
Provided for non-commercial research and educational use only.

Not for reproduction, distribution or commercial use.

This chapter was originally published in the book No Code Required: Giving Users Tools to

Transform the Web, published by Elsevier, and the attached copy is provided by Elsevier for

the author's benefit and for the benefit of the author's institution, for non-commercial research

and educational use including without limitation use in instruction at your institution, sending

it to specific colleagues who know you, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without limitation commercial

reprints, selling or licensing copies or access, or posting on open internet sites, your personal

or institution’s website or repository, are prohibited. For exceptions, permission may be

sought for such use through Elsevier's permissions site at:

http://www.elsevier.com/locate/permissionusematerial

From: Aran Lunzer
1
, Kasper Hornbæk

2
, Subjunctive interfaces for the Web. In: Allen

Cypher, Mira Dontcheva, Tessa Lau and Jeffrey Nichols, editors: No Code Required: Giving

Users Tools to Transform the Web. Burlington: Morgan Kaufmann, 2010, pp. 267-285.

ISBN: 978-0-12-381541-5

© Copyright 2010 Elsevier Inc.

Morgan Kaufmann.

http://www.elsevier.com/locate/permissionusematerial

Author's personal copyAuthor's personal copy
CHAPTER
Subjunctive interfaces
for the Web
 14
Aran Lunzer,
1

Kasper Hornbæk
2

1Meme Media Laboratory, Hokkaido University
2Dept. of Computer Science, University of Copenhagen

ABSTRACT

The data resources and applications accessible through today’s Web offer tremendous opportunities

for exploration: ask a slightly different question, receive a correspondingly different answer.

However, typical browser-based mechanisms for accessing the Web only enable users to pose one

such question at a time, placing a heavy operational and cognitive burden on any user who wants

to explore and compare alternatives. A subjunctive-interface approach may reduce this burden.

Subjunctive interfaces support the setting up, viewing, and adjustment of multiple scenarios in par-

allel, allowing side-by-side instead of temporally separated viewing, and more efficient iteration

through alternatives. We have implemented a spreadsheet-inspired environment where end users

can program and use their own Web-access applications that include such multiscenario support.

In this chapter we describe three modes of use of this environment – parallel retrieval, coordinated

manipulation, and tentative composition – and explain how these may help to alleviate typical

challenges in Web-based tasks. At the same time, we acknowledge that the increased scope for

exploration made possible through this environment can itself present a form of cognitive burden

to users, and we outline our plans for evaluating the impact of this effect.

INTRODUCTION
How inconvenient it is that so many applications for accessing Web resources only deliver results in

response to explicit, pinpoint requests. For example, interfaces for flight enquiries typically require

the user to specify exactly one destination city, which is fine for users with precisely formulated

travel plans but a bore for everyone else. A user who wants to compare the deals and schedules avail-

able for a range of destinations must embark on an exploration, submitting a succession of requests

and analyzing their respective results.

One problem in such cases is that users have poor support for covering a range of requests, even

if the details of those requests follow some regular pattern. A user searching for flights might request

information for several routes on a given date, or for a single route over many dates, or combinations

of a few routes and dates. But if the interface only supports the handling of a single request at a time,

this burdens the user not only with a potentially high number of interface actions to specify and
267

268 CHAPTER 14 Subjunctive interfaces for the Web

Author's personal copyAuthor's personal copy
submit the requests, but also with increased mental effort in planning the requests, remembering

which requests have been made so far, and remembering where interesting results were found.

Furthermore, one-at-a-time interfaces provide poor support for comparing results (Terry &

Mynatt, 2005), in that making comparisons requires the user to remember – or to have written down,

or to request again – the details of those results that are currently out of sight. This again can consti-

tute both a physical and a mental burden. We believe that these burdens can be reduced by enabling

the user to carry out a number of requests at the same time. We refer to this as the use of parallel

retrievals.

Consider now a second kind of Web interaction. A doctor who has access to her patients’ records

through a secure Web connection wants to retrieve images from specific stages in the treatment of a

single patient, for example to observe progress of a disease within an organ. On obtaining each

abdominal image study she goes through the same operations of selecting and scaling the desired

sub-portion of the images, in three orthogonal planes, then adjusting the grayscale mapping so as

to emphasize the boundary of the diseased region, and finally selecting display of just the overlays

containing her own annotations. She accumulates browser windows, one for each imaging study,

to be able to switch between them to help grasp the disease’s changes over time. If she finds

that the diseased region has spread beyond the bounds of the focus area she selected for the earlier

studies, she readjusts those earlier views so that she can still compare like with like.

In this situation, which could equally apply to retrieving and manipulating weather maps, or

archived pictures from a Webcam, it is frustrating to have to perform the same image manipulations

many times over, especially given the risk that information gained from later views will upset earlier

decisions. This frustration could be alleviated if there were a way to manipulate the various retrieved

resources in concert, continuously confirming that the results will be valid for all of them. This we

refer to as coordinated manipulation.

As a third example, consider a holidaymaker who (having successfully selected some flights) is

now installed in a foreign city and is planning a day of sightseeing. The city is served by a navigation

service Web site that provides estimates of point-to-point journey times on foot or by public trans-

port. Having made a list of addresses he would like to visit, the visitor can use this site to plan an

itinerary for the day.

