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Abstract—Atomicity violation is one of the main sources of
concurrency bugs. Empirical studies show that the majority of
atomicity violations are instances of the three-access pattern,
where two accesses to a shared variable by a thread are
interleaved by an access to the same variable by another thread.
We present a novel approach to atomicity violation detection
that directs the execution towards three-access candidates. The
directed search technique comprises two parts: execution schedule
synthesis and directed concurrent execution that are based on
constraint solving and concolic execution. We have implemented
this technique in a tool called AtomChase. In comparison to five
previous tools on 22 benchmarks with 4.5 million lines of Java
code, AtomChase increased the number of three-access violations
found by 24%. To prevent reporting false alarms, we confirm
the non-atomicity of the found execution traces. We present and
prove sufficient conditions for non-atomicity of traces with the
three-access pattern. The conditions could recognize the majority
of 89% of the real atomicity violations found by AtomChase.
Checking these conditions is two orders of magnitude faster than
the exhaustive check.

I. INTRODUCTION

The increasing dominance of hardware provides a mul-
titude of threads that can concurrently access shared data.
There are code blocks whose accesses to shared data should
be executed without interference from other threads or the
consistency of the data may be jeopardized. Programmers
often use concurrency control mechanisms such as locks and
transactional memory [23] to ensure atomicity. Programming
atomicity is notoriously hard. A recent study [24] reported that
69% of concurrency bugs are atomicity violations. The same
study found that 96% of concurrency bugs involve only two
threads and 66% of (non-deadlock) concurrency bugs involve
only one variable. Thus, researchers have focused on the three-

access pattern [15], [25] as atomicity violation candidates.
The pattern has the general form of two accesses to a shared
variable by a thread that are interleaved by an access to the
same variable by another thread.

Detection of atomicity violations has been a topic of recent
attention. Previous research on atomicity violation detection
can be divided into three categories: static detection, dynamic
detection, and dynamic prediction. Static analysis approaches
[20], [12] approximate the runtime behavior of the program
at compile time to identify potential violations. Due to ap-
proximation, these approaches tend to report numerous false
alarms. On the other hand, dynamic approaches [25], [35],
[34], [13], [19], [28] detect atomicity violations in traces that
are collected from program runs. These approaches do not
report false alarms, however, considering the magnitude of

production code-bases, an undirected run is unlikely to hit
the violating paths. Therefore, dynamic predicative approaches
[15], [17], [14], [5] try to find atomicity violations not only in
the given trace of a program run but also in interleavings of
the trace. Thus, predictive approaches increase the probability
of catching bugs. Nevertheless, the bugs that occur in program
paths that are not taken by the test run remain undiscovered.

The previous dynamic approaches can check whether three-
access candidates appear in traces obtained from program runs
or the interleavings of these traces. However, they cannot
search towards three-access candidates. We present a novel
approach to atomicity violation detection that directs the
execution towards three-access candidates. Given a three-
access candidate i.e. a triple of static program locations, we
search for an input and an execution trace with the candidate
violation. The search process comprises two modules that work
in tandem: execution plan synthesis and directed concurrent
execution. The plan synthesis module suggests execution plans
that can lead to the violation candidate. It represents violating
executions as constraints and applies SMT solvers to generate
plans. The directed concurrent execution module tries to ex-
ecute the suggested plan. It employs concolic execution [22],
[3], [4] to iteratively follow the plan. The resulting execution
trace is fed back to the plan synthesis module. Repeating
plan synthesis and plan execution steers the search towards
an executable plan that exhibits the violation candidate.

We have implemented the directed search technique in an
atomicity violation detection tool for Java called AtomChase.
We adopted 22 open-source benchmarks with a total of more
than 4.5 million lines of code. We compared AtomChase with
five existing atomicity violation detectors on these benchmarks.
In comparison to these five tools combined, AtomChase found
execution traces for 537 three-access candidates of which
423 were previously known and 114 are new three-access
candidates, i.e. AtomChase found 91% of the previously found
three-access violations and increased the found three-access
violations by 24%. More than a quarter of the candidates
were found after more than one million computation steps.
AtomChase can replay the execution traces that it reports.
AtomChase is fully automatic and the user does not need any
expertise on atomicity violation detection.

A majority of atomicity violations are instances of the
three-access pattern; however, not every three-access instance
is an atomicity violation. We show an execution with a three-
access pattern that is provably atomic. The usability of testing
tools is severely affected by the frequency of their false alarms.
Therefore, it is crucial to confirm the non-atomicity of an

VPRI Technical Report TR-2015-006



Atomicity Violation Candidate 
Generator

Directed Concurrent 
Executer

Concolic Engine

SMT
Solver

Plan Synthesizer

Constraint 
Collector

SMT
Solver

candidates candidates

Plan

Trace

Program

Fig. 1. Directed Search for Atomicity Three-access Candidates

Algorithm 1 Directed Search for Atomicity Three-access
Candidates

1: function SEARCHATOMICITYVIOLATIONS(prog)
2: violations = ;
3: candidates = CandidateGenerator(prog)
4: foreach c 2 candidates do
5: t = Executor(prog, c)
6: while ¬TimeOut do
7: p = PlanSynthesizer(t, c)
8: t = Executor(prog, p)
9: if IsV iolation(t) then

10: violations = violations [ {t}
11: break
12: return violations

execution that is an instance of a three-access pattern before
reporting it to the user. We present and prove sufficient condi-
tions for non-atomicity of traces that contain instances of three-
access pattern. Our experiments show that these conditions
could recognize 89% of the real atomicity violations found by
the search technique. In addition, checking these conditions
has linear time complexity on the size of the input trace. The
experiments show that checking them is more than two orders
of magnitude faster than the exhaustive checks.

In summary, the main contributions of this paper are:

• An atomicity violation detection technique that can
direct execution towards three-access candidates;

• Specification and proof of sufficient conditions for
non-atomicity of the three-access pattern;

• An atomicity violation detection tool for Java and
comparison with five existing tools.

