
Viewpoints Research Institute, 1025 Westwood Blvd 2nd flr, Los Angeles, CA 90024 t: (310) 208-0524

 Developing a Formal Semantics for Babelsberg:
A Step-by-Step Approach

Tim Felgentreff, Todd Millstein, and Alan Borning

VPRI Technical Report TR-2014-002b

Developing a Formal Semantics for Babelsberg:

A Step-by-Step Approach

Tim Felgentreff, Todd Millstein, and Alan Borning

VPRI Technical Report TR-2014-002b, August 2015
(revised version of TR-2014-002, September 2014)

1 Introduction

Babelsberg [4] is a family of object constraint languages, with current instances being Babelsberg/R (a
Ruby extension), Babelsberg/JS [5] (a Javascript extension), and Babelsberg/S (a Squeak extension). The
Babelsberg design has evolved alongside its implementations, driven in part by practical considerations
about the expectations of programmers familiar with the underlying host language. This fact, along with
the complexities of integrating objects, state, and constraints, have led to a number of the semantic choices
being muddled with implementation specifics. There have also been a number of long-standing, confusing
issues with respect to constraints and object identity, how to represent assignment, and the appropriate
restrictions on expressions that define constraints. In an effort to understand these better and to provide a
complete design that instances of Babelsberg can implement, we give here a formal operational semantics
for Babelsberg.

We’ve found it helpful to approach the problem incrementally, first devising a formal semantics for a very
simple constraint imperative language, and then building up to a full object constraint language. In this
memo we present the semantics in that fashion as well. The languages are as follows:

• Babelsberg/PrimitiveTypes (the only datatypes are booleans plus a set of primitive types, such as
integers, reals, and strings). The concrete variant we use in informal examples is Babelsberg/Reals.

• Babelsberg/Records (Babelsberg with immutable records, along with primitive types).

• Babelsberg/UID (Babelsberg with mutable records that live on the heap and so have an identity, can
be aliased, etc., as well as primitive types).

• Babelsberg/Objects (Babelsberg with mutable objects, classes, methods, messages, inheritance, and
object-oriented constraint definitions).

In each case, we first provide an informal discussion and examples, and then the formal semantics. The
examples are designed to illustrate properties of our design in a concise manner. For all semantics given
in this report, we provide an executable semantics that runs those examples that are also tests. These are
highlighted in this report as follows:

1

VPRI Technical Report TR-2014-002b

Test 101 // code snippets with a margin tag like this one

// are part of the language spec test suite

x := 0;

y := x + 1

The primary audience for this admittedly long tech report is first ourselves — we have clarified many aspects
of the language as a result of working out the formalism — and second, other researchers who are interested
in the details. We are also writing a standard-length paper for a programming language conference that
presents some of the key ideas from this tech report and that is intended to be of more general interest to
the programming languages community.

2 Motivation

Our formal semantics is intended to provide a complete semantics of Babelsberg that can be used to inform
practical implementations of the language. It is meant to be as simple as possible, while still encompassing
the major design decisions needed to guide language implementers. Because Babelsberg is a design to provide
object-constraint programming in an object-oriented host language, the semantics omits some constructs such
as exception handling for constraint solver failures and syntactic sugar that are intended to be inherited from
the host language. The semantics instead focuses on the expression of standard object-oriented constructs
that need to be modified to support the Babelsberg design.

An overarching design goal is that in the absence of constraints, Babelsberg should be a standard object-
oriented language. We have thus resisted the temptation to add other interesting features; instead we aim
to make the smallest possible changes while still accommodating constraints in a clean and powerful way.

We require that our design support a useful and expressive language for constraints, integrated with the host
object oriented language in a clean way. Beyond this, however, a heuristic for the design is that when there
is a choice, we favor simplicity over power (at least power to do interesting operations in the language that
have nonetheless not yet proven themselves useful in practice, in particular with respect to object identity
and type). The constraint imperative language Kaleidoscope [6, 7, 8, 9], particularly the early versions, was
arguably too complex in part because it was too powerful in interesting ways of just this kind, making it
difficult to understand what the result of a program might be and also difficult to implement efficiently.
Trying to follow this heuristic also makes the design more independent of the particular host language and
solvers used in implementing it, because only a small set of basic operations have to be adapted.

Some significant clarifications and simplifications of Babelsberg that have come out of this work on formal-
izing the language are:

• A clearer understanding of the interactions among constraints on identity, types, and values.

• The addition of structural compatibility checks to tame the power of the solver with respect to changing
object structure and type to satisfy constraints.