The challenge here is to come up with a sequence of visits, and the journeys between them, that

promises to be an interesting overall experience without excessive use of travel time or leg-power.

If there were a strict constraint that all the listed sites be visited, a “traveling salesman” algorithm

could be put to work in search of a time-efficient total solution – or, perhaps, the conclusion

that there is no way to visit them all within a day. However, all but the most ardent tourist would

probably take a more relaxed approach, trying a few alternative visit orders and transport options,

and being willing to reject sites that turn out to be inconvenient to include. Nonetheless, this would

be a frustrating task in the absence of support for what we call tentative composition – meaning, in

this case, being able to compose and compare a number of alternative itineraries, involving different

sites and/or different visit orders.

We believe that the above three kinds of challenge can all be addressed by offering users access

to Web resources through subjunctive interfaces (Lunzer, 1999): interfaces that allow a user to

explore alternatives by setting up multiple application scenarios at the same time, viewing those

scenarios side by side, and manipulating them in parallel. In this chapter we report our investigations

into using subjunctive interfaces for Web access.

269Supporting multiscenario Web access with the RecipeSheet

Author's personal copyAuthor's personal copy
The emphasis is on user control. As explained in the description of the third challenge, these

cases are not amenable to definition in a way that would allow an automated algorithm to proceed,

unsupervised, to an optimal solution. Only the user can specify what cases are of potential inter-

est, and only the user can evaluate and (where necessary) compare the results. This interactivity

places practical bounds on the complexity of setup that a user can be expected to handle; sub-

junctive interfaces are specifically designed to support about 10 parallel scenarios. Applications

that would call for dozens or even hundreds of scenarios should be addressed with different

techniques.

We begin by describing the RecipeSheet, a subjunctive-interface-enabled programming environ-

ment that we have equipped with mechanisms specifically for accessing Web resources. In the three

following sections we then introduce three usage examples that address challenges of the kinds

given previously; for each example we discuss briefly its applicability to common modes of use of

today’s Web. After these examples we address a potential downside to this work: that in seeking

to make it easier to pursue an exploration that brings a range of information to a user’s screen,

we may be counterproductively increasing the burden on the user who then has to evaluate that

information. Finally, we report on some initial feedback received from research colleagues for whom

we implemented RecipeSheet-based applications for their work.
SUPPORTING MULTISCENARIO WEB ACCESS WITH THE RECIPESHEET
The RecipeSheet (Lunzer & Hornbæk, 2006a; Lunzer & Hornbæk, 2006b) is a spreadsheet-inspired

environment that has built-in subjunctive-interface features, and thus supports parallel exploration

of alternative calculations and their results. Like a spreadsheet, the RecipeSheet provides support

for setting up custom flow-like calculations in terms of dependencies between cells. The subjunc-

tive-interface features mean that the cells providing inputs at the start of a flow (referred to as ingre-

dients) can hold multiple values simultaneously, the user can set up alternative scenarios based on

chosen combinations of those values, and the cells holding derived values will then show the results

for all scenarios, color-coded and/or spatially arranged to help the user understand which result arose

from which scenario.

A RecipeSheet user defines inter-cell dependencies in terms of so-called recipes. There is a set of

standard recipes, such as for extracting particular tagged elements from a chunk of XML, but users

are also expected to create their own. Recipes can be programmed directly in Smalltalk, Open Object

Rexx, or XQuery; recipes capturing behavior from Web applications can be built using the mechan-

isms of C3W (see Chapter 8) and Web-service recipes can be created with the help of SOAP

or REST. In addition, the setup of cells and recipes on a sheet can be saved as a single composite

recipe, that can then be used on other sheets.

Figures 14.1 and 14.2 show two of the fundamental operations in setting up a calculation flow

on a RecipeSheet: adding a precoded recipe (in this case, written in Smalltalk) by dragging from a

Recipe Browser onto the sheet, and then adding wires to connect a recipe to other recipes or cells.

Figure 14.3 illustrates one way for a user to set up additional calculation scenarios on a sheet:

here the use of control-click (a mouse click with the Control key held down) on a value creates

an additional scenario to hold the clicked value. In ingredient cells, markers with scenario-specific

colored regions show which scenarios have been set up with which values. Further mouse operations

FIGURE 14.1

Adding a prebuilt recipe to a sheet, by dragging from the Recipe Browser. The sheet is in setup mode, in which

recipes and their connections are displayed but the contents of any cells are hidden.

270 CHAPTER 14 Subjunctive interfaces for the Web

Author's personal copyAuthor's personal copy
allow the user to move these markers to other values, thus adjusting the ingredients supplied to the

scenarios’ respective calculations. These operations are adapted from our earlier user studies on

application-specific interfaces (Lunzer & Hornbæk, 2008).

