
The rules for typechecking terms are presented in Figure 16, and

helper functions are defined in Figure 17. Again, only the rules
related to expanders are shown. A field access is type-correct if an
appropriate field can be found for the type of the receiver. For a
receiver of type UX, the declaration of X is searched for a field of the
appropriate name. If the field is not found, the type U is searched for
a definition of the field. In this way, expanded objects are allowed
to access fields of the unexpanded object (if they are not shadowed
by the expander). Typechecking of method invocation proceeds
analogously. The type rule for an expression t with X ensures
that the type of t is a subtype of the type expanded by X. The type
rule for peel is straightforward.

Finally, Figure 18 contains the rules for typechecking expander

Γ ` t : T

Γ ` t : T f type(f,T) = U

Γ ` t.f : U

Γ ` t0 : T0
mtype(m,T0) = T→T
Γ ` t: S S <: T

Γ ` t0.m(t): T

T T (X) = expander X of T implements I {...} O

Γ ` t : U U<:T

Γ ` t with X : UX

Γ ` t : TX

Γ ` peel t : T

Figure 16: FeJ typechecking for terms.

f type(f,T) = U

f ields(X) = T f=v

f type(fi,U
X) = Ti

f ields(X) = T g=v fi /∈ g

f type(fi,U
X) = f type(fi,U)

mtype(m,T) = T→ T

T T (X) = expander X of T implements I {T f=v; M} O

U m(U x) {return t;} ∈ M

mtype(m,SX) = U→U

T T (X) = expander X of T implements I {T f=v; M} O

m is not defined in M

mtype(m,SX) = mtype(m,S)

Figure 17: Helper rules for term typechecking.

TD OK

• ` v : S S<:T
M OK in X,T O OK in X

reallyImplements(TX,I)
expander X of T implements I {T f=v; M} O OK

O OK in X

T T (X) = expander X of T implements I {...} O

C<:T M OverrideOK in X,C

of C {M}OK in X

M OK in X,T

x : T,this : TX ` t0 : U0 U0<:T0

T0 m(T x){return t0;} OK in X,T

M OverrideOK in X,C

override(m,X, T→ T0)
T0 m(T x){return t0;} OK in X,C

T0 m(T x){return t0;} OverrideOK in X,C

reallyImplements(T,I)

T T (I) =interface I extends J {MH}
S m(S x);∈ MH implies mtype(m,T) = U→U and override(m,I, U→U)

reallyImplements(T,J)
reallyImplements(T,I)

override(m,X, T→T0)

T T (X) = expander X of T implements I {T f=v; M} O

U m(U x) {return t;} ∈ M

override(m,X, U→ U)

Figure 18: Typechecking for expander declarations.

declarations. We assume that the type being expanded in a top
expander is distinct from each of the classes expanded in overrid-
ing expanders, and that these classes are distinct from one another.
Each overriding expander is required to be for a class that is a sub-
type of the type expanded by the top expander. The third rule de-
scribes how methods are typechecked. The method body is type-
checked under the assumption that the receiver this has the ex-
panded type. The OverrideOK judgment is used for typechecking
methods in overriding expanders. In addition to the ordinary rules
for typechecking methods, this judgment requires that a method of
the same type signature appear in the top expander. That check is
accomplished via the override helper function. Finally, the real-
lyImplements function ensures that each expander truly meets its
declared interfaces.

A key property of this type system is modularity. Each class,
interface, and expander is typechecked using only knowledge of
its own declaration and the declaration of other declarations that it
directly references. This means, for example, that an expander is
typechecked without knowledge of what other expanders exist for
the type being expanded, and without knowledge of all subtypes of
the type being expanded.

4.5 Type Soundness
We have proven a type soundness theorem for FeJ using the stan-

dard “progress and preservation” style [29].

THEOREM 4.1. (Progress) If • ` t : T, then either t is a value,
t contains a subexpression of the form (U)(v) where • ` v : S and
S 6<:U, or there exists some term s such that t−→ s.

THEOREM 4.2. (Type Preservation) If Γ ` t : T and t −→ s,
then there exists some type S such that Γ ` s : S and S<:T.

The full proofs of these theorems are available in our companion
technical report [28]. Together the theorems imply that well-typed
FeJ programs cannot incur a type error at run time. This means that
FeJ’s modular type system is sufficient to guarantee the absence of
the kinds of type errors that are caused by accidental overriding, as
described in Section 3.3.

5. COMPILATION
The eJava compiler is built on top of the Polyglot extensible

compiler framework for Java [20]. Like other Polyglot-based lan-
guage implementations, our compiler translates eJava programs
into equivalent Java programs, which can then be compiled with
a standard Java compiler and run on a standard Java virtual ma-
chine. Polyglot compiles Java 1.4, so our eJava compiler inherits
this limitation, for example lacking support for generics. We ex-
pect the issues for generic expanders to be analogous to those for
classes, and we plan to pursue such an extension in the future.

The eJava compiler translates each expander family to a single
Java class with the same name. Figure 19 shows the code gener-
ated for the EX expander from Figure 4. We refer to that example
throughout this section.

5.1 Wrapper Classes
The functionality provided by an expander family is imple-

mented in a set of wrapper classes, one for each expander in the
family. In our example, the wrapper classes EX$Expr, EX$Value,
and EX$Plus are generated for the expanders of EX whose associ-
ated classes are Expr, Value, and Plus, respectively.

These classes are called wrappers because they hold a refer-
ence to the original (unexpanded) object. This reference is used in
the implementation of the methods of the expander. For instance,

EX$Plus’s eval method uses it to call the op1 and op2 methods
of its associated object. Note that the hierarchy of the wrapper
classes mimics the hierarchy of the types for which they were cre-
ated. Consequently, in any given family, expanders of more specific
types inherit—and may override, when desired—methods from ex-
panders of less specific types.

5.2 The expand Method
Wrapper objects are created by the expander’s expand method.

expand takes an instance of the top expander’s associated type as
its argument and performs instanceof tests to determine the best
(i.e., most specific) wrapper class to use for that particular object.
The first part of the expand method in Figure 19 is used to properly
handle fields in expanders; it is discussed in Section 5.4.

Clients of an expander call its expand method in order to ac-
cess functionality it provides. For example, in Figure 5 the call
e.eval() is translated to (EX.expand(e)).eval().