In the rest of the paper, we first illustrate our search technique
and its components. Then, we present our sufficient conditions
for non-atomicity of the three-access pattern. Next, we present
our implementation and experimental results. Finally, we dis-
cuss related work and conclusions.

II. DIRECTED SEARCH

In this section, we first present an overview of our search
technique and its comprising modules. Then, we explain each
module in more detail in the following subsections.

Atomicity blocks are code blocks containing accesses to
shared data that should execute without interference from other
threads. Many studies consider synchronized method bodies or
statements as atomicity blocks. Atomicity can be violated if
accesses in an atomicity block by a thread are interleaved by an
access from another thread. The triple of events (e1, e2, e3) in
an execution trace ⇡ is an instance of the three-access pattern
if (1) The events e1, e2 and e3 access the same location. (2)
The event e1 is executed before e2 and e2 is executed before
e3 in ⇡ (while other events may be executed in between), (3)
The events e1 and e3 are executed by the same thread and
atomicity block, and (4) The thread of e2 is not the same as
the thread of e1 and e3. A three-access candidate is a triple
of program statements (s1, s2, s3) such that s1 and s3 are in
the same atomicity block and s2 is not in that atomicity block.
Execution of the three statements can make an instance of
the three-access pattern if the executions of s1 and s3 by the
same thread are interleaved by the execution of s2 (by another
thread). Our search starts with a set of three-access candidates.
For each of the candidates, we do a separate search.

Figure 1 shows an overview of the modules of the search
process and their interconnections, and Algorithm 1 presents
the search algorithm. The search is an iterative application
of the directed concurrent executor and the plan synthesizer
modules. First, the directed concurrent executor tries to execute
all the three statements of the candidate regardless of their
order. The executor module uses a concolic execution engine
that in turn uses an SMT solver. The initial execution trace is
fed to the plan synthesizer. Given a trace, the plan synthesis
module mutates the trace and outputs an execution plan. A
plan is a sequence of milestone events to guide the execution
to the violation candidate. The plan synthesizer first generates
a set of constraints that represent a consistent reordering of
the input trace where the events of the candidate come in
the candidate order. It then solves the constraints using an
SMT solver to yield an execution plan. The plan is then fed
to the executor module that attempts to execute it. If the
plan is found to be executable, the search returns successfully
with a concrete execution trace of the violation candidate.
Otherwise, the executor module continues execution beyond
the plan, typically until termination of the program. The plan
synthesizer and the executor modules are repeated in turn.
Each call to the executor module may produce a trace that is
closer to the violation candidate, after which a call to the plan
synthesizer module further improves the plan. The alternation
of the executor and the plan synthesis modules is considerably
more powerful than either one alone. The execution module
alone finds only 36% (196 of 537) and the plan synthesis
module alone finds only 11% (63 of 537) of the atomicity
violations that they can find together.

Let us look at the simple example in Figure 2. Imagine that
Alice and Bob have a joint checking account with a balance of
$20. Alice uses an ATM with no fee, while Bob uses an ATM
with a $5 fee. The function input() returns the amount of
withdrawal input to the ATM.
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1 class BankAccount {

2 int balance;

3 BankAccount(int b) { balance = b; }

4 synchronized int getBlance() {

5 return balance;

6 }

7 synchronized int setBalance(int b) {

8 balance = b;

9 }

10 }

1 BankAccount a = new BankAccount(20);

1 // Thread Alice:

2 int amount = input();

3 int serviceFee = 0;

4 int total = amount + serviceFee;

5 e1: int balance = a.getBalance();

6 e2: if (total <= balance)

7 e3: a.setBalance(balance - total);

1 // Thread Bob:

2 int amount = input();

3 int serviceFee = 5;

4 int total = amount + serviceFee;

5 e4: int balance = a.getBalance();

6 e5: if (total <= balance)

7 e6: a.setBalance(balance - total);

Fig. 2. Example of Directed Search for an Atomicity Candidate

Consider the three-access violation candidate (e1, e6, e3).
First, we run the execution module to find a trace having the
three events of the candidate regardless of their order. We need
to find a trace that executes e1 and e3 in the first thread and e6
in the second thread. The execution can start with $10 input
value for the first thread and succeed passing the condition
at e2 and execute e3. However, choosing $10 input value for
the second thread makes the condition at e5 fail and e6 is not
executed. A second iteration for the second thread may choose
$5 as the input that successfully passes the condition at e5 and
executes e6. The resulting trace is ⇡ = e1, e2, e3, e4, e5, e6. Let
�⇡ denote the total order of the trace ⇡.

Next, the plan synthesis module tries to generate a plan
that directs the execution towards the candidate. In particular,
it should generate a reordering ⇡0 of the input trace ⇡ that
has the candidate events in order. Thus, the event e6 should
come between e1 and e3 yielding the constraints e1 �⇡0 e6 ^
e6 �⇡0 e3. Moreover, the new trace should preserve the intra-
thread order of events. Thus, e1 should come before e2 that
should come before e3. Similarly, e4 should come before e5
that should come before e6. These orders are captured by the
following constraints: e1 �⇡0 e2 ^ e2 �⇡0 e3 and e4 �⇡0

e5 ^ e5 �⇡0 e6. In addition to the above constraints, the
plan synthesis module generates constraints for the consistency
of locations and synchronization objects that we present in
section II-B. A solution to the above constraints can be ⇡0 =
e1, e4, e2, e5, e6, e3.

The execution module tries to execute the constructed
plan. Choosing values $10 for both threads makes the plan
executable. Each thread first reads the initial $20 balance and

passes the withdrawal condition. Then, each thread updates
the balance. Note that the Alice’s write at e3 overwrites Bob’s
write at e6. This execution is in fact an atomicity violation.
Alice and Bob withdrew a total of $25 together but only
$15 was deducted from their account. The resulting execution
contains an instance of the violation candidate.