As noted above, the RecipeSheet incorporates mechanisms originally developed for C3W (Clip,

Connect, and Clone for the Web). Compared to the Microsoft Excel-backed substrate used in the

original C3W implementation, the RecipeSheet provides more flexible facilities for connecting

processing units extracted from Web applications, and for cloning their inputs to see multiple

results side by side. The RecipeSheet replicates C3W’s viewport facilities in the form of result cells

that have the full rendering behavior of Microsoft’s Internet Explorer (IE). These IE-based cells

themselves offer C3W-style interaction features for selecting or clipping (i.e., extracting) HTML

FIGURE 14.2

Dependency connections on a RecipeSheet. Here the user is specifying a connection from the contents result

of the UriContents recipe to the string ingredient of the RegexMatches recipe, whose matches result has

already been connected to a cell.

FIGURE 14.3

The basic mechanism for setting up additional scenarios. Whereas a plain click on an ingredient value just

switches the input to the clicked value, a control-click sets up a second scenario to hold the value. Scenarios

are distinguished by consistent use of color and relative positioning throughout the interface: within the

scenario markers, and for side-by-side result displays (Figures 14.6, 14.7, and 14.9).

271Supporting multiscenario Web access with the RecipeSheet

Author's personal copyAuthor's personal copy

272 CHAPTER 14 Subjunctive interfaces for the Web

Author's personal copyAuthor's personal copy
elements. For example, a user can select arbitrary elements within a page (e.g., in a page that

includes a list of links the user might select a subset of the link anchors), and have the contents

of those selected elements (in this case, the anchor tags) passed as inputs to another recipe for

follow-on processing. Additionally, as shown in Figure 14.4, by interacting with such a cell a user

can set up a degenerate form of C3W recipe that will simply extract a selected portion of the cell’s

contents for use in other cells or recipes.

A further property of the RecipeSheet is that the processing for a recipe is itself an ingredient – in

other words, an input – that can be specified in a cell. The RecipeSheet can therefore provide

uniform handling of variation in both inputs and processing, which seems a natural requirement in

some forms of Web access. For example, whereas one user may want to view the results of sending

alternative keyword queries to a single search engine, another might want to send the same query to
FIGURE 14.4

A visual mechanism for creating simple recipes to extract elements of HTML Web pages, by “clipping” a

portion of a page displayed in a result cell. Here the user has highlighted and double-clicked a headline on a

news page; in the dialog box she has given the name headline to the cell to be created to show this value, and

has selected that just the textual content of the selected element (rather than the entire HTML tag) is to be

extracted. This creates a custom recipe that will deliver to the headline cell the text contents of the

corresponding element in whatever HTML is supplied to the cell page.

273Parallel retrieval

Author's personal copyAuthor's personal copy
multiple engines. On a RecipeSheet the user can decide freely from one moment to the next whether

to view variation in one aspect or the other, or a combination of the two.

This completes our brief outline of how the RecipeSheet supports multiple Web access scenarios.

The potential benefits depend on how such scenarios are created and used. Each of the situations in

the Introduction can be helped by a subjunctive interface being used in a different way: to support

parallel retrieval, coordinated manipulation, and tentative composition, respectively. The following

examples illustrate these three modes of use.
PARALLEL RETRIEVAL
Parallel retrieval refers to enabling the use of a retrieval style application, such as a flight enquiry

site, to specify not just a single retrieval but several alternatives, differing in arbitrary ways, at the

same time. These retrievals are handled in parallel as separate scenarios, and their are results dis-

played so that the user can see them all simultaneously, and can also see which retrievals delivered

which results.

Figure 14.5 shows a sheet that has been set up to find related research article. When multiple

searches are run in distinct scenarios, their respective results are merged into a single list for display

in the relatedPapers cell. The items in this list are marked up, and then sorted, according to which

scenarios they appear in. Thus, on the sheet that appears in the back of Figure 14.5 we can see

that even though its three queries are all based on papers about the same Elastic Windows project,

just three items were found by all three of the queries, and several items were found by one

query only. A user who had searched on the basis of any single paper would have missed out on

many results.

We suggest that presenting the merged and marked up results from multiple searches can, more

generally, help users to work around the bias of any individual search. In (Lunzer, in press) we dem-

onstrate how augmenting a Google search with a set of additional searches narrowed by date (e.g.,

by adding “1990..1999” to the search phrase) could bring to light items that, though coming at the

very top of the results for their particular era, were drowned out of the top entries in a standard

(non–date-narrowed) search. In particular, we believe that the markup showing why each item

is being offered – for example, that it appeared high in a 1990s search but not in any other –

will act as useful guidance for users in judging each item’s importance. Muramatsu and Pratt

(2001) made a call for this kind of “transparency” in search engine results, to help users of search

engines to understand – and to control, if they wish – the transformations, such as stop word removal

or suffix expansion, that are applied automatically to their queries. The desirability of such transpar-

ency in result presentation has itself gained much attention recently, as evidenced by an extensive

survey (Cramer et al., 2008).