5.3 Interface-Implementing Expanders
Expander families that implement one or more interfaces, such

as Figure 6’s PX, which adds the Printable interface to instances
of Expr, are translated as described above. Additionally, the wrap-
per class generated for the top expander’s associated type is de-
clared to implement those interfaces. This enables the client to use
the expanded object (returned by expand) in contexts where one of
the interface types is expected.

An expander can employ methods of the type being expanded
in order to meet new interfaces. To implement this functionality,
we generate forwarding methods in the wrapper class for the top
expander, which simply invoke the corresponding methods on the
unexpanded object. All interfaces in Java implicitly include signa-
tures for the public methods of java.lang.Object, like equals,
toString, and hashCode, so forwarding methods for them are also
created (except in cases where the method is explicitly shadowed
by the expander).

These forwarding methods are only ever used when an expanded
object is viewed through one of the interfaces that the expander
meets. They are not necessary in all other situations, because in
those cases eJava’s semantics will cause the appropriate methods
to be called directly on the unexpanded method. For example, if
e has static type Expr then e.toString() will always invoke the
toString() method defined for the run-time class of e, without
considering any of the expanders in scope.

When an expanded object is viewed through one of the inter-
faces that the expander meets, the forwarding methods enable the
expanded object to “pretend” to be the original object as much as
possible. However, one well-known limitation of wrappers is that
they do not preserve object identity. Therefore, code that employs
== or instanceof on a value of some interface type can get in-
correct results if passed an expanded object. This limitation is an
artifact of our modular compilation strategy and is also a limitation
of the adapter design pattern [14].

An alternative compilation strategy that nonmodularly modifies
a class in place would not suffer from this problem, but it would
suffer from other problems. For example, it would be impossible
to adapt a class to support two incompatible interfaces (e.g., inter-
faces that define the same method but with a different return type)
in two different expanders. Both the AspectJ and Classboxes im-
plementation strategies suffer from these kinds of problems.

5.4 Handling State in Expanders
One straightforward way to represent the fields of an expander

family in our implementation scheme would be to declare those

class EX {
public static final java.util.WeakHashMap<Expr, EX$$tate> cache = new java.util.WeakHashMap<Expr, EX$$tate>();
public static class EX$$tate {
public java.lang.ref.WeakReference<Expr> instance$ = null;
public java.lang.ref.WeakReference<EX$Expr> wrapper$ = null;

}
public static class EX$Expr {
protected final Expr instance;
protected final EX$$tate state;
protected EX$Expr(final Expr instance, EX$$tate state) {
this.instance = instance;
this.state = state;

}
public Value eval() {
throw new EvalError();

}
}
public static class EX$Plus extends EX$Expr {
protected EX$Plus(final Expr instance, EX$$tate state) {
super(instance, state);

}
public Value eval() {
Value v1 = (EX.expand(instance.op1())).eval();
Value v2 = (EX.expand(instance.op2())).eval();
// ...

}
}
public static class EX$Value extends EX$Expr {
protected EX$Value(final Expr instance, EX$$tate state) {
super(instance, state);

}
public Value eval() {
return (Value) instance;

}
}
public static synchronized EX$Expr expand(final Expr instance) {
EX$Expr r;
EX$$tate state = cache.get(instance);
if (state == null) {
state = new EX$$tate();
state.instance$ = new java.lang.ref.WeakReference<Expr>(instance);
cache.put(instance, state);

}
else if (state.wrapper$!= null) {
r = state.wrapper$.get();
if (r != null)
return r;

}
if (instance instanceof Plus)
r = new EX$Plus(instance, state);

else if (instance instanceof Value)
r = new EX$Value(instance, state);

else
r = new EX$Expr(instance, state);

state.wrapper$ = new java.lang.ref.WeakReference<EX$Expr>(r);
return r;

}
}

Figure 19: Java translation of the EX expander from Figure 4.

expander's
WeakHashMap

original
object

key value

fields

state

strong reference weak reference

methods

wrapper

Figure 20: Expander state and wrapper objects.

fields in the wrapper class generated for that family’s top ex-
pander. Wrapper objects would additionally be cached for use by
the expand method, in order to give clients of the same object a
consistent view of its new fields’ values. Unfortunately, this simple
approach interacts poorly with Java’s garbage collection: expand’s
cache would hold a reference to every object ever adapted by the
expander, preventing those objects from ever being garbage col-
lected.

Java has a notion of weak references, which, unlike the usual
strong references, do not prevent their referents from being col-
lected. One possible solution to the above problem is for the cache
to hold weak references to unexpanded objects. Although this ap-
proach does not result in memory leaks, it suffers from the even
more serious “disappearing object problem”: it is possible for the
original object to be garbage collected while one or more clients
still hold a reference to the associated wrapper object.

Our implementation scheme, outlined in Figure 20, avoids both
of these problems. The eJava compiler generates a state class for
each expander, and each wrapper object maintains a reference to
an associated state object. The EX$$tate class in Figure 19 is
the state class generated for the EX expander. If EX declared a
field f, it would be declared in this state class. Client code re-
ferring to e.f, where e has type Expr, would be translated to
EX.expand(e).state.f.

Like wrappers, state objects are instantiated when an object is
expanded. As in the approach discussed above, the expand method
uses a WeakHashMap, a hashtable implementation that holds weak
references to the objects it uses as keys, to cache the state objects
for each object expanded. An important property of WeakHashMap
is that values associated with keys that are garbage collected are au-
tomatically removed. This feature ensures that state objects whose
associated unexpanded objects are no longer accessible are prop-
erly disposed of, avoiding memory leaks.

For performance reasons, the state object contains a wrapper$
field, which is used to cache the associated wrapper object. This
allows the implementation to avoid instantiating a new wrapper ob-
ject every time a client accesses functionality by an expander on
the same object.

To solve the disappearing object problem, the wrappers gener-
ated by our translation hold strong references to their original ob-
jects. This ensures that the original object will not be garbage col-
lected as long as there is at least one client who still holds a refer-
ence to the wrapper.

Should it ever be the case that no client holds a reference to the
original object or to its wrapper, the wrapper’s strong reference to
the object will not keep the object from being garbage collected. In
such scenarios, the only object in the system which has a reference
to the wrapper is the state object. And because this reference is
weak, it does not prevent the wrapper—and consequently the orig-
inal object—from being collected.