• The addition of value classes. (Instances of value classes are immutable objects for which object identity
is not significant.) Value classes play a key role in giving a clear specification of the requirements
for expressions that define constraints (in particular that they must be side effect free), while still
supporting useful programming idioms.

• A set of restrictions on identity constraints that make it easier to reason about object identity and
type. In particular, any change to the identity of the object referred to by a variable flows clearly from
a single assignment statement, and is deterministic — there are never multiple correct solutions to the

2

VPRI Technical Report TR-2014-002b

identity constraints. This also implies that any change to the type of a variable must similarly flow
from a single assignment statement and be deterministic.

3 Constraints

The semantics for each of these languages includes a step in which we assert that some set of values for
variables is a correct solution to a collection of hard and soft constraints. There is a constraint solver that is
a black box as far as the rest of the formal semantics is concerned, and that handles all the issues regarding
finding a solution, dealing with conflicting soft constraints, and so forth. The solver should be sound but may
be incomplete (i.e., it should never return an incorrect answer, but might respond that the set of constraints
is too difficult for it to determine whether or not there is a solution).

We use the semantics for hard and soft constraints presented in [3]. An earlier paper on Babelsberg [4] has a
description of the relevant theory as well. The knowledge about how to handle hard and soft constraints is
left entirely up to the solver and doesn’t enter into the formal semantics, so the discussion in the rest of this
section is intended to help the reader understand the informal examples — it isn’t relevant to the formal
semantics.

The solver should find a single best solution — if there are multiple solutions, the solver is free to pick
any one of them. (Providing answers rather than solutions, i.e., results such as 10 ≤ x ≤ 20 rather than
a single value for x, and backtracking among multiple answers, as available in for example constraint logic
programming [11], is left for future work — see Appendix A.3.)

The way we trade off conflicting soft constraints is defined by a comparator. The solver encodes the compara-
tor being used, making it irrelevant to the formal semantics — however, in presenting the informal program
examples we’ll sometimes need to specify which is used, and for this reason we include a brief discussion of
comparators.

The two most relevant comparators are locally-predicate-better (LPB) and weighted-sum-better (WSB).
Locally-predicate-better only cares whether a constraint is satisfied or not, not how far off the value is from
the desired one. Any Pareto-optimal solution is acceptable. For example, a solution that satisfies one weak
constraint A and violates three weak constraints B, C, and D is OK, as long as there isn’t a solution that
satisfies both A and some additional constraint, even if there is another solution that satisfies B, C, and
D but not A. The DeltaBlue solver [10] finds LPB solutions. Weighted-sum-better considers the weighted
sum of the errors of constraints with a given soft priority, and picks a solution that minimizes the sum. If
there is more than one solution and there are additional lower priority constraints, we then consider the
lower-priority ones to winnow down the possible solutions, priority by priority. For this comparator we need
an error in satisfying a constraint, which should be 0 iff the constraint is satisfied. Cassowary [2] finds WSB
solutions.

Here are two examples. (These are described from the point of view of the declarative theory of hard and
soft constraints, not with respect to how an actual solver can find that solution.)

required x+ y = 10
strong x = 8

weak y = 0

The required constraint has an infinite number of solutions. When we winnow these down to solutions that
satisfy the strong constraint, there is only one left: x = 8, y = 2. This is both a LPB and a WSB solution.
The weak constraint has no impact on the solution in this case.

Now consider:

3

VPRI Technical Report TR-2014-002b

required x+ y = 10
strong x ≥ 5

weak y = 20

We’ll only consider the WSB comparator this time, since it is more suitable for use with inequalities.
(DeltaBlue does not handle inequalities.) Again, the required constraint has an infinite number of solutions.
We winnow these down with the strong constraint to all x ∈ [5,∞), y such that x + y = 10. The weak
constraint is unsatisfiable, so we minimize its error, resulting in the solution x = 5, y = 5.

Strict inequality constraints with metric comparators can be problematic in the presence of soft constraints,
since they can lead to no solutions. Consider:

required x > 10
weak x = 5

This set of constraints has no solution — for any potential solution that satisfies x > 10, we can find another
that better satisfies x = 5. For this reason, our examples usually use non-strict inequalities.

The “required” priority is special, in that those constraints must be satisfied in any solution. Both the
semantics of hard and soft constraints, and the Cassowary and DeltaBlue solvers, can handle arbitrary
numbers of soft priorities. However, for simplicity in the remainder of this note, we only use three, namely
“strong,” “medium,” and “weak”.