However, even having decided to augment a result display to reveal where each result has come

from, it is far from clear what form of presentation will work best. Dumais, Cutrell, and Chen (2001),

studying the impact of alternative formats for marking up results with automatically derived category

information (e.g., distinguishing the various topics of pages retrieved by an ambiguous query such as

“Jaguar”), found that users were much quicker at finding relevant items from lists divided according

to category than from the complementary form of display in which category information was added

FIGURE 14.5

Parallel retrieval. Searching for academic articles, using mechanisms captured from the CiteSeer and DBLP

Web sites. In the two upper sheets, the recipe specified in findRelated is used to find articles related to the

one specified in paperQuery. In the sheet shown at top the user has requested a “similar papers” retrieval for

each of three articles from the same project; in the second sheet, four alternative queries based on a single

article. Results from all scenarios are merged into a single list, with markup to show which scenarios each item

appears in – for example, the “Similarity Inheritance” paper (center of the figure) was found by three out of four

searches. The searches were all coded as composite recipes; at the bottom is the setup of the sheet defining

the CitingPapers recipe.

274 CHAPTER 14 Subjunctive interfaces for the Web

Author's personal copyAuthor's personal copy
to each item in a single list. For an application such as the literature search shown in Figure 14.5,

where items typically belong to multiple scenarios (cf. a unique category), and where this multiple

membership itself has meaning, the trade-off is likely to be less clear-cut. In general we do not

expect that any single presentation approach would be optimal for all parallel-retrieval situations;

it depends too much on the nature of the information within each scenario, and the distinctions

between scenarios. Our approach, therefore, is to give users the mechanisms they need to build mul-

tiscenario interfaces for their own Web searches.

275Coordinated manipulation

Author's personal copyAuthor's personal copy
In terms of Kellar, Watters, and Shepherd’s (2007) four-category classification of Web-based

information-seeking tasks, we regard parallel retrieval as being relevant to at least Fact Finding

and certain kinds of Transaction. Fact Finding is used to refer to short-lived tasks for locating spe-

cific pieces of information, whereas Transactions covers interaction with Web applications, such

as shopping sites, or email or blogging tools. The other two categories of information seeking –

Information Gathering and Browsing – are by their nature less structured, and therefore less likely

to have the regularity that makes parallel retrieval practical.

The fact that some Transaction-style operations have side effects, such as making purchases,

would set a context-specific boundary on the actions that most users would want to perform in par-

allel. Whereas it would be reasonable to enquire about room prices at several hotels for the same

date, for example, it would be highly unusual then to proceed to book them all. On the other hand,

if the user’s task happens to be to find a single hotel with a room available for each of several sepa-

rate visits, proceeding to make a simultaneous booking for a set of enquiries (i.e., the various visits)

might indeed make sense. Such an operation would fall within what we refer to as coordinated

manipulation, as described in the next section.
COORDINATED MANIPULATION
By coordinated manipulation we mean having simultaneous control over several instances of an

interactive application; in the introduction we gave the example of using this for browsing images.

Within a subjunctive interface these application instances would typically reside within distinct

scenarios created by the user.

Figure 14.6 shows a RecipeSheet built for the European Union’s project ACGT,1 which is pursu-

ing (among other things) the development of an OncoSimulator that can reliably simulate cancer

growth and treatment. The 3D visualization on the right of the sheet supports a limited form of

direct-manipulation interaction: by clicking and dragging with the mouse, a user can rotate a view

about horizontal and vertical axes. When there are multiple scenarios, and hence multiple views,

their orientations are synchronized by the RecipeSheet such that rotating any one view causes the

others to rotate the same amount, as seen in the figure. Such synchronized interaction is a staple

of recent developments in coordinated and multiple views (Roberts, 2007), where it is recognized

as a powerful technique for helping users to understand related data.

What is not readily apparent from the picture is that these views are in fact Web browsers, and

the visualizations are AJAX-enabled pages. This provides the scope for implementing coordination

at various levels, potentially applicable to a wide range of applications. The simplest form of coor-

dination involves mirroring operations at the level of individual mouse and keyboard events. This

allows coordinated control of visualizations that, like the 3D view in the figure, give uniform

responses for user actions at equivalent coordinates within the view. If one were to open a set of

Google Maps pages on different locations, for example, the operations of panning, zooming,

and image selection could be mirrored at this level. Typing in a request for navigating from the

map location to some other (common) location should also work, showing the different routes in
1EU FP6 Integrated Project “Advancing Clinico-Genomic Trials on Cancer” (2006-2010); http://www.eu-acgt.org.

http://www.eu-acgt.org

FIGURE 14.6

Coordinated manipulation. Two views of a sheet for exploring results from the ACGT OncoSimulator, a model for

predicting the response of an individual patient’s tumor to various forms of therapy. The five input cells at top

left set the values for various simulation parameters. Here the user has set up three scenarios representing

three levels of responsiveness to chemotherapy. In the large cell on the right, which shows an interactive 3D

visualization of the simulated tumor, user manipulation is mirrored across all scenarios; in the background we

see the outcome of rotating about a horizontal axis.

276 CHAPTER 14 Subjunctive interfaces for the Web

Author's personal copyAuthor's personal copy
the individual views. Where this simple approach would break down is if the user switches into a

mode such as a city’s Street View, where the interaction options available depend on one’s precise

location in the city.

A next level of coordination would be through identifying and mirroring logical events: abstract-

ing combinations of mouse movements and clicks to make up events such as selecting a menu

item, or highlighting the entity at some location within an HTML page’s DOM tree. Going a level

higher still, one could employ mechanisms such as those of Koala/CoScripter (Little et al., 2007)

to record and share operations in a way that would be robust even in the face of (some) differences

in page layout.