Finally, suppose one or more clients have strong references to

class FancyCalculator$EX extends EX {
public static class EX$Minus extends EX$Expr {...}
public static EX$Expr expand(final Expr instance) {
EX$Expr r = null;
EX$$tate state = cache.get(instance);
if (state == null) {
state = new EX$$tate();
state.instance$ =
new java.lang.ref.WeakReference<Expr>(instance);

cache.put(instance, state);
}
else if (state.wrapper$!= null) {
r = state.wrapper$.get();
if (r != null &&

r.creator$ == FancyCalculator$EX.class)
return r;

}
if (instance instanceof Minus)
r = new EX$Minus(instance, state);

else
return EX.expand(instance);

r.creator$ = FancyCalculator$EX.class;
state.wrapper$ =
new java.lang.ref.WeakReference<EX$Expr>(r);

return r;
}

}

Figure 21: The translation of the local overriding expander in
Figure 11.

the original object, but no client has a strong references to the asso-
ciated wrapper. Here, it is possible that the wrapper will be garbage
collected. Fortunately, because our wrappers are stateless, they can
be instantiated as often as needed. This is done in the expander’s
expand method using the state object’s instance$ field (see Fig-
ure 19).

5.5 The expand Method, Revisited
Now that most of eJava’s implementation details have been re-

vealed, we are able to provide a more detailed description of the
actions carried out by the expand method.

Step 1: expand searches the expander’s cache for the state ob-
ject associated with the object to be expanded. If the search
succeeds and the state object’s wrapper exists, expand re-
turns the wrapper object. If the search fails, a new state ob-
ject whose instance$ field references the instance to be ex-
panded is created and stored in the cache.

Step 2: If we get to this point, we’ve got a state object, but no
wrapper. expand then creates the most specific wrapper
based on the dynamic type of the object to be expanded. A
weak reference to this object is stored in the state object, and
the wrapper is returned to the caller.

5.6 Local Overriding Expanders
As discussed in section 2.5, clients may locally augment an ex-

pander family with any number of local overriding expanders. Our
compilation scheme supports this by generating a subclass of the
original expander’s implementation class. For example, Figure 21
shows the code generated for the local overriding expander shown

Publication

JournalPublication ConferencePublication

OOPSLAPublication

WorkshopPublication

Figure 22: The hierarchy of publication classes.

in Figure 11. This class contains the appropriate wrapper classes,
which are declared to be subclasses of the wrapper classes of the
original expander. The state class created for the original expander
is inherited for use by the local overriding expander. When creat-
ing new wrapper objects, the new expander class’s expand method
uses instanceof tests to determine whether one of its refinements
should be used for the instance being expanded. If this is not the
case, it forwards the call to the expand method of its superclass.
The uses of locally augmented expanders are compiled as calls to
the new expander class’s expand method (and not that of the origi-
nal expander).

To be hygienic, as discussed in Section 2.5, wrappers created by
local expanders should never be returned by expand in contexts
other than their own. Similarly, a wrapper created for a particular
instance by the original expander should not be used in a context
where a local overriding expander exists for the dynamic type of
that instance. In order to prevent these scenarios, an expander’s
expand method must never return a cached wrapper object that it
did not create itself. For example, Figure 21 shows the fragment
of FancyCalculator$EX’s expand method that enforces this re-
striction. Since any expander family may be augmented by clients
through local overriding expanders, this check is performed by the
expand method of every expander, regardless of whether or not the
the existence of local overriding expanders is known at compile
time (for clarity, this mechanism was omitted from the implemen-
tation of EX shown in Figure 19).

6. EXPERIENCE
This section describes two experiments we performed to gauge

the practical utility of eJava’s expanders. First, we considered a
scenario in which a client must adapt existing objects in order to
display them in a tree structure using Swing’s JTree class. We
implemented solutions in both Java and eJava to compare the ben-
efits and limitations of each approach. Second, we performed an
exploratory study of the Eclipse IDE framework [7]. The goal of
the study was to understand the various extensibility idioms used
in Eclipse and the extent to which expanders allow these idioms to
be expressed more naturally and/or reliably.

6.1 Making Objects “Swing”
Consider a database of objects that represent various academic

publications, with each publication linking to the publications it
references. The publications in this database are represented by
the Publication hierarchy, shown in Figure 22. Since different
clients of this database are likely to want to display publications
in different ways, the classes in the Publication hierarchy do not
provide any displaying capabilities on their own; this functional-
ity must be implemented by each client that requires it. Further,
because the publication objects come from a database (and are not
instantiated by clients themselves), this functionality must be added
externally.

Figure 23: The client application.

public interface ILabelProvider {
String getText();
Icon getIcon();

}

Figure 24: The ILabelProvider interface.

This case study addresses how one client might display the ob-
jects in this database graphically as a tree—with each node repre-
senting a publication and subnodes representing the publication’s
references—using Swing’s JTree class. Figure 23 shows a screen-
shot of the client application. Note that each kind of publication is
displayed in its own style, consisting of a particular icon and text
format.

To display objects in a JTree, clients must provide an implemen-
tation of Java’s TreeModel interface, which provides a data model
for tree. As a convenience, the Swing library provides a default
implementation of this interface, DefaultTreeModel. However,
DefaultTreeModel requires the objects in the tree to implement
the TreeNode interface. Therefore, in order to avoid duplicating
the code of DefaultTreeModel, the publication objects must be
adapted to meet the TreeNode interface.

To customize the way objects in a JTree are displayed, the client
must also implement the TreeCellRenderer interface. This in-
terface has a single method, getTreeCellRendererComponent,
which takes an Object and returns the graphical Component
to be used for displaying that object. The simplicity of
this interface often complicates the implementation of the
getTreeCellRendererComponent method, which must perform
instanceof tests and typecasts if different kinds of objects should
be displayed differently. Therefore, many Swing applications de-
fine their own interface for rendering, which is implemented by the
object passed to getTreeCellRendererComponent. The imple-
mentation of that method can then delegate most of the rendering
work to the given object by calling appropriate methods from this
new interface. In our application, we require the objects in the
tree to support the ILabelProvider interface, shown in Figure 24,
which allows each kind of publication to provide its own text and
icon for display. Therefore, Publication objects must also be
adapted to meet the ILabelProvider interface.