A. Directed Concurrent Execution

Given a concurrent program and a plan, the directed
concurrent execution module tries to find a program execution
that includes all the events of the plan in order. (The plan
events should not necessarily execute one after another; other
events can execute in between.) If it can successfully drive the
program execution to follow the plan, it returns the execution
trace (and the input values). Otherwise, it executes the longest
executable prefix of the plan. Then, it continues execution and
tries to execute the remaining events disregarding the plan
order. The execution is based on the generalization of directed
testing to execution plans [10], [11]. In contrast to the previous
work that starts with a random initial run, the current work
tries to start with an execution that contains the three program
statements of the three-access candidate.

The classical directed testing [22], [3], [4] tries to iter-
atively move toward a target statement in the program. The
idea is to use information from one execution to generate a
better input for the next one. The execution method called
concolic execution not only executes the program concretely

but also records symbolic constraints along the execution. In
particular, it records constraints based on a assignments and
branch conditions . If a branch leads the execution off the path
to the target statement, the negation of the branch condition
is recorded. A solution to the collected constraints yields the
next input for the program. The new input keeps the execution
on the path to the target statement at the last failing branch. If
the target statement is deeply nested, many concolic executions
may be needed before the target statement can be reached.

Directed testing can be generalized to execution plans.
Given a concurrent program and a plan, the goal is to find
inputs that lead to a program execution including all the
events of the plan in order. We start from the first event
of the plan and iteratively extend the execution to hit all
the events. On each iteration, the target is the next event of
the plan. Each iteration involves concolic execution in the
thread that contains the target event. We control the thread
scheduler to keep the execution in the thread with the target
event. Similar to classical directed testing, the target event is
reached though sub-iterations. The concolic execution executes
the program and records constraints. The input for the next
sub-iteration is obtained by solving the constraints from the
previous sub-iteration. If we can hit all the events of the
plan, we return success together with the constructed execution
trace. Otherwise, we continue the execution in an attempt to
execute as many of the events of the plan as possible even if
they are executed out of the plan order. The next call to the
plan synthesis module will benefit from the presence of these
trace events.

B. Execution Plan Synthesis

The goal of the execution plan synthesis module is to
generate an execution plan that leads to the violation candidate.
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�1 =
V

e2⇡(e �⇡0 e)^V
e1,e22⇡ (e1 �⇡0 e2 ^ e2 �⇡0 e1) ) (e1 = e2)^V
e1,e22⇡ (e1 �⇡0 e2 ^ e2 �⇡0 e3) ) (e1 �⇡0 e3)^V
e1,e22⇡ (e1 �⇡0 e2 _ e2 �⇡0 e1)

�2 =
V

e1,e22⇡ ((e1 �⇡ e2 ^ thr(e1) = thr(e2)) ) e1 �⇡0 e2)
�3 =

V
er2⇡(obj(er) 2 Loc ^ op(er) = read) )W

ew2⇡(obj(ew) = obj(er) ^ op(ew) = write ^ arg(ew) = ret(er)^
ew �⇡0 er ^V

ew02⇡ (obj(ew0) = obj(er) ^ op(ew0) = write) )
(ew0 �⇡0 ew _ er �⇡0 ew0))

�4 =
V

eu2⇡(obj(eu) 2 Lock ^ op(eu) = unlock) )W
el2⇡(obj(el) = obj(eu) ^ op(el) = lock ^ thr(el) = thr(eu)^

el �⇡0 eu ^V
eu02⇡(obj(eu0) = obj(eu) ^ op(eu0) = unlock) )

(eu0 �⇡ el _ eu �⇡ eu0))

�5 = (e⇤1 �⇡0 e⇤2) ^ (e⇤2 �⇡0 e⇤3)
� = �1 ^ �2 ^ �3 ^ �4 ^ �5

Fig. 3. Constraints for the new trace ⇡0 given the trace ⇡ and the violation candidate (e⇤1, e
⇤
2, e

⇤
3)

The inputs to the module are the last execution trace and the
violation candidate. We formulate the plan synthesis problem
as a satisfiability problem. We construct and solve constraints
that represent a consistent reordering of the events of the input
trace that contains the input violation candidate.

Let t denote a thread identifier, a denote an atomicity
block identifier, x denote an object, m denote an operation
on shared objects, and v denote a value. An event e is a
tuple (t, a, x,m, v, v0) where t is the identifier of the executing
thread, a is the identifier of the executing atomicity block, x
is the shared object, m is the operation applied to x, v is
the argument value (or a dummy value if m does not have
a parameter) and v0 is the returned value (or a dummy value
if m does not have a return value). Each event that is not
executed inside an atomicity block has a unique atomicity
block identifier. In other words, events that are executed
outside atomicity blocks are regarded as singleton atomicity
blocks. Let the functions thr, block, obj, op, arg and ret
map an event to its six above components respectively. We
call an event with a read operation a read event, and an event
with a write operation a write event.

A trace ⇡ is a sequence of events. The membership of an
event e in a trace ⇡ is denoted as e 2 ⇡. Let the relation �⇡

represent the total order of events of ⇡. For a trace ⇡ and a
thread t, let ⇡|t is the sequence of events in ⇡ for a particular
thread t.

Let ⇡ be the input trace, (e⇤1, e⇤2, e⇤3) be the candidate events,
and T be the set of threads of ⇡. The trace ⇡ is a possible
interleaving of the set of sub-traces {⇡|t | t 2 T}. The search
state space is the set of interleavings of these sub-traces. We
want to find an interleaving that preserves the consistency
of locations, complies with the semantics of synchronization
objects, and matches the order of events of the candidate.

We construct a quantifier-free formula � that is depicted
in Figure 3. Given the trace ⇡ and its order of events �⇡ , we
encode the following conditions on the order of events �⇡0 of
the new trace ⇡0:

• Totality of the execution order (�1): The order of
events �⇡0 of the trace ⇡0 is a total order. It is a
reflexive, anti-symmetric, transitive and total relation.

• Intra-thread execution order preservation (�2): The
order of events of a thread is preserved. If an event
e1 is before another event e2 in ⇡ and they are in
the same thread, then e1 is before e2 in ⇡0 as well.
However, events of different threads can be reordered.