Mirroring events at an abstract level therefore makes it possible to support not just manipulation of

the objects withinWeb pages, but coordinated clicking of link anchors to navigate from one page to the

next through matching regions of a Web site – for example, through standardized sets of pages relating

to hotels on a travel site, or proteins in a bioinformatics repository. Hence, as mentioned previously,

the possibility of querying a travel service to find a hotel that has a room available for each of several

visits, then going through the booking procedure for all those visits together.

277Tentative composition

Author's personal copyAuthor's personal copy
The above discussion shows how a given task can straddle the border between parallel retrieval

and coordinated manipulation. Work by Teevan et al. (2004) suggests that much directed search on

the Web – that is, search for a target that is known in advance to exist – is carried out as a mixture of

the basic elements that underlie the two. Teevan et al. distinguish between, on the one hand, teleport-

ing, by which they mean jumping directly to a Web page found as the result of a query, and on the

other hand, orienteering, their term for localized, situated navigation that begins at a familiar starting

point (such as a portal) and narrows in on the target. As noted before, the best we can do as interface

designers is to provide facilities for users to choose for themselves the mix of teleporting and

orienteering, and the range of scenarios over which they wish to perform the two. For now we are

investigating what facilities make sense for the user group developing and calibrating the ACGT

OncoSimulator.
TENTATIVE COMPOSITION
Some Web-based tasks can be characterized as the composition of multiple pieces of retrieved

information, where it is the overall composed entity that serves the user’s purpose, rather than the

elements on their own. The example given in the introduction, of building a sightseeing itinerary,

is essentially a composition of the route recommendations returned by the navigation service in

response to various point-to-point queries. Being able to experiment with and compare alternative

compositions, such as in this case varying the sequence of locations to be visited, is what we refer

to as tentative composition.

As with the preceding two modes of use, tentative composition covers a broad range of users’ tasks.

At the simple end of this range are tasks in which the “elements” being combined are merely the values

for placeholders within a structure that has been defined in advance: an everyday example would be the

choice of starter,main course, and dessert tomake up ameal; using today’sWeb onemight create an office

party invitation by composing venue details, transport information, and a map. Cases such as these can be

treated simply as parameterized retrievals, and therefore explored using parallel retrieval mechanisms.

At the complex end of tentative composition tasks are cases of general design with arbitrarily

many degrees of freedom, such as the planning of a new building or of a multi-continent concert

tour. For some of these complex domains there are already specialized applications that include sup-

port for exploring design alternatives, and we are not suggesting that generic mechanisms for handling

multiple scenarios could provide a similar strength of support. We believe that subjunctive interfaces

will make their mark on small-scale, ad hoc composition of Web resources.

Supporting tentative composition requires, first, providing a substrate on which compositions are

built. Then there must be a convenient way for the user to specify alternatives, and supportive

mechanisms for viewing the corresponding outcomes and understanding how they differ – either

in terms of the final results, or the alternative specifications that led to them. The RecipeSheet,

having been designed to work as a substrate for flow-style calculations based on values supplied

in cells, is inherently suited to the simplest kinds of tentative composition which, as stated above,

can be set up like parallel retrievals. Figure 14.7 shows one such example, where the composition

being carried out is the application of style settings to a Web page.

Beyond these simple cases, the RecipeSheet’s supportiveness depends on how the composition is

defined as a calculation flow. The building of a sightseeing itinerary could be tackled in various ways:

FIGURE 14.7

Tentative composition. In this case what is being composed is a rendered Web page, based on values supplied

for the page content and for various style-defining parameters. The user has set up four alternative

“compositions,” and can see at a glance differences between them, such as how the font style affects the

amount of space needed to render a given paragraph.

278 CHAPTER 14 Subjunctive interfaces for the Web

Author's personal copyAuthor's personal copy
one possibility is to have a cell defining each sequential step in the itinerary (for example, one cell

specifying the first visit address, a second cell specifying the second visit, and so on); another is to have

a single cell in which the whole itinerary is specified as a list of addresses, and that lets the user specify

different lists for different scenarios. The fact that the RecipeSheet makes specifying alternative pro-

cessing as easy as specifying alternative parameter values would be useful in experimenting with alter-

native navigation services within these itineraries. However, we readily admit that both of the

above approaches have potentially troublesome limitations: for example, the first would be highly

inefficient for a user who wanted to try adding or removing one visit from an existing itinerary, whereas

the second would provide poor support for grasping rapidly how two or more itineraries differ.

Although we are sure that the current design of the RecipeSheet is not the final answer in terms of

supporting tentative composition in general, we believe its current level of support is sufficient to

begin evaluation on exploratory tasks of this kind.
RISKS OF COGNITIVE OVERLOAD: THE PARADOX OF CHOICE
The Paradox of Choice is the title of a popular book by Barry Schwartz (2004), in which he points

out that although having some freedom to make choices in your life feels much better than having no

choice at all, too much choice is a problem in its own right. People get stressed by the amount of

279Results of initial evaluations

Author's personal copyAuthor's personal copy
mental effort involved in weighing up alternatives, by the worry that other, better alternatives are

somewhere out there to be found, and, after making a choice, by the fear that on balance one of

the rejected options might have been better.