6.1.1 The eJava Version
Our eJava implementation uses expanders to adapt the various

types of publications to meet the TreeNode and ILabelProvider
interfaces. Figure 25 shows some of the code in the top expander
(i.e., the one for Publication). The first several methods in
the expander implement the TreeNode interface. Please note the

use StringExp;
public expander PublicationExp of Publication

implements TreeNode, ILabelProvider {
private Vector children = null;
public Enumeration children() {
if (children == null) {
children = new Vector();
Iterator it = citations().iterator();
while (iterator.hasNext()) {
Publication p = (Publication)it.next();
children.add(p with PublicationExp);

}
}
return children.elements();

}
// ...
public Icon getIcon() {
return "/icons/publication.gif".getIcon();

}
public String getText() {
return getTitle();

}
}

Figure 25: The PublicationExp expander.

expander PublicationExp of ConferencePublication {
public Icon getIcon() {
return "/icons/conference.gif".getIcon();

}
public String getText() {
return getTitle() + "@" + getConferenceName();

}
}

Figure 26: An overriding expander.

use of the with operator to explicitly expand p (an instance of
Publication) in the children method. This is necessary be-
cause we intend to store the expanded version of those objects
in a Vector. Since Vector’s add method takes an argument of
type Object, no adaptation is necessary, and therefore p is not ex-
panded automatically. Java 1.5’s generics would allow us to type
children as Vector<TreeNode>, which would then result in the
implicit adaptation of the object, but as mentioned earlier, the eJava
compiler does not currently support generics.

The expander in Figure 25 provides a default implementation of
ILabelProvider for instances of Publication. Overriding ex-
panders customize the presentation of each kind of publication by
providing their own implementation of the getText and getIcon
methods. For example, Figure 26 shows the overriding expander
for ConferencePublication.

We use an expander for String to encapsulate the logic for load-
ing icons from files, as shown in Figure 27. The expander also
caches the icon in its icon field. Since in Java identical string lit-
erals are represented by the same underlying String object, our
application will not load an icon more than once from the same
file.

6.1.2 The Java Version

public expander StringExp of String {
private Icon icon = null;
public Icon getIcon() {
if (icon == null)
icon =
new ImageIcon(Object.class.getResource(this));

return icon;
}

}

Figure 27: Retrieving icons from a file.

public class ConferenceAdapter
extends PublicationAdapter

implements ILabelProvider {
public ConferenceAdapter(ConferencePublication p) {
super(p);

}
public Icon getIcon() {
return IconCache.getIcon("/icons/conference.gif");

}
public String getText() {
ConferencePublication a =
(ConferencePublication) adaptee;

return a.getTitle() + "@" + a.getConferenceName();
}

}

Figure 28: An adapter for ConferencePublication.

Our Java implementation employs the adapter design pat-
tern [14]. To encode special rendering behavior for each
subclass of Publication, we create a hierarchy of adapter
classes that mirrors the publication hierarchy. The root of the
adapter hierarchy is PublicationAdapter, which looks sim-
ilar to the PublicationExp expander, except that it main-
tains an explicit field adaptee of type Publication to ac-
cess the underlying publication object. Similarly, the other
classes in the hierarchy of adapters correspond to the overrid-
ing expanders of the eJava implementation. For example, the
ConferenceAdapter, which is the analogue of the overriding
expander for ConferencePublication (Figure 26) is shown
in Figure 28. Since the adapter makes use of specific fea-
tures of ConferencePublication, like getConferenceName, the
adaptee field must be downcast appropriately.

Our Java implementation is required to perform instanceof
tests in order to determine the correct adapter class for a publication
object. The createAdapter method in Figure 29 implements this
functionality. The instanceof tests must be performed in most- to
least-specific order to ensure that each object is adapted properly.
It is possible to do away with the adapter hierarchy and instead
use a single adapter class for all publications. However, in that
case this sequence of instanceof tests would be required in the
implementation of every method that requires specialized behavior
for Publication subclasses, instead of occurring only once at the
point of adaptation.

6.1.3 Comparison
This case study exposes several advantages of expanders over

standard adapters in Java. First, the eJava version is more eas-

public class GUIAdapterFactory {
public static PublicationAdapter
createAdapter(Publication p) {
if (p instanceof OOPSLAPublication) {
OOPSLAPublication pub = (OOPSLAPublication) p;
return new OOPSLAAdapter(pub);

}
if (p instanceof ConferencePublication) {
ConferencePublication pub =
(ConferencePublication) p;

return new ConferenceAdapter(pub);
}
//....
return new PublicationAdapter(pub);

}
}

Figure 29: The adapter factory.

ily extensible. For example, consider the task of adding spe-
cial support for TOPLASPublication, which is a subclass of
JournalPublication. In the eJava version, one would simply
add a new overriding expander for PublicationExp, either in the
same source file as the original expanders or via local expander
overriding. In the Java version, one would analogously need to
add a new adapter class, TOPLASAdapter, which inherits from
JournalAdapter. However, it would also be necessary to update
or create a subclass of the GUIAdapterFactory (from Figure 29),
in order to add a new case to createAdapter’s cascading if state-
ment that appropriately adapts a TOPLASPublication. Further,
care must be taken to place this case in the appropriate order with
respect to the existing cases.

The eJava version is also less error prone than the Java version.
The latter version requires instanceof tests and associated down-
casts in GUIAdapterFactory, in order to create the adapters, and
additional downcasts within the adapters to narrow the type of the
adaptee field, as shown earlier. In contrast, the eJava version
requires none of these instanceof tests or downcasts. Instead,
eJava’s modular type system ensures type correctness statically.
In total, the Java version of our simple application requires four
instanceof tests and eight downcasts. The eJava version contains
no instanceof tests and three downcasts. Two of these downcasts
would have been avoided with the use of generics, and the third oc-
curs in the implementation of TreeCellRenderer, in order to nar-
row the Object argument of getTreeCellRendererComponent to
ILabelProvider; it is also present in the Java version.

Finally, the eJava version has a performance advantage over the
Java version. As described in Section 5, the instances of wrapper
classes used in the implementation of an expander are cached for
each expanded object. Therefore, the tree display in our applica-
tion will create exactly one wrapper object per publication object
displayed, even if the publication appears multiple times in the tree.
In the Java version, each node in the tree has a separate adapter
instance. Similarly, we remarked earlier that the StringExp ex-
pander naturally ensures that each icon is loaded from a file at most
once. In the Java version, this optimization had to be implemented
with an explicit icon cache.

6.2 An Exploratory Study of Eclipse
Eclipse is built with extensibility as a primary goal: the frame-

work is structured as a small kernel, known as the Eclipse platform,

and a collection of external plugins that provide the bulk of the sys-
tem’s functionality. As such, Eclipse represents a rich source for
understanding the state of the art in Java-based extensibility idioms.
In the rest of this section, we describe several of these idioms and
their relationship to eJava’s expanders.