• Consistency of location objects (�3): The value read
from a location is the value written by the most recent
write to the same location, i.e. for every read event
er from a location l, there is a write event ew on l
that writes the same value that er reads and ew is the
last write event on l that comes before er in ⇡0.

• Semantics of synchronization objects (�4): An un-
locked operation of a lock l is executed only if a lock
operation is executed on l by the same thread before
it such that no other unlock operation on l interleaves
these two operations. (We assume that there is an
initial unlock operation.) We can similarly model other
synchronization object types.

• Order of three violating events (�5): The three events
of the three-access candidate come in order in ⇡0.

The solution to the above constraints represents the order of
events in the trace ⇡0 that satisfies the semantics of location
and synchronization objects and contains the three-access
candidate. There is a trade-off between the executability of
the plan and the speed of synthesizing it i.e. more precise
constraints for synchronization objects can result in more
executable plans. However, the complexity of these constraints
can hinder the performance of the plan synthesis module.
Instead of increasing the complexity of the constraints to
enforce the executability of the resulting plan, we verify the
executability of the plan in the next call to the execution
module.

VPRI Technical Report TR-2015-006



III. NON-ATOMICITY OF THREE-ACCESS PATTERN

In this section, we present sufficient conditions for non-
atomicity of traces with instances of the three-access pattern.
For the sake of simplicity of the presentation, in this section
we focus on traces that are composed of events on memory
locations.

A trace is sequential if its atomicity blocks execute sequen-
tially. More precisely, a trace ⇡ is sequential, sequential(⇡),
if and only if for every triple of events e1, e2, e3 2 ⇡, if
e1 �⇡ e2 �⇡ e3 and block(e1) = block(e3), then block(e2) =
block(e1). This notion of atomicity aligns with the classical
definition of serializability. [26]

Two traces are equivalent if one is a permutation of the
other one and they have the same intra-thread order of events.
More precisely, two traces ⇡1 and ⇡2 are equivalent, ⇡1 ⇠ ⇡2,
if and only if for every event e, e 2 ⇡1 if and only if e 2 ⇡2

and for every thread t, ⇡1|t = ⇡2|t.

A trace is consistent if every read from a memory location
returns the value that the last write to the location before it
writes. More precisely, a trace ⇡ is consistent, consistent(⇡),
if and only if for every read event er in ⇡, if ew is the last
write event to location obj(er) before er in ⇡, then ret(er) =
arg(ew). We say that the event ew justifies the event er.

A trace is atomic if it has a consistent equivalent sequential
trace. More precisely, a trace ⇡ is atomic, atomic(⇡), if and
only if there exists a trace ⇡0 such that sequential(⇡0), ⇡0 ⇠ ⇡,
and consistent(⇡0).

Not every instance of the three-access pattern is an atom-
icity violation. For example, consider Figure 4. Figure 4(a)
depicts a trace ⇡ with two threads. The two columns show the
operations of the two threads separately. A read event on a
location x that returns the value v is denoted as read(x): v
and a write event on a location x that writes the value v is
denoted as write(x, v). The left thread executes an atomicity
block containing events e1 and e3. The right thread executes
two operations e0 and e2 outside atomicity blocks. The triple
of events (e1, e2, e3) is an instance of the write-read-write
three-access pattern. The event e1 writes a value to x that
e2 reads and e3 later overwrites. Nonetheless, the atomicity of
⇡ is justified by the consistent equivalent sequential trace ⇡0

depicted in Figure 4(b). In ⇡, the event e2 reads the value v1
written by e1 while in ⇡0, the event e2 is moved before e1.
However, in ⇡0, the value v1 that e2 reads is justified by the
value v1 that e0 writes.

The definition of atomic trace provides an exhaustive
method to check non-atomicity of a trace. A trace is not atomic
if every trace that is equivalent to it and sequential is not
consistent. The exhaustive method constructs all the possible
equivalent and sequential traces for the input trace and checks
that none of them are consistent. Although straightforward, the
exhaustive method has exponential time complexity on the size
of the input trace.

In Figure 5, we present sufficient conditions for non-
atomicity of traces with the three-access pattern. The condi-
tions are labeled according to the operation types of the three
events. For example, CWRW is the condition for the write-read-
write three-access pattern where the first event is a write, the

second one is a read and the third one is a write. The theorem
below states that each of these conditions is sufficient for the
non-atomicity of the trace. It is notable that checking these
conditions has a linear time complexity on the size of the input
trace. We will benefit from these conditions in AtomChase
to quickly filter out a large fraction of false alarms. Let us
consider the condition CWRW as an example. The condition
requires that (1) The events e1, e2 and e3 are on the same
variable, they are write, read and write operations respectively,
the events e1 and e3 are from the same atomicity block, and
e2 is by a different thread, (2) The return value of e2 is not
equal to the argument value of e3, and (3) There is no write
in the trace before e1 and by the same thread as e1, before
e2 and by the same thread as e2, or after e3 and by the same
thread as e3, that writes the returned value of e2.

Let us see how these conditions imply the non-atomicity
of a trace ⇡. We assume that ⇡ is atomic and arrive at a
contradiction. The three above conditions are represented in
Figure 6(a) as follows: (1) The two events e1 and e3 that are
executed by the same atomicity block are shown in the left
column. The event e2 that is executed by a different thread
and interleaves e1 and e3 is shown in the right column and
is vertically located between e1 and e2. (2) The inequality of
the return value v2 of e2 and the argument value v3 of e3 is
written below the trace. (3) The crossed events depict the write
events that cannot exist in the trace.

By the definition of atomicity, we have that there exists a
consistent equivalent sequential trace ⇡0. As ⇡0 is sequential,
the event e2 is either before the atomicity block containing
the events e1 and e3 or after it in ⇡0. These two cases are
shown in Figure 6(b) and Figure 6(c). As ⇡0 is consistent, and
contains the event e2 that reads the value v2, there should be
a justifying write event before e2 that writes v2. We consider
each case in turn.