Given that subjunctive interfaces are intended to improve the quality of information users receive

by encouraging them to request and view more alternatives, Schwartz’s studies suggest that we might

be doing our users more harm than good. Especially given the vast amount of information available

over the Web, it can be argued that what users desperately need is more filtering, not more retrievals.

However, we feel that the current popular approach to helping users make sense of the Web –

namely, using some hidden ranking or other heuristics to deliver a small, possibly high-quality but

necessarily biased selection of results – is asking users to put too much trust in online systems. There

is some evidence that users are alert to this: for example, Lin et al. (2003) found, in a study of users’

attitudes to question-answering systems, a tendency to feel uncomfortable accepting answers from

systems that provided only the bare answer. The users wanted to see some context surrounding the

answer, to help them confirm its legitimacy.

Nonetheless, there are also plenty of studies showing that giving users too much to do is counter-

productive. Beaulieu and Jones (1998) discuss the relationships between the visibility of system

functions, the balance of control between user and system, and the user’s cognitive load. They

experimented with a relevance-feedback retrieval interface that was purposely designed to keep

the users in control of their queries, by revealing the details of the feedback-derived query terms

and requiring the users to review and adjust those terms. The users’ response to this interface was

to become less active, rather than more, presumably because they felt that making all those

adjustments would be too much work. Muramatsu and Pratt (2001), who concluded from their

study of transparent queries (mentioned earlier) that perhaps the best style of interface would be a

“penetrable” interface – one that lets the user know what has been done, and also provides a chance

to change it – made a point of adding the caveat that providing too much control could inadvertently

overload the user.

Part of the issue, as Beaulieu and Jones note, is that users need to feel that the decisions available

to them are relevant to their personal information needs, rather than being just artifacts of the inter-

face. For our own goals of deploying end user programming and customization techniques that help

users to express a range of directions to investigate, and then to make sense of the corresponding

range of results, we must therefore strive to ensure that users will perceive this effort as part of what

they wanted to do anyway. If we can achieve that, there is hope that users will regard the ability to

set up and work with multiple scenarios as a welcome level of choice, rather than an unwelcome

source of stress.
RESULTS OF INITIAL EVALUATIONS
Our initial evaluations have been based on two applications that we built using the RecipeSheet to

meet specific needs of some of our research colleagues. Rather than pursue laboratory evaluations

of the RecipeSheet, we decided to test it on real and complex examples of custom built Web pro-

cessing. We set out from Shneiderman and Plaisant’s (2006) notion of multidimensional, in-depth,

long-term case studies, in which the idea is to iteratively develop and refine information visualiza-

tions in collaboration with professionals. Thus, we have worked in depth with two research projects

280 CHAPTER 14 Subjunctive interfaces for the Web

Author's personal copyAuthor's personal copy
and the applications they develop. Below we discuss these cases and present some initial results,

relating in both cases to the pursuit of parallel retrievals.

The first application is an interface for running queries against DBpedia, an RDF representation

of 2.6 million data items and their relationships as extracted from Wikipedia. Figure 14.8 shows an

example of use of a sheet that has been set up for submitting SPARQL queries against the DBpedia

data set and viewing their results. This example shows an exploration of the question, “With what

country or countries is each Nobel Prize winner associated?” The data held in Wikipedia, and hence

DBpedia, allows many ways of identifying such associations: Figure 14.8 shows the simultaneous

posing of queries based on (a) the country of an educational institution attended by the person;

(b) the country of an institution where the person worked; (c) the country where the person was born;

and (d) the country where he or she died. Being able to pose these queries independently but simul-

taneously, and to see, from the scenario markup included in the results, which answer arose from
FIGURE 14.8

Requesting and viewing multiple parallel DBpedia queries. On this sheet, queries are defined as compositions

of clauses entered by the user into the clauses cell. The clauses can include tokens such as $a, $b that

refer to values in the corresponding named cells on the sheet (in this example only $a is being used). The user

is looking for Nobel Prize winners and the countries with which they are associated, and has set up four

scenarios querying, respectively, countries related to the person’s education (scenario 1, shown with a

mark in the top-left quadrant), employment (bottom left), birth (top right), and death (bottom right). The results

show, for example, that – at least according to DBpedia’s data – William Henry Bragg was born, worked,

and died in England, and also worked in Australia.

281Results of initial evaluations

Author's personal copyAuthor's personal copy
which scenario, offers insights that would not be available from a simple list of people against

countries. Among the available insights are an appreciation of DBpedia’s incompleteness (for exam-

ple, that country of birth is sometimes not clearly identified), and some common inconsistencies

(such as variation between England and United Kingdom).

In evaluating this application we worked with two colleagues who are carrying out research on

interfaces for accessing Semantic Web resources. They had both chosen DBpedia as a target plat-

form for their work, and were at the stage of exploring its structure and content to understand what

degree of regularity they would be able to exploit. Both were already well versed in the SPARQL

query language. We made our DBpedia-specific sheet available for them to install, and supervised

their first sessions of use to provide guidance on the basic facilities available. Their explorations

of DBpedia continued for around a month, during which they occasionally consulted us with ques-

tions or requests for additional features. Our follow-up interviews were semistructured and focused

on pertinent work tasks and the match of the RecipeSheet to those tasks. We also specifically can-

vassed their views on any difficulties they had encountered in setting up and manipulating scenarios.