6.2.1 External Methods
Eclipse uses two main approaches to add methods to existing

classes from the outside. First, it provides two kinds of visitors:
ASTVisitor, for traversing the AST representation of a program,
and IResourceVisitor, for traversing trees of resources such as
files, folders, and projects. These types, along with the appropriate
“hooks” inside the classes representing AST nodes and resources,
allow for easy extension of these hierarchies with new methods.
However, only these two particular class hierarchies can be ex-
tended with new methods, and such extension is only possible be-
cause of advance planning by the Eclipse developers. Expanders,
on the other hand, allow any existing class hierarchy to be eas-
ily augmented with new methods, without the need to plan ahead
for such extension. Further, they do not suffer from the standard
problems of visitors, mentioned in Section 2.1. For example, each
expander method can have its own argument and result types.

However, visitors do have one important advantage over ex-
panders. Since each external method is reified as a visitor class,
it is easy for external methods to inherit code from one another. A
common usage of this ability is to define a visitor that does noth-
ing except recursively visit the children of each node in the given
tree. A new visitor class can then subclass from that visitor and
inherit the code for traversing the tree “for free,” only overriding
the particular methods that should perform some useful work. In
contrast, method families in an expander are completely unrelated
to one another, forcing each to re-implement the basic traversal be-
havior. We believe this limitation could be solved with a notion of
expander inheritance. We are currently working on adding support
for this feature to the eJava compiler using a compilation strategy
similar to the one used to support local overriding expanders.

Second, Eclipse has quite a few utility classes that use static
methods to provide additional functionality to existing classes and
interfaces. For example, the MarkerViewUtil class provides two
methods that manipulate instances of the IMarker interface, with
the following signatures:

public static String getViewId(IMarker m)
public static boolean showMarker(IWorkbenchPage p,

IMarker m, boolean showView)

This approach to adding new methods to existing types has
two main drawbacks. First, callers have to use a verbose
and unnatural syntax to invoke such methods, for example
MarkerViewUtil.getViewId(m), which clashes with the concep-
tual intent that the new methods are part of the existing IMarker
type. Second, if a new method needs to dispatch on the run-time
class of the IMarker instance in order to determine how to behave,
then the programmer must resort to error-prone instanceof tests
and type casts, as shown in earlier sections.

Expanders naturally solve both of these problems. Figure 30
shows an expander for IMarker that adds the two methods de-
scribed above. These new methods can be invoked using the or-
dinary calling syntax for methods of IMarker. Further, the im-
plementer can provide overriding expanders in order to specify the
behavior of each new method for particular classes that implement
the IMarker interface. The eJava language then does the work of
automatically dispatching to the appropriate implementation based
on the run-time class of the receiver, as discussed in Section 3.

public expander IMX of IMarker {
public String getViewId() {...}
public boolean showMarker(IWorkbenchPage p,

boolean showView) {...}
}

Figure 30: The IMarker expander in eJava.

6.2.2 Multiple Implementation Inheritance
Eclipse employs a style in which clients only manipulate an ab-

straction through an interface, rather than a class. This style cleanly
separates interface from implementation, ensuring that clients can-
not depend on implementation details and allowing implementers
to change the underlying implementations without affecting clients.
To aid implementers, Eclipse often provides an abstract class that
contains default implementations of a particular interface’s meth-
ods. Implementers can then easily create a class meeting the de-
sired interface by inheriting from the associated abstract class and
overriding methods as appropriate [13]. For example, Eclipse’s
concept of a view provides a visual representation of some content.
A view must implement the IViewPart interface, which declares
or inherits a total of 14 method signatures, and the abstract class
ViewPart contains default implementations of 12 of these meth-
ods, requiring concrete subclasses to implement the other two.

Because Java does not support multiple inheritance, however, a
class that subclasses ViewPart cannot inherit code from any other
classes. This limitation can lead to a significant amount of code
duplication. For example, suppose a class must meet another inter-
face in addition to IViewPart. It is not possible for it to inherit the
default implementations of the other interface; instead, the imple-
menter must explicitly copy these methods in the new class.

Expanders provide a natural solution to this problem. First we
create an interface for the two methods that each concrete subclass
of ViewPart is required to implement:

public interface VXRequirements {
void createPartControl(Composite parent);
void setFocus();

}

Then we create an expander that takes the place of the ViewPart
class, providing the implementations of the other 12 methods re-
quired by IViewPart. This expander is shown in Figure 31. Any
class that implements the VXRequirements interface can now be
“expanded” to meet the IViewPart interface and “inherit” the de-
fault implementations of the associated methods. Other expanders
can be used in a similar fashion to allow the class to easily meet
other interfaces, without requiring code duplication. Further, the
class can still inherit code from a superclass, as usual in Java.

6.2.3 Adapters
Eclipse includes an adapter framework that allows an object to

be dynamically extended to meet a new type. A type declares its
instances to be adaptable by implementing the IAdaptable in-
terface. Clients of that type can implement an adapter factory
which specifies how to adapt that type’s instances to new types,
and register this factory with a global registry. An adapter fac-
tory from Eclipse, which adapts instances of IJavaBreakpoint to
IWorkbenchAdapter is shown in Figure 32. The adapter factory
can then be invoked via the getAdapter method of the adaptee
object, for example:

public expander VX of VXRequirements {
private IWorkbenchPartSite partSite = null;
private ListenerList propChangeListeners =
new ListenerList(1);

private String title = "", toolTip = "";
private Image titleImage = null;
public IViewSite getViewSite() {
return (IViewSite)getPartSite();

}
public void init(IViewSite site) {
partSite = site;

}
public void init(IViewSite site,

IMemento memento) {
init(site);

}
public void saveState(IMemento memento) { }
Object getAdapter(Class adapter) {
return Platform.getAdapterManager()

.getAdapter(this, adapter);
}
public
void addPropertyListener(IPropertyListener l) {
propChangeListeners.add(l);

}
public void
removePropertyListener(IPropertyListener l) {
propChangeListeners.remove(l);

}
public void dispose() {
if (!propChangeListeners.empty())
propChangeListeners = new ListenerList(1);

}
public IWorkbenchPartSite getSite() {
return partSite;

}
public String getTitle() {
return title;

}
public Image getTitleImage() {
if (titleImage == null)
titleImage =
PlatformUI.getWorkbench().