• In Figure 6(b), e2 comes before the atomicity block.
By the equivalence of ⇡ and ⇡0 and the third condition
above, we have that there is no write event that writes
v2 before e1 or before e2 in ⇡0. Thus, the read value v2
of e2 cannot be justified. Hence, ⇡0 is not consistent
that is a contradiction.

• In Figure 6(c), e2 comes after the atomicity block. By
the equivalence of ⇡ and ⇡0 and the third condition
above, we have that there is no write event that writes
v2 after e3 or before e2. Thus, there is no write event
between e3 and e2 that can justify the read value of e2.
In addition, from the second condition above, we have
v2 6= v3. The event e3 writes v3 and the event e2 reads
v2. Thus, the event e3 cannot justify e2. Therefore,
the value that the last write before e2 writes is not the
value that e2 reads. Hence, ⇡0 is not consistent that is
a contradiction.

Similarly, we can show that the stated conditions for the
triple of other operation types are sufficient for non-atomicity
of traces that contain them. We state these results in the
following theorem.

Theorem 1 (Non-atomicity of Three-access Pattern).
8⇡, e1, e2, e3:C(⇡, e1, e2, e3) ) ¬atomic(⇡)

Please see the appendix [9] for the proofs.
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e0:write(x, v1)
e1:write(x, v1)
...

e2: read(x): v1
e3:write(x, v3)

(a)

e0:write(x, v1)
e2: read(x): v1

e1:write(x, v1)
...

e3:write(x, v3)
(b)

Fig. 4. Atomicity of a trace with the write-read-write three-access pattern

IsPattern(e1, e2, e3, o1, o2, o3) =
obj(e1) = obj(e2) = obj(e3) ^ op(e1) = o1 ^ op(e2) = o2 ^ op(e3) = o3 ^
block(e1) = block(e3) ^ thr(e2) 6= thr(e1)

NoWPred(⇡, e, v) =V
e02⇡(e

0 �⇡ e ^ thr(e0) = thr(e) ^ obj(e0) = obj(e) ^ op(e0) = write) )
(arg(e0) 6= v)

NoWSucc(⇡, e, v) =V
e02⇡(e �⇡ e0 ^ thr(e0) = thr(e) ^ obj(e0) = obj(e) ^ op(e0) = write) )

(arg(e0) 6= v)
NoWBet(⇡, e1, e2, v) =V

e02⇡(e1 �⇡ e0 �⇡ e2 ^ thr(e0) = thr(e1) ^ obj(e0) = obj(e1) ^ op(e0) = write) )
(arg(e0) 6= v)

CWRW (⇡, e1, e2, e3) =
IsPattern(e1, e2, e3, write, read, write)^
ret(e2) 6= arg(e3) ^NoWPred(⇡, e1, ret(e2)) ^NoWPred(⇡, e2, ret(e2)) ^
NoWSucc(⇡, e3, ret(e2))

CRWR(⇡, e1, e2, e3) =
IsPattern(e1, e2, e3, read, write, read)^
ret(e1) 6= ret(e3) ^NoWBet(⇡, e1, e3, ret(e3))

CWWR(⇡, e1, e2, e3) =
IsPattern(e1, e2, e3, write, write, read)^
arg(e1) 6= ret(e3) ^NoWBet(⇡, e1, e3, ret(e3))

CRWW (⇡, e1, e2, e3) =
IsPattern(e1, e2, e3, read, write, write)^
ret(e1) 6= arg(e2) ^NoWPred(⇡, e1, ret(e1)) ^NoWPred(⇡, e2, ret(e1)) ^
NoWSucc(⇡, e2, ret(e1))

C(⇡, e1, e2, e3) =
CWRW (⇡, e1, e2, e3) _ CRWR(⇡, e1, e2, e3) _ CWWR(⇡, e1, e2, e3) _
CRWW (⇡, e1, e2, e3)

Fig. 5. Sufficient conditions for non-atomicity of traces with the three-access pattern.

IV. IMPLEMENTATION

We have implemented our directed search technique in
a tool called AtomChase. It is written in and works on
Java 6 programs. We implemented the algorithm HAVE [7] to
quickly produce three-access candidates. We work with events
at the Java bytecode level and use Soot [32] version 2.5.0 to
instrument bytecode. We implemented our directed concurrent
execution module on top of the Lime1 concolic execution
engine version 2.2.0. We used Yices2 [8] SMT solver version
2.2.0 to solve the constraints of the plan synthesis module.
AtomChase uses the same memory space as the benchmarks.

Time optimization by parallel constraint solving. Con-
straint solving is a time-consuming procedure, particularly

1
http://www.tcs.hut.fi/Software/lime

2
http://yices.csl.sri.com

when a solver being asked to solve billions of constraints. We
applied a heuristic to parallelize the constraint solving step.
We treat event total order constraints (�1) separate from the
other constraints. The plan synthesis module first generates
execution plans that satisfy �1 constraints, and then we use
the constraint solver to verify if each plan satisfies other
constraints too. Since generating and verifying a plan are
independent procedures we can perform them in parallel.
Therefore the constraint solving procedure can be split into
many tasks and assigned to numerous threads each handling a
candidate plan.

Handling dynamic class loading. Many of the bench-
marks use reflection. Unfortunately, among the atomicity vio-
lation detectors that we compare against, only DoubleChecker
[1] handles reflection well. We enable the other atomicity
violation detectors to handle reflection with the help of the
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((((((write(x, v2) ((((((write(x, v2)
e1:write(x, v1)
...

e2: read(x): v2
...

e3:write(x, v3)

((((((write(x, v2)
v2 6= v3

(a)

((((((write(x, v2) ((((((write(x, v2)
e2: read(x): v2
...

e1:write(x, v1)
...

...

e3:write(x, v3)
(b)

e1:write(x, v1)
...