Both of the interviewees felt that the RecipeSheet interface provided better support for their

explorations than, for example, the various Web-browser-based SPARQL endpoints available at

the time. One aspect of this perceived improvement arose from some simplifying assumptions we

had made in our implementation: supporting a useful but incomplete subset of SPARQL (notably,

only SELECT queries), and providing an extensive set of simple pre-canned entity-prefix abbrevia-

tions (such as p: for all DBpedia predicates). Further benefits arose from basic housekeeping char-

acteristics of RecipeSheet layouts: for example, entity descriptors found within query results could

be transferred easily (by drag and drop) to an ingredient cell, where they would remain through saves

and reloads of the sheet, serving a reminding purpose even if not used often in further queries. This

was especially useful for hard-to-remember entities, such as YAGO subject descriptors.

Both colleagues appreciated and benefited from the ability to run multiple queries side by side.

One showed how she had used this in learning about the consistency of use of alternative predicates

that indicate the same real-world relationship (e.g., p:birthDate, p:dateOfBirth); the other gave as

an example his exploration of how consistently particular predicates were used across a range of

related entity classes (e.g., various subclasses of yago:Movie). More generally, they saw the ability

to see merged results from many queries as offering an augmented form of UNION: not only do you

see the combined list of results as would appear in a standard UNION query, but each result is

marked up with the particular query (which would normally be buried as a subpart of the UNION)

that gave rise to it.

Various pieces of feedback from these colleagues led us to iterate the design of some basic

RecipeSheet features. We learned that our mouse-click-based interface for switching items into

and out of particular scenarios in multiselection lists (such as the clauses cell) was sometimes con-

fusing. We developed an alternative selection mechanism based on use of the keyboard’s number

keys, correlated with a simple top-left to bottom-right ordering of scenarios. To select the clause

?institution r:country ?place in the top-left and bottom-left scenarios as seen in Fig. 14.8, for

example, the user presses the 1 and 2 keys (separately) while the mouse is over the marker for that

clause. The users found this easier to understand than the mouse-based interface, and also faster.

We also noticed that the users frequently made slips when performing certain operations, such as

deleting ingredient values when they had intended to reduce the number of scenarios, or vice versa.

In discussions we realized that the relationship between scenarios and ingredient values was a source

282 CHAPTER 14 Subjunctive interfaces for the Web

Author's personal copyAuthor's personal copy
of confusion: in particular, the fact that a scenario can exist even if there are no ingredient values

selected for it, and hence no colored marks on view corresponding to that scenario. We are working

with the users to come up with a less surprising set of interface rules.

In response to specific requests we added a facility for stepping back through the recent history of

scenario operations and selections, and a flashing telltale during long calculations (in this case,

queries requiring lengthy processing by the DBpedia server) to alert the user that calculation is still

in progress.

In our continuing evaluations in this area we are addressing other Web-centered retrieval domains

(e.g., recommendations provided through the Amazon.com API), and shall be investigating users’

understanding of and preferences regarding the merged presentation of alternative retrievals carried

out in parallel. In this we hope to build on the context-presentation findings of Dumais et al. (2001)

and follow-on work.

The second case study, which is still in progress, centers on our delivery of the front-end interface

for the ACGT OncoSimulator, which has undergone many design iterations since the prototype seen

in Figure 14.6. This includes recent changes made in response to feedback from the DBpedia study.

The first rounds of design iteration were carried out on the basis of our own experiences in using

the sheet to exercise the simulation code across a range of cases, and in ironing out glitches in com-

munication with the remote Grid services (provided by a project partner in Poland) that invoke the

simulator, and with the Web server (provided by another partner in the Netherlands) that delivers

the visualizations. The next stage in the project is an extensive validation and calibration of the

OncoSimulator code, involving yet more partner groups. This is still under way at the time of

writing.

Part of the job of simulator validation involves running large numbers of cases across sweeps of

parameter values to confirm that the outcomes evolve consistently. Figure 14.9 shows one such

parameter sweep, based on just 2 of the 35 parameters supported by the simulator. By setting up

and recording many of these sweeps, the simulator developers will build up a picture of the zones

of the parameter space within which the simulator functions predictably, and the confidence intervals

that should be applied to its results based on sensitivity to critical parameters and their combinations.

For our evaluation we first wanted to confirm that our colleagues would be comfortable working

with the RecipeSheet to set up, view, and where necessary keep records of such sweeps across criti-

cal regions of the parameter space. We gave the system to a member of the partner group in the

Netherlands, and interviewed him after 3 weeks of using it. Again, the interview was semistructured;

we focused on scenario setup and manipulation, with the overall goal of carrying out tasks directly

relevant to the real-world validation work that the sheet is being used to support.

We found that the interviewee had become proficient in using the interface for setting up and

viewing scenario combinations, and that he was generally satisfied with its features. We had made

available to him the new keyboard-based scenario control mechanism that was suggested through

our work with the DBpedia users, and he confirmed that for tasks involving complex setup of sce-

narios he too would opt to use this mechanism over the others available. However, he also gave com-

ments similar to the DBpedia users regarding sources of confusion in the facilities for scenario

deletion.