.getSharedImages()

.getImage(ISharedImages.IMG_DEF_VIEW);
return titleImage;

}
public String getTitleToolTip() {
return toolTip;

}
}

Figure 31: An expander replacing the ViewPart abstract class.

package org.eclipse.jdt.internal.debug.ui;
public class JavaBreakpointWorkbenchAdapterFactory
implements IAdapterFactory {
public Object getAdapter(Object adaptableObject,

Class adapterType) {
if (adapterType != IWorkbenchAdapter.class ||

!(adaptableObject instanceof IJavaBreakpoint))
return null;

return new IWorkbenchAdapter() {
// ...
public String getLabel(Object o) {...}
// ...

};
}
// ...

}

Figure 32: An example adapter factory from Eclipse.

public expander BPX of IJavaBreakpoint
implements IWorkbenchAdapter {

public String getLabel(Object o) {...}
// ...

}

Figure 33: Adapting with an expander.

IJavaBreakPoint bp = ...
IWorkbenchAdapter wb = (IWorkbenchAdapter)
bp.getAdapter(IWorkbenchAdapter.class);

if (wb != null) {...}

The adaptee object’s getAdapter method typically forwards to the
global registry, which uses the getAdapter method of each adapter
factory to search for an appropriate adapter, returning null if one
cannot be found.

With expanders, we can express both the adapter and its clients
much more naturally. Figure 33 provides an expander that adds
the appropriate methods to an IJavaBreakpoint instance in order
for it to meet the IWorkbenchAdapter interface. A client of an
IJavaBreakpoint instance simply uses the expander BPX in order
to implicitly adapt the instance to IWorkbenchAdapter, thereby
allowing methods like getLabel to be called on that instance.

There are several interesting points of comparison between the
two approaches. First, it is statically apparent in the declara-
tion of an expander what type is being adapted and to what other
type it is being adapted. This makes it easy for clients to under-
stand the intended behavior of an expander. Similarly, it is stat-
ically visible through a compilation unit’s use statements which
expanders are being employed by any particular client. In contrast,
Eclipse’s adapter framework is inherently dynamic. The code of
the getAdapter method in Figure 32 must be inspected to under-
stand what types are involved in the adaptation. Worse, it is im-
possible for a client to tell which adapter will be used when it calls
getAdapter on an object. Of course, such dynamism can also be
an advantage, by providing more expressiveness than is supported
by expanders. For example, the getAdapter method in Figure 32
can easily perform the adaptation in one of several ways, depend-
ing on run-time conditions. Eclipse is structured around a dynamic
plugin model, so it often requires such expressiveness.

Second, Eclipse’s adapters are globally registered, which can

easily cause problems. For example, if two plugins each register
different adapter factories for the same source and target types, one
of these factories will be shadowed, causing one plugin to use an
adapter that may not be appropriate for its needs. Since expander
usage is statically scoped, there can easily exist multiple expanders
for the same source and target types, and different clients can use
different expanders without conflict.

Third, a type is only adaptable in Eclipse’s framework if it
is declared to meet the IAdaptable interface (and provides a
getAdapter method). Therefore, the original implementer of a
type must plan ahead for adaptation. Unfortunately, this advance
planning often does not happen, as indicated by several requests in
the Eclipse Bug System [8], shown in Table 1. Fourth, Eclipse’s
framework allows objects to be adapted to both new classes and
new interfaces. In contrast, eJava’s expanders allow a class to meet
new superinterfaces but not new superclasses.

Finally, some Eclipse adapters are designed to be stateless: in-
stead of storing the adaptee object as a field of the new adapter
object and delegating to this field as necessary, the adapter
object’s methods all explicitly accept an adaptee object as a
parameter. The example in Figure 32 is in fact a stateless
adapter. For example, if bp is an instance of IJavaBreakPoint
and wb is the IWorkbenchAdapter object returned from the
call bp.getAdapter(IWorkbenchAdapter.class), then the la-
bel text of the adapted object is accessed by the invocation
wb.getLabel(bp).

The stateless adapter design allows one adapter instance to be
used across all objects that need to be adapted. In contrast, our
compilation strategy for expanders, as discussed in Section 5, al-
ways creates one adapter object per adaptee object, thereby con-
suming more space. However, stateless adapters come at the cost
of increased complexity, both for the adapter implementer and the
adapter client. On the implementation side, the code for getLabel
must downcast the given Object to an IJavaBreakPoint before
retrieving its label. On the client side, callers must explicitly ma-
nipulate both the adaptee object and its adapter.

6.2.4 External State
Eclipse allows plugins to add new state to existing objects that

represent system resources via a notion of properties. A property
is a name-value pair that can be added to an existing IResource
instance. Properties are updated and accessed through two methods
in the IResource interface:

void setSessionProperty(QualifiedName key,
Object value)

Object getSessionProperty(QualifiedName key)

For example, Figure 34 shows how Eclipse’s BuildManager class
manipulates a property K BUILD LIST on instances of IProject.

The property mechanism is useful but has several drawbacks.
First, it cannot be used to add new state to objects that are not re-
sources. Second, properties are not statically typed. For instance,
nothing prevents two calls to setSessionProperty from storing
objects of different types to the same property. Since most callers
of getSessionProperty downcast the resulting object to the ex-
pected type of the property, such type disagreement could lead to
run-time errors like ClassCastExceptions. Third, each property
of an object is globally accessible by all of the object’s clients,
which can lead to conflicts. For example, two clients could ac-
cidentally use the same QualifiedName to represent two distinct
properties, causing unexpected interactions between these clients
at run time.

Expanders allow state to be added to existing objects without

Table 1: A sample of the Eclipse Bug System’s “should implement IAdaptable” bugs.
Bug ID Summary
12960 All Update Core model objects must implement IAdaptable
109138 IWorkingSet should extend IAdaptable
23032 Make IEditorReference adaptable
22452 Would like ITextViewer be a supported Adaptable for AbstractTextEditor [api]
80671 proxies should be adaptable

package org.eclipse.core.internal.events;
public class BuildManager implements ICoreConstants, IManager, ILifecycleListener {
public ArrayList getBuildersPersistentInfo(IProject project) throws CoreException {
return (ArrayList)project.getSessionProperty(K_BUILD_LIST);

}
public void setBuildersPersistentInfo(IProject project, ArrayList list) {
// ...
project.setSessionProperty(K_BUILD_LIST, list);
// ..