...

e3:write(x, v3)

((((((write(x, v2)

((((((write(x, v2)
e2: read(x): v2

v2 6= v3
(c)

Fig. 6. The sufficient conditions for non-atomicity of the write-read-write three-access pattern

toolchain TamiFlex [2]. The core of the problem is that
reflection is at odds with static analysis and bytecode instru-
mentation: reflection may make static analysis unsound and
may load uninstrumented classes. We have combined each of
AtomFuzzer [27], Penelope [31], Atomizer [17] and HAVE
with TamiFlex and we have run all our experiments without
warnings. We believe that, all the atomicity violation detectors
handle reflection correctly.

V. EXPERIMENTAL RESULTS

A. Benchmarks and Platform

We adopt 22 open-source benchmarks of more than 4.5
million lines of Java code from different sources including
Grande and DaCapo suites. Figure 7 lists our 22 benchmarks.
Please see the appendix [9] for more description of each
benchmark.

The sizes of the benchmarks vary widely: we have 2
huge (1M+ LOC), 10 large (20K–1M LOC), 8 medium (1K–
8K LOC), and 2 small (less than 1K LOC) benchmarks.
Figure 7 also lists the high watermark of how many threads
each benchmark runs, and the input size in bytes for each
benchmark. Our benchmarks are drawn from open source
repositories and most of them come with a specific input.
For each benchmark, we use the predetermined input that
appears to exercise the code well. Benchmarks in the Grande
suite are packaged in three different input sizes. We run the
Grande benchmarks with size A. DaCapo suite has a harness to
run each benchmark with preset thread numbers, environment
variable and program inputs. DaCapo has three workload size:
small, default, and large. We conducted all experiments with
the default setting. Test harnesses for Colt, TSP, Hedc and
open programs like ArrayList, TreeSet, HashSet, Vector were
downloaded from the Penelope homepage.3 We ran all our
experiments on a Macbook pro 2.3 GHz Intel core i7, 16 GB
1600 Mhz DDR3, Mac OS X 10.9.4.

B. Atomicity Violation Detectors

We compare AtomChase with four dynamic atomicity
violation detectors: DoubleChecker, AtomFuzzer, Penelope,
Atomizer and a hybrid atomicity detector, namely HAVE. We
present a summary of these tools below. Additionally, we
compare with a combination of the results of all the tools
above that we call DAPA4.

3http://web.engr.illinois.edu/⇠sorrent1/penelope/experiments.html
4The name DAPA is composed of the first letter of the names of the four

tools DoubleChecker, AtomFuzzer, Penelope, and Atomizer

Name LOC # threads input size (bytes)
Sor 1270 5 404
TSP 713 10 58
Hedc 30K 10 220
Elevator 2840 5 60
ArrayList 5866 26 116
TreeSet 7532 21 64
HashSet 7086 21 288
Vector 709 10 128
RayTracer 1942 5 412
MolDyn 1351 5 240
MonteCarlo 3619 4 26
Derby 1.6M 64 564
Colt 110K 11 804
Avrora 140K 6 74
Tomcat 535K 16 88
Batic 354K 5 366
Eclipse 1.2M 16 206
FOP 21K 8 34
H2 20K 16 658
PMD 81K 4 116
Sunflow 108K 16 24
Xalan 355K 9 616
TOTAL 4587K

Fig. 7. The benchmarks.

HAVE first runs a static analysis to collect information
about shared and synchronization variables. It then uses the
collected static data in a dynamic analysis that approximately
predicts atomicity violations in unexplored part of the program.
Because of the nature of static speculation, HAVE predictions
may include false positives.

DoubleChecker performs two dynamic analyses: imprecise
and precise. The imprecise analysis builds a graph that collects
imprecise cross-thread dependencies among atomicity blocks.
Cycles in the graph are considered as atomicity violation
candidates. The precise analysis collects precise information
about cross-thread dependencies and checks the candidates
that were found by the imprecise analysis. DoubleChecker has
two run modes: the single-run and multi-run. The single-run
mode performs both analyses in a single run. The multi-run
mode first performs the imprecise analysis in the first round of
execution, then it performs both the precise and the imprecise
analyses in the second run. The single-run mode is faster but
the multi-run mode is more accurate.
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AtomFuzzer is a dynamic tool that looks for the three-
access atomicity violation pattern. It executes the program with
a random scheduler that is biased towards executing events that
could lead to a specific type of atomicity violation. Whenever a
thread enters an atomic block and is about to acquire the same
lock that it has previously acquired and released, it pauses the
thread and continues execution until another thread is about
to acquire the same lock. At this point, AtomFuzzer detects a
three-access violation and reports it.

Penelope is a dynamic predictive atomicity violation detec-
tor. It first runs the program randomly and collects an execution
trace. It represents the possible re-interleavings of the obtained
trace that contain atomicity violations as constraints. It uses a
constraint solver to yield a violating trace.

Atomizer is a dynamic atomicity checker that uses simple
heuristics to locate atomic blocks. It gets a single test run
and uses a lockset algorithm [29] combined with a reduction
analysis to verify the atomicity of blocks labelled as atomic.

In all the above tools, we configured the atomicity blocks
to be the synchronized methods and statements. This is the
default assumption in Atomizer, AtomFuzzer and Penelope.
We used Jikes RVM 3.1.3 to run DoubleChecker and used
Oracle JVM 1.6 for the rest of the tools. We let the JVM
adjust the heap size automatically.

C. Measurements

Figure 8 shows the number of three-access violations that
we found in the 22 benchmarks by the 6 techniques. For
AtomChase, the first column shows the total number of three-
access violations that AtomChase found, the second column
shows the number of three-access violations that AtomChase
found but DAPA did not find and the third column shows
the number of three-access violations that both AtomChase
and DAPA found. The columns EV and CV show the number
of three-access violations that were validated as non-atomic
by the exhaustive check and the sufficient conditions check
(presented in section III) respectively. We identify each bug
by its three-access candidate i.e. the three program locations
and their execution order. We count once all the bugs with
the same three-access candidate. Similarly, we compare the
bugs found by two different tools based on the three-access
candidates to determine the set of disjoint and common bugs.
We only count the errors and not warnings.