One set of features demanded by and newly introduced for the OncoSimulator application,

though potentially of value in other applications involving access to a large parameter space, relates

to helping users to understand where in the parameter space there are results that can be retrieved.

FIGURE 14.9

A parameter sweep carried out in a recent version of the OncoRecipeSheet. Of the 35 parameters used in

driving the simulation, two related to G0 entry have been chosen, and set up with 10 values paired between

the two. The results show, in the plot of tumor volume against time, an apparently dramatic discontinuity in

tumor response for values beyond 0.34. Although these values (in combination with the default values used for

the undisplayed parameters) are known to represent a biologically impossible situation, it is valuable to observe

how the simulator behaves when driven to these extremes.

283Results of initial evaluations

Author's personal copyAuthor's personal copy
Given the OncoSimulator’s total of 35 parameters, each typically having at least 10 candidate values,

the population of the result space is inevitably sparse. We address this by a scheme of adding marks

to ingredient values to show where results are available. What we have discovered from our initial

evaluations is that users (including the previous interviewee) readily understand the principles of

the markup scheme, but nonetheless have some difficulties in working with it in practice. One source

of difficulties is the fact that this application has several parameters that work in pairs, and

at the current stage of simulator development these paired parameters are typically given the

same value, as is seen in Figure 14.9. Such cases seem to cause confusion because of the way that

setting a value on one parameter immediately narrows the markup on its paired parameter to a single

value. We are currently considering how to evolve this feature to reduce the scope for such

confusion.

284 CHAPTER 14 Subjunctive interfaces for the Web

Author's personal copyAuthor's personal copy
CONCLUSIONS

In this chapter we have outlined the role that subjunctive-interface mechanisms can play in supporting

users’ access to and comparison of Web resources. In particular we have shown how Web-access inter-

faces constructed using the RecipeSheet, a spreadsheet-inspired environment that has subjunctive-inter-

face mechanisms built in, give end users the power to produce, on the fly, their own customized views

of multiple resources. Users who also become proficient with the RecipeSheet’s construction facilities,

starting with its wiring-based interface for creating calculation flows, can go further to build their own

interfaces for accessing whichever Web resources happen to interest them.

We are running studies to obtain evidence about the usability and effectiveness of the techniques

described here, starting at the end user level. Our first goal is to establish firmly that users understand

and can obtain benefits from facilities for using multiple scenarios in their Web interactions. We then

plan to investigate how the physical and cognitive effort involved in reaping these benefits, including

potential Paradox of Choice effects, influences users’ willingness to pursue multiple alternatives

rather than taking the easy option of accepting the first results on offer. We hope they can be

persuaded that, at least some of the time, putting in a little extra effort does make sense.
Acknowledgments
We gratefully acknowledge the efforts of the developers of the systems on which the RecipeSheet depends,

especially the members of the Squeak Smalltalk community, and of the colleagues who have assisted us in

building and evaluating the RecipeSheet up to this point: the staff and students of the Meme Media Laboratory,

Hokkaido University, and our many collaborating partners in the ACGT project, in particular at the University

of Amsterdam and the National Technical University of Athens.

285Recipesheet

Author's personal copyAuthor's personal copy
RECIPESHEET
Intended users:
 All users; programmers
Domain:
 Retrieval, design, and simulation
Description:
 The RecipeSheet is not a dedicated Web programming system, but a spreadsheet-
inspired environment in which users can build calculation flows and run
multiscenario explorations to see how different inputs to the flows produce different
results. The RecipeSheet has various mechanisms for accessing and displaying
Web data.
Example:
 The top results from a Google search can sometimes be affected by adding search
operators such as “inurl:” or “allintitle:”. A RecipeSheet could be set up to present
the top 10 results from a Google search, and a user could choose to run several
alternative searches in parallel. The sheet would merge the results, helping the user
to check that she was not missing interesting results simply because of the
presence or absence of an operator.
Automation:
 Yes, tasks with unidirectional flows of data can be automated.
Mashups:
 Yes, a sheet’s flow can include the supply of results from one processing step as
inputs to another, and each step can be delivered by a different Web site or service.
Scripting:
 No, though programmers may create processing components.
Natural language:
 No.
Recordability:
 Yes, user actions can be recorded and result elements from form-style Web sites
may be extracted, similar to C3W.
Inferencing:
 No.
Sharing:
 No, but recipes and layouts may be saved as files that can be distributed to other
users.
Comparison to other
systems:
The application of the RecipeSheet to Web-based resources is an extension of the
original vision for C3W. Unlike other systems, building a sheet may require skills
beyond those of a typical end user.
Platform:
 Implemented as a plugin for Internet Explorer.
Availability:
 A release is planned in 2010 to the Squeak community.

	Subjunctive interfaces for the Web
	Introduction
	Supporting multiscenario web access with the recipesheet
	Parallel retrieval
	Coordinated manipulation
	Tentative composition
	Risks of cognitive overload: the paradox of choice
	Results of initial evaluations
	Conclusions
	Acknowledgments
	Recipesheet