}
// ...

}

Figure 34: BuildManager in Java

suffering from any of these problems. For example, the following
expander augments IProject instances with a new field of type
ArrayList:

package org.eclipse.core.internal.events;
public expander IPX of IProject {
public ArrayList buildList = null;

}

Clients like BuildManager can then use this expander and manip-
ulate the new field as it would any other field of the class, as shown
in Figure 35. Accesses to the field are now statically typechecked,
and different clients can use different expanders without any pos-
sibility of conflicts.

7. RELATED WORK
Classboxes, a form of module for OO languages, are the closest

language construct to expanders of which we are aware. Classboxes
were originally developed in the context of Smalltalk [4] but were
recently described in an extension to Java [3]. Classboxes allow
existing classes to be refined to support new fields, methods, and
superinterfaces, as in eJava. Classboxes also support the addition
of new constructors and inner classes, as well as the overriding of
existing methods of the class, all of which eJava does not support.

There are several important differences between expanders and
classboxes. First, like expanders, the refinements in a classbox are
only available where that classbox has been explicitly imported.
While the visibility of a classbox is scoped, any class members
added in a classbox are treated semantically as if they were de-
fined in the original class declaration [2]. This semantics can cause
the kinds of accidental overriding problems described in Section 3,
which elude modular detection. For example, if a class C is later
refined with a method m by some classbox, and separately a sub-
class D introduces such a method as well, the latter method will be
considered to override the former even though neither implementer
was aware of the other. Aside from potentially causing unexpected
behavior dynamically, this accidental overriding can also lose type
safety, for example if the two methods differ on the return type.

eJava’s method lookup semantics and modular type system prevent
such accidental overriding and the associated type safety problems.

Second, classboxes are implemented nonmodularly: all class-
boxes that refine a class must be available when that class is com-
piled, and these refinements are weaved into the class appropri-
ately. At that point, regular Java typechecking and compilation are
performed on the resulting class. This means that any errors in a
classbox are not detected modularly. Further, while this implemen-
tation strategy avoids the problem of object identity for wrappers,
it allows unrelated classboxes to clash with one another, preventing
compilation. For example, if two classboxes define a method m for
class C, but with different return types, the methods are merged into
a single m method that tests the current scope dynamically to deter-
mine what code should be executed. If these methods have different
return types, the resulting Java code will not typecheck. While this
problem could potentially be addressed by a form of name man-
gling, that strategy would not work if the methods are needed in
order to implement particular interfaces. In contrast, because ex-
panders are implemented modularly, two unrelated expanders can-
not conflict with one another.

Finally, clients in Classboxes can only import a single version of
a class, while clients in eJava can use multiple expanders.

The inter-type declarations in AspectJ [17] support similar aug-
mentations to a class as do classboxes. However, aspect usage is not
scoped: an aspect’s inter-type declarations are implicitly available
to clients of the original classes. This semantics reflects the fact
that aspects are often intended to update the behavior of existing
classes in a manner that automatically updates all existing clients,
in order to noninvasively evolve existing applications. While this
behavior is quite powerful, it can also easily cause accidental re-
lationships and conflicts among logically independent aspects and
classes to occur. Finally, AspectJ employs a similar compilation
strategy as described above for classboxes and so suffers from sim-
ilar problems.

The Scala [23] programming language contains a construct
called views, which are a form of language support for adaptation.
Views are essentially programmer-defined functions from one type

package org.eclipse.core.internal.events;
use IPX;
public class BuildManager implements ICoreConstants, IManager, ILifecycleListener {
public ArrayList getBuildersPersistentInfo(IProject project) throws CoreException {
return project.buildList;

}
public void setBuildersPersistentInfo(IProject project, ArrayList list) {
// ...
project.buildList = list;
// ...

}
// ...

}

Figure 35: BuildManager in eJava

to another. However, the language infers where a view should be
inserted, in order to allow a value of one type to be treated as hav-
ing a different type. As with expanders, views must be explicitly
imported in order to be considered for such inference. In this way,
on the client side views are quite similar to expanders. However, on
the implementation side views provide no special support for adap-
tation. For example, in order to augment a type with new methods,
the programmer has to implement a view that explicitly creates a
wrapper class for values of that type, along with forwarding meth-
ods for all of the original methods of that type. In eJava, these
details are taken care of by the compiler. Additionally, Scala does
not support any form of overriding for views, so programmers must
manually implement run-time type dispatch in order to adapt dif-
ferent subclasses in different ways.

MultiJava’s open classes [6] allow new methods to be added to
existing classes externally. As in eJava, clients in MultiJava explic-
itly import any new methods they wish to employ, thereby allowing
for modular reasoning. MultiJava does not support the introduction
of new superinterfaces to existing classes and hence is not able to
express object adapters and related idioms. MultiJava also does not
support the introduction of new fields to existing classes. The in-
clusion of superinterfaces and fields in expanders constitutes a large
increase in expressiveness over MultiJava and requires significant
new work to support modular typechecking and compilation.

Half & Half [1] is an extension to Java that supports the ability
to add new superinterfaces to existing classes, as well as a form
of multiple dispatch. A wrapper strategy similar to the one we de-
scribe is used to compile the new language construct. Unlike eJava,
Half & Half does not support the addition of new methods or fields
to existing classes. Therefore, a new interface can only be given
to an existing class if it already meets all the requirements of that
interface.

Several language features, including mixins [5, 12, 25],
traits [24], and parameterized modules [11, 18], support the flexible
creation of new classes from existing ones. In contrast, expanders
flexibly update existing classes in place. Therefore, expanders can
be used to adapt existing objects with new capabilities, while the
approaches mentioned above cannot. On the other hand, those lan-
guage constructs provide fine-grained code reuse across indepen-
dent classes, while expanders do not. They also support some ex-
pressiveness that could be useful to incorporate in expanders. For
example, Schärli et al. [24] describe an expressive sublanguage
that allows clients to resolve conflicts that may occur when com-
bining multiple traits. As another example, Jiazzi [18] supports a
very expressive form of class parameterization, including recursive

linking.
There have also been several languages that include a form

of virtual types [27, 26] and related forms of dependently typed
classes [9, 10, 19, 21]. These languages allow hierarchies of classes
to easily be refined in various ways. Like the languages described
above, these approaches allow new hierarchies to be created from
existing ones, rather than updating existing hierarchies in place.
Therefore, these approaches are not suitable for adapting existing
objects to new clients. On the other hand, these approaches allow
multiple independent hierarchies to exist in a program, along with
a guarantee that instances of the constituent classes will only inter-
mingle with other instances from the same hierarchy.