Figure 9 shows the run time of each tool on each bench-
mark and shows the geometric mean for each technique. We
made no attempt to throttle the amount of time that the tools
can use. The timings for AtomChase include the time to
execute HAVE. The last two columns shows the run time of
the exhaustive and sufficient condition checks on the three-
access traces found by AtomChase. The numbers in every
column other than the Exhaustive Validation (EV) column are
in seconds. The numbers in the EV column are in hours.

The following table shows the lengths of the 537 atomicity
violation traces that AtomChase found (including the 114
traces found only by AtomChase):

Schedule length Total = AtomChase + DAPA
102 � 103 36 0 36
103 � 104 29 2 27
104 � 105 113 9 104
105 � 106 199 7 192
106 � 107 61 23 38
107 � 108 87 63 24
108 � 109 12 10 2

537 114 423

D. Assessment

We now present our findings based on both the measure-
ments listed above and our additional analysis of the atomicity
violations that were found.

AtomChase versus other Tools. We can see in Figure 8
that AtomChase finds the most atomicity violations (537) of
all the techniques. Among those 537 atomicity violations,
114 cases were found only by AtomChase and are entirely
novel to this paper while 423 cases were found by DAPA
as well. Dually, 39 atomicity violations were found only by
DAPA. In summary, we have that the combination of DAPA
and AtomChase found 576 atomicity violations in the 22
benchmarks.

Found by both: 423
Found only by DAPA: 39
Found only by AtomChase: 114
Total: 576

Hence, AtomChase increases the number of found atomicity
violations by 24% (114 of 462). Let us consider atomicity
violations that AtomChase found but DAPA missed. One
such atomicity violation is a bug in Eclipse, specifically in
the class Main in the package org.eclipse.equinox.-
launcher, The two methods setDescription() and
getDescription() are called concurrently while pro-
tected by different synchronization objects. The effect of this
atomicity violation is cloning corrupted data. We have reported
this bug to Eclipse Bugzilla and it is confirmed5.

Let us now consider the 39 atomicity violations that DAPA
found but AtomChase missed. Those atomicity violations were
in TSP (1), ArrayList (1), Colt (1), Avrora (7), Tomcat (4),
Batic (5), Eclipse (1), H2 (1), PMD (1), Sunflow (6), and Xalan
(11). Penelope was the biggest contributor to that 39 atomicity
violations, and found 26 of them. DoubleChecker found 10,
and Atomizer revealed 3 of those atomicity violations. For
example, DoubleChecker detected an atomicity violation in
Eclipse that AtomChase missed.6 The violation results in the
following misbehavior: when multiple threads perform undo
actions simultaneously, a user can get ”error 404 (Not Found)”.

Our experiments show that AtomChase finds the most
atomicity violations, and that Penelope, DoubleChecker, and
Atomizer remain worthwhile tools as each of them detect
atomicity violations that the other tools cannot find.

5Bug ID 329143: https://bugs.eclipse.org/bugs/-

show_bug.cgi?id=329143

6 The atomicity violation happens in the class
CompositeArtifactRepository in the package org.eclipse.-

equinox.internal.p2.artifact.repository.
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Hybrid Dynamic
benchmarks HAVE DoubleChecker AtomFuzzer Penelope Atomizer DAPA AtomChase

total = new + DAPA EV CV
Sor 3 0 0 0 0 0 0 0 0 0 0

TSP 28 3 1 1 0 4 6 3 3 5 4
Hedc 11 1 0 3 1 3 5 2 3 5 4

Elevator 18 1 0 0 0 1 3 2 1 3 3
ArrayList 9 7 1 1 0 7 6 0 6 5 4

TreeSet 4 0 1 1 0 1 1 0 1 1 1
HashSet 4 1 1 1 1 1 1 0 1 1 1

Vector 7 2 0 1 0 2 2 0 2 2 2
RayTracer 6 0 0 2 1 3 3 0 3 2 2

MolDyn 4 0 1 1 0 1 2 1 1 2 2
MonteCarlo 8 2 2 2 1 3 3 0 3 3 2

Derby 105 19 6 60 4 66 83 17 66 79 73
Colt 41 8 4 13 2 16 23 8 15 20 16

Avrora 50 10 7 38 9 43 41 5 36 38 34
Tomcat 116 49 53 64 43 66 77 15 62 73 65

Batic 44 39 10 34 16 40 36 1 35 33 29
Eclipse 131 73 41 49 66 81 121 41 80 116 112

FOP 76 20 8 24 12 26 28 2 26 27 25
H2 48 17 13 15 9 17 26 10 16 21 17

PMD 18 0 4 11 2 11 13 3 10 12 9
Sunflow 22 6 4 20 4 21 17 2 15 15 11

Xalan 51 24 22 49 20 49 40 2 38 36 31
TOTAL 804 282 179 390 191 462 537 114 423 499 447

Fig. 8. The number of three-access violations found in 22 benchmarks by 6 techniques. EV = Exhaustive Validation, CV = Condition Validation

Now we analyze the individual contributions of the tools
with respect to each other. Our first observation is that:
AtomFuzzer ✓ Penelope. In words, if AtomFuzzer finds an
atomicity violation, then Penelope also detects that atomic-
ity violation. Our second observation is that: Atomizer ✓
Penelope[DoubleChecker. In other words, if Atomizer finds
an atomicity violation, then either Penelope or DoubleChecker
(or both) find that atomicity violation as well.

Timings. The geometric means of the execution times show
that AtomFuzzer is the fastest while Penelope is the slowest,
and AtomChase is almost twice as fast as Penelope. The longer
execution time of AtomChase can be attributed to its iterative
exploration. Our experiments show that by parallelizing the
constraint solving process we can improve timing by 10-18%.

Number of schedules. The number of calls to the di-
rected execution module appears to be rather small: for every
benchmark, it is less than four times the number of three-
access violations. This result shows that the alternation of plan
synthesis and execution can effectively steer the search towards
the target trace in a modest number of iterations.