We can also annotate variables used in constraints as read-only. Intuitively, when choosing the best solutions
to a set of constraints with priorities, constraints should not be allowed to affect the choice of values for their
read-only variables, i.e., information can flow out of the read-only variables, but not into them. Read-only
annotations provide an important tool in a practical language for guiding the behavior of the constraint
solver. However, they don’t present any particular issues for the formal semantics — we would just pass
them on to the constraint solver to handle. Therefore, for simplicity we’ve dropped the extra rules to handle
them (since they were just copies of the rules for variables without the read-only annotation). Finally,
programs are often more concise if we permit read-only annotations on expressions as well as on variables.
To accommodate this, the practical languages do a simple rewrite to convert a read-only expression to a
read-only variable by introducing a fresh variable as needed — see Appendix A.2.

3.1 Conjunctions and Disjunctions of Constraints

In general, a constraint might consist of conjunctions, disjunctions, and negations of atomic constraints. For
a conjunction or disjunction, if there is a priority, it applies to the entire constraint, not to components.
Thus this is legal:

strong (x = 3 ∨ x = 4)

but this is not allowed:

(strong x = 3) ∨ (weak x = 4)

Only some solvers, such as Z3, can accommodate disjunctions and explicit conjunctions of constraints. For
DeltaBlue and Cassowary, conjunctions of constraints are implicitly specified by feeding multiple constraints
to the solver, while disjunctions aren’t allowed. However, as noted above, the solver is a black box as far as
the rest of the formal semantics is concerned.

4

VPRI Technical Report TR-2014-002b

3.2 Taming Identity Constraints

We introduce object identity in the Babelsberg/UID language, and continue to use it in our final language
Babelsberg/Objects. A central issue in the design of a constraint object language is the interaction between
constraints and object identity. Our earlier experience with Kaleidoscope suggests that it is all too easy to
make constraints on object identity and types be too powerful, so that they lead to non-obvious consequences.
This makes programs more difficult for the programmer to understand. To tame the power of constraints on
object identity and type, we set the following goals for this aspect of our design:

1. In those languages that include object identity, we want to support explicit but straightforward identity
constraints of the form x==y (i.e., that variables x and y refer to the same object).

2. The solution to the constraints should be deterministic as far as object identity and type are concerned
— there should never be multiple correct solutions in which a given variable refers to objects with
different identities in the different solutions.

3. Any change to the identities of the objects referred to by variables should flow from an assignment
statement — the constraint solver should not otherwise alter object identities.

4. To make Babelsberg programs more understandable for the programmer, we want to be able to reason
about the constraints so that we can first solve all the identity constraints (with a deterministic solution,
in keeping with Goal 2), and then the value constraints. A design that meets this goal of course benefits
the language implementer as well.

In our intermediate language Babelsberg/Records, in which we introduce structured data in the form of
immutable records but not yet object identity, we want analogous properties to hold: the solution to the
constraints should be deterministic as far as object structure is concerned, and any changes to object structure
should flow from an assignment statement.

4 Babelsberg/Reals and Babelsberg/PrimitiveTypes

We start with a very basic language, Babelsberg/Reals, that has only primitive values. In Babelsberg,
constraints are expressions that return a boolean — the constraint solver’s task is to find values for the
variables in the constraint’s expression such that it evaluates to true. So Boolean is a required datatype for
all Babelsberg languages. In addition, we add reals as a second primitive type.

The evaluation model for Babelsberg/Reals is mostly standard for ordinary expressions and statements. In
contrast, a statement that adds a constraint starts with a duration, namely always or once. The expression
following the duration is taken unevaluated and added to the constraint store. For always, the constraint
remains for the duration of the program’s execution; for once, it is removed after the solver finds a solution
to the current set of constraints. The only wrinkle in the evaluation model for ordinary statements is that
for an assignment statement, we evaluate the expression on the right hand side of the assignment, constrain
the variable on the left hand side of the assignment to be equal to the result using a once constraint, and
then turn all the constraints over to the solver. Doing this ensures that assignment interacts correctly with
other constraints.

Here are some examples.

5

VPRI Technical Report TR-2014-002b

Test 1 x := 3;

x := 4;

always x>=10

After evaluating the first statement we hand the following once constraint to the solver to find a value for x:

required x = 3

The solver finds a value for x, which is then used to update the environment to be x 7→ 3.

Note that programs, as well as the variable names and values in the environment, are written in fixed pitch
font. For contrast, we write the constraints that are handed to the solver in math font.

Continuing with the example, after the second statement we hand the following constraints to the solver:

weak x = 3
required x = 4

The weak x = 3 constraint is the stay constraint that x retain its previous value, while the required x = 4
constraint comes from the second assignment. This has the solution x = 4, resulting in a new environment
x 7→ 4.