8. CONCLUSIONS AND FUTURE WORK
We have described the expander, a new construct that provides

explicit language support for modularly adapting objects in flex-
ible ways to suit the needs of clients. Expanders can be used to
implement a variety of recurring idioms in object-oriented soft-
ware (such as the visitor and adapter design patterns), in a manner
that is more declarative, more extensible, and more amenable to
static typechecking. We have instantiated our notion of expanders
in eJava, an extension to Java. We have formalized a core subset
of the eJava language and proven its modular type system sound.
We have also implemented eJava via a novel scheme for modularly
translating expanders to Java. Lastly, we demonstrated ways in
which expanders can be used to improve real-world object-oriented
systems through two case studies.

The exploratory study in Eclipse pointed out a few limitations of
eJava that we plan to address in future work. First, while a visi-
tor can easily inherit code from another visitor, this is not true for
expanders. It would be useful to consider a notion of expander in-
heritance, which would allow an new expander family to be easily
derived from an existing expander family. Second, the exploratory
study illustrated a potential use for the ability to augment existing
classes with new superclasses, in addition to new superinterfaces.
We plan to explore this idea to determine if the resulting gain in
expressiveness justifies the added complexity. Finally, we plan to
extend the eJava language to handle the features in Java 1.5 by port-
ing the eJava compiler to a recently announced extension to Poly-
glot for Java 1.5 [22].

9. REFERENCES
[1] G. Baumgartner, M. Jansche, and K. Laufer. Half & Half:

Multiple dispatch and retroactive abstraction for Java.
Technical Report OSU-CISRC-5/01-TR08, Department of

Computer and Information Science, The Ohio State
University, revised March 2002.

[2] A. Bergel. Personal communication, Oct. 2005.
[3] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J:

Controlling the scope of change in Java. In Proceedings of
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’05), pages 177–189, New York, NY,
USA, 2005. ACM Press.

[4] A. Bergel, S. Ducasse, and R. Wuyts. Classboxes: A minimal
module model supporting local rebinding. In Proceedings of
JMLC 2003 (Joint Modular Languages Conference), volume
2789 of LNCS, pages 122–131. Springer-Verlag, 2003. Best
Award Paper.

[5] G. Bracha and W. Cook. Mixin-based inheritance. In
ECOOP/OOPSLA ’90, pages 303–311, 1990.

[6] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Modular open classes and symmetric multiple
dispatch for Java. In OOPSLA 2000 Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, Minneapolis, Minnesota, volume 35(10) of
ACM SIGPLAN Notices, pages 130–145, Oct. 2000.

[7] Eclipse home page. http://www.eclipse.org.
[8] Eclipse Bug System home page.

https://bugs.eclipse.org/bugs.
[9] E. Ernst. Family polymorphism. In Proceedings of the

European Conference on Object-Oriented Programming,
pages 303–326, 2001.

[10] E. Ernst. Higher-order hierarchies. In Proceedings of the
European Conference on Object-Oriented Programming,
LNCS, Darmstadt, Germany, July 2003. Springer Verlag.

[11] R. B. Findler and M. Flatt. Modular object-oriented
programming with units and mixins. In Proceedings of the
ACM SIGPLAN International Conference on Functional
Programming (ICFP ’98), volume 34(1) of ACM SIGPLAN
Notices, pages 94–104. ACM, June 1998.

[12] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
mixins. In Conference Record of POPL 98: The 25TH ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Diego, California, pages
171–183, New York, NY, 1998.

[13] E. Gamma and K. Beck. Contributing to Eclipse: Principles,
Patterns, and Plugins. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2003.

[14] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Massachusetts, 1995.

[15] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification Second Edition. The Java Series.
Addison-Wesley, Boston, Mass., 2000.

[16] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. ACM Transactions
on Programming Languages and Systems, 23(3):396–450,
May 2001.

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In
Proceedings of the 2001 European Conference on
Object-Oriented Programming, LNCS 2072, Budapest,
Hungary, June 2001. Springer-Verlag.

[18] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-age
components for old-fashioned Java. In Proceedings of the
OOPSLA ’01 conference on Object Oriented Programming

Systems Languages and Applications, pages 211–222. ACM
Press, 2001.

[19] N. Nystrom, S. Chong, and A. C. Myers. Scalable
extensibility via nested inheritance. In OOPSLA ’04:
Proceedings of the 19th annual ACM SIGPLAN Conference
on Object-oriented programming, systems, languages, and
applications, pages 99–115. ACM Press, 2004.

[20] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An
extensible compiler framework for Java. In Proceedings of
CC 2003: 12’th International Conference on Compiler
Construction. Springer-Verlag, Apr. 2003.

[21] M. Odersky and M. Zenger. Scalable component
abstractions. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object oriented
programming systems languages and applications, pages
41–57, New York, NY, USA, 2005. ACM Press.

[22] Polyglot for Java 1.5 home page. http:
//www.sable.mcgill.ca/∼jlhotak/polyglot-custom.

[23] The Scala language home page. http://scala.epfl.ch.
[24] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:

Composable units of behavior. In Proceedings ECOOP 2003
(European Conference on Object-Oriented Programming),
volume 2743 of LNCS, pages 248–274. Springer Verlag, July
2003.

[25] Y. Smaragdakis and D. Batory. Implementing layered
designs with mixin layers. In E. Jul, editor,
ECOOP ’98–Object-Oriented Programming, LNCS 1445,
pages 550–570. Springer, 1998.

[26] K. K. Thorup and M. Torgersen. Unifying genericity:
Combining the benefits of virtual types and parameterized
classes. In R. Guerraoui, editor, Proceedings ECOOP ’99,
volume 1628 of LNCS, pages 186–204, Lisbon, Portugal,
June 1999. Springer-Verlag.

[27] M. Torgersen. Virtual types are statically safe. In
International Workshop on Foundations of Object-Oriented
Languages (FOOL) , informal proceedings, Jan. 1998.

[28] A. Warth and T. Millstein. Featherweight eJava. Technical
Report CSD-TR-060013, UCLA Computer Science
Department, 2006.
http://www.cs.ucla.edu/∼todd/fej.pdf.

[29] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94,
15 Nov. 1994.