Number of steps of execution. Some schedules can be
as long as 105 million events, which illustrates that the plan
synthesis scales to long schedules. For each of the seven
benchmarks (HashSet, Derby, Tomcat, Batic, Eclipse, Sunflow,
Xalan), at least one atomicity violation happens in a trace
that has more than a million events. Among the 160 atomicity
violations found after at least a million steps, 96 were found
only by AtomChase and among 12 atomicity violations that
happen after 10 million steps 10 were found by AtomChase.
AtomChase can replay the atomicity violations that it finds
and hence, can report reproducible bugs. Finding atomicity

violations after many steps of computation can be attributed
to the ability of our iterative search to drive the execution
towards the candidates.

Checking non-atomicity. The exhaustive checks show that
92% of the traces reported by AtomChase are real atomicity
violations. This means that 7% of them are false positives
i.e. match the three-access patterns but are in fact atomic.
The non-atomicity sufficient conditions could recognize that
83% of the traces reported by AtomChase are real atomicity
violations. Therefore, these conditions could recognize 89%
of the real atomicity violations found by AtomChase. In
addition, checking these conditions is more than three orders
of magnitude faster than the exhaustive checks.

VI. RELATED WORK

In section 1 we mentioned some of static, dynamic and
predictive techniques for checking atomicity. In subsection V-B
we discussed 5 techniques for atomicity violation detection. In
this section, we discuss other techniques and tools in the area
of atomicity violation detection.

Static analysis. Application of static techniques such as
type systems [20], [18], model checking [16], [21], and petri
nets [12] to atomicity has been investigated. In contrast to
static analysis, our technique is an iterative dynamic analysis.

Dynamic Analysis. Avio [25] can extract atomicity invari-
ants of the application from correct runs and detect the viola-
tion of those invariants in test runs. Velodrome [19] presents
an efficient and scalable representation of the transactional
happens-before relation and presents a dynamic atomicity
violation detector that reports no false positives.
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Hybrid Dynamic
benchmarks HAVE DoubleChecker AtomFuzzer Penelope Atomizer AtomChase EV CV
Sor 9 6 3 1142 3 403 0 0
TSP 9 17 3 2674 2 497 0.5 8
Hedc 36 24 5 722 10 776 4.3 9
Elevator 43 22 2 3481 14 411 0.2 3
ArrayList 26 11 3 556 8 591 0.3 4
TreeSet 21 8 4 903 5 427 0.3 2
HashSet 22 8 4 119 5 478 0.2 2
Vector 10 9 2 202 4 485 0.1 1
RayTracer 33 14 6 5419 10 1563 0.5 3
MolDyn 28 24 5 2752 8 1971 0.7 5
MonteCarlo 47 19 11 2285 13 892 0.8 7
Derby 76 58 45 7803 57 1779 10.4 201
Colt 48 29 18 636 11 1066 3.3 26
Avrora 105 32 66 6787 73 2008 9.8 83
Tomcat 121 65 60 4687 55 2361 12.7 229
Batic 70 38 23 1322 28 851 4.7 90
Eclipse 129 57 52 7524 97 1490 15.9 418
FOP 54 21 19 1080 33 992 4.1 52
H2 36 27 14 1329 18 1347 5.6 49
PMD 68 43 28 4210 9 916 2.9 28
Sunflow 59 19 31 2648 41 1101 2.5 33
Xalan 67 60 25 3483 42 2042 6.2 95
geom. mean 39 22 10 1767 14 949 1.7 18

Fig. 9. The run time of the 6 techniques on the 22 benchmarks and the runtime of the exhaustive and sufficient condition checks on the three-access traces
found by AtomChase. EV = Exhaustive Validation, CV = Condition Validation. Every column other than EV is in seconds and EV is in hours.

Predictive analysis. These techniques run the program
under test and obtain a trace. Then they try to predict violations
in alternative interleavings of the trace [30]. Similar to Atom-
Chase, Penelope [31] runs the program and records execution
constrains. However, Penelope does not collect synchroniza-
tion constraints, while AtomChase does. More importantly,
while Penelope explores only the interleavings of the given
trace, AtomChase reruns the program to explore new paths
towards the violation. Wang and Stoller [34], [33] present
a runtime predictive analysis to predict atomicity violations
in alternative schedules of a program run. They record the
executed paths of the program as condition-guarded statements
and incorporate the conditions in the constraints. Therefore, so-
lutions to their constraints are executable schedules. However,
the plan synthesis module of AtomChase does not necessarily
generate executable plans and the executability of the plans
is verified by the execution module. While their technique
explores only the paths that were taken by the initial run,
AtomChase can explore new paths towards atomicity violation.
SideTrack [36] and JPredictor [6] are predictive atomicity
violation detector tools. Similar to previous tools, they can
predict violating executions from a given execution but does
not report any false alarms.

VII. LIMITATIONS

Our approach has four main limitations. First, our approach
relies on HAVE to produce three-access candidates. If HAVE
misses an atomicity violation, so does AtomChase. Second,
our approach relies on a constraint solver both in the plan
synthesis and directed execution modules. The satisfiability
of the form of constraints that we use in the plan synthesis
module is a decidable problem, while the form of constraints

that we use in the directed execution module are derived from
expressions in the program text and may be undecidable. Thus,
for constraint solving in directed execution, we are at the
mercy of expressions in the program text and the power of
the constraint solver. Third, AtomChase cannot filter benign
atomicity violations. An atomicity violation in a program is
benign if the correctness of the program is not affected by the
atomicity violation. Fourth, our approach has no support for
native code.

VIII. CONCLUSION

We presented an atomicity violation detection technique
that directs execution towards three-access candidates by itera-
tive application of directed concurrent execution and execution
plan synthesis techniques. We implemented the technique in
an automatic atomicity violation detector called AtomChase.
Our experiments with a large benchmark suite of more than
4.5 million lines of code show that AtomChase increased the
found three-access violations by 24% in comparison to the five
previous atomicity violation detectors combined. We presented
and proved sufficient conditions for non-atomicity of traces
with the three-access pattern. The conditions could recognize
the majority of 89% of the real atomicity violations found by
AtomChasewhile they significantly expedite checking the non-
atomicity of the found traces.
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