The third statement adds the always constraint to the constraint store. So after that statement we have
the following constraints:

weak x = 4
required x ≥ 10

If we use a metric comparator such as weighted-sum-better or least-squares-better, we get the solution
x = 10, since this minimizes the error for the weak constraint. If we use locally-predicate-better, then every
x ∈ [10,∞) is a solution, and the system is free to select any of them. (However, as noted in Section 3,
typically we wouldn’t use LPB if we have inequalities.)

The following example illustrates using the same variable on the left and right hand sides of an assignment
statement, as well as the interaction of assignments with always constraints.

Test 2 x := 3;

y := 0;

always y = x+100;

x := x+2

After evaluating the first two statements and solving the resulting constraints, the environment has the
binding x 7→ 3, y 7→ 0. The third statement causes the constraint always y = x+100 to be added to the
constraint store. We then hand the following constraints to the solver to find values for x and y:

weak x = 3
weak y = 0

required y = x+ 100

This has multiple possible solutions, and the solver can select any one of them. Suppose it picks x 7→ 3,
y 7→ 103.

After evaluating the next statement, we have the following constraints:

weak x = 3
weak y = 103

required y = x+ 100
required x = 5

6

VPRI Technical Report TR-2014-002b

The first two constraints are the weak stays on x and y, the third comes from the always constraint in
the constraint store, and the fourth comes from the assignment x:=x+2 (where we evaluated x+2 in the old
environment to get 5). After solving these constraints, we have x 7→ 5, y 7→ 105.

New variables must be created with an assignment statement. Thus the following program is illegal — we
would need to create x first with an assignment statement before adding the always constraint.

Test 3 always x=10;

Requiring that variables be created before equating them with something can be annoying for the program-
mer. We decided that indeed the above program is illegal in the formal semantics. However, in practical
implementations, we can have a shortcut to allow it. It only works for = constraints where one side is a new
variable and all variables on the other side already exist. The behavior is that the system creates the new
variable, evaluates the other side of the equality, assigns it to the new variable, and then adds the equality
constraint as an always constraint.

An interesting aspect of this semantics, both as presented informally above and in the formalism that follows,
is that we no longer model assignment as a constraint on variables at different times, as was done in for
example the first Babelsberg paper [4]. See Appendix A.4 for a discussion of these alternatives. (This is
relegated to the appendix since, while interesting, it is largely orthogonal to the task at hand of providing a
formal semantics for Babelsberg).

The program might also introduce simultaneous equations and inequalities. For example:

Test 4 x := 0;

y := 0;

z := 0;

always x+y+2*z = 10;

always 2*x+y+z = 20;

x := 100

Assuming the solver can solve simultaneous linear equations, after the final assignment we will have x 7→ 100,
y 7→ -270, z 7→ 90.

As an example of unsatisfiable constraints, consider:

Test 5 x := 5;

always x<=10;

x := x+15

After evaluating the first statement the environment includes the binding x 7→ 5. After evaluating the
statement that generates the always constraint, we solve the constraints

weak x = 5
required x ≤ 10

This has the solution x = 5. Then we evaluate the last assignment, resulting the constraints

weak x = 5
required x ≤ 10
required x = 20

Note that the required x ≤ 10 constraint has persisted into this new set of constraints. These constraints
are unsatisfiable.

7

VPRI Technical Report TR-2014-002b

4.1 Requirements for Constraint Expressions

The expressions that define constraints have a number of restrictions. These will apply to all of the Babelsberg
languages.

1. Evaluating the expression that defines the constraint should return a boolean. (This is checked dy-
namically.)

2. The constraint expression should be free of side effects.1

3. The result of evaluating the block should be deterministic. For example, an expression whose value
depended on which of two processes happened to complete first wouldn’t qualify. (This does not arise
in the toy languages here, although we do need this restriction for a practical one.)

4.2 Control Structures

Babelsberg/Reals includes if and while control structures. These work in the usual way, and allow (for
example) a variable to be incremented only if a test is satisfied, or an always constraint to be conditionally
asserted. The test for an if statement is evaluated, and one or the other branch is taken — there is no
notion of backtracking to try the other branch. (Adding Prolog-style backtracking is left for future work —
see Appendix A.3.) Similarly, a while statement executes the body a fixed number of times — there is no
possibility of backtracking to execute it a different number of times.

The test in an if or while statement can use short-circuit evaluation when evaluating an expression involving
and and or. For example, this program results in x 7→ 100 (and doesn’t get a divide-by-zero error):

Test 6 x := 4;

if x=4 or x/0=10

then x := 100

else x := 200

For simplicity, our formal rules don’t include short-circuit evaluation — adding it would be straightforward
but would require additional, not-very-interesting rules.

Constraints with conjunctions or disjunctions are just turned over to the solver, rather than being evaluated
using short-circuit evaluation. We could also add if expressions to the language (distinct from if state-
ments). However, since there is a simple translation from if expressions to conjunctions and disjunctions,
we don’t include them. (If we did have them, they would also need to simply be turned over to the solver.)
For example, the following two constraints are equivalent, and have the solution x 7→ 10:

x := 0;

always if x=4 then x=5 else x=10

Test 7 x := 0;

always (x=4 and x=5) or (x!=4 and x=10)

In either case, we would turn the entire constraint over to the solver to find a solution for x.

Here is an example of an unsatisfiable constraint of this sort:

1In a practical implementation, the programmer might be able to make cautious use of benign side effects in a constraint
expression, for example, for caching or constructing temporary objects that are garbage collected before they are visible outside
the constraint. In the formal semantics, however, we simply disallow side effects in constraint expressions.

8

VPRI Technical Report TR-2014-002b

always if x=4 then x=5 else x=4

which is equivalent to:

always (x=4 and x=5) or (x!=4 and x=4)

4.3 Adding Other Primitive Types

It is straightforward to extend Babelsberg/Reals with other primitive types, such as integers and strings.
When we need to refer to this language rather than just Babelsberg/Reals we will call it Babelsberg/Prim-
itiveTypes. Note that all the types in Babelsberg/PrimitiveTypes are atomic — we don’t have recursive
types or types that define values that hold other values (such as records, arrays, or sets).

Since we are modeling a dynamically typed language, we need to consider the case of changing the type of
a variable. Here’s a simple example program that illustrates this.

Test 8 x := 5;

x := "Hello ";

After the second statement we solve the following constraints:

weak x = 5
required x = "Hello"

The final result is x 7→ "Hello".

The changed type might propagate through an always constraint:

Test 9 x := 5;

y := 10;

always y = x;

x := "Hello ";

The final result is that both x and y are strings.

There is also a potential interaction with overloaded operators. Suppose that for strings + denotes string
concatenation:

Test 10 x := 5;

y := 10;

always y = x+x;

x := "Hello ";

After the always statement we have x 7→ 5, y 7→ 10. Then after the final statement, we have the constraints

weak x = 5
weak y = 10

required y = x+ x
required x = "Hello"

This has the solution x 7→ "Hello", y 7→ "HelloHello".

Non-determinism can arise for primitive types as well as values:

9

VPRI Technical Report TR-2014-002b

Test 11 x := 3;

always weak x=5;

always weak x="hello";

Here the solver is free to choose either an integer or a string for x. This is strange, and also not really
in keeping with the spirit of the goals for our languages with respect to constraints and object identity
(Section 3.2). However, it is just an artifact of the semantic rules we are using for Babelsberg/PrimitiveTypes
— for simplicity, in these rules we don’t distinguish among primitive types, with the consequence that the
above program is legal. When we get to our final goal (the Babelsberg/Objects language) the corresponding
program will be disallowed due to the automatic boxing and unboxing of primitive types in the formal
semantic rules.

4.4 Formalism

We present the formal semantics of Babelsberg/PrimitiveTypes.

4.4.1 Syntax

Statement s ::= skip | x := e | always C | once C | s;s
| if e then s else s | while e do s

Constraint C ::= ρ e | C ∧ C

Expression e ::= c | x | e ⊕ e

Constant c ::= true | false | base type constants
Variable x ::= variable names

Value v ::= c

The language includes a set of boolean and base type constants (e.g., reals), ranged over by metavariable
c. A finite set of operators on expressions is ranged over by ⊕. This includes operations on the reals
such as + and *, a set of predicate operators (= and 6=, ≤, <, =, and so on. It also includes a set of
logical operators for combining boolean expressions (e.g., ∧, ∨). The predicate operations are assumed to
include at least an equality operator = for each primitive type in the language, and the logical operations
are assumed to include at least conjunction ∧. The syntax of this language does have some limitations as
compared with that of a practical language — for example, there are only binary operators (not unary or
ternary), and the result must have the same type as the arguments. We make these simplifications since
the purpose of Babelsberg/PrimitiveTypes is to elucidate the semantics of such languages as a step toward
Babelsberg/Objects, rather than to specify a real language.

For constraints, the symbol ρ ranges over a finite and totally ordered set of constraint priorities and is
assumed to include a bottom element weak and a top element required. While syntax requires the
priority to be explicit, for simplicity we sometimes omit it in this semantics. A constraint with no explicit
priority implicitly has the priority required. Finally, for simplicity we do not model read-only annotations
in the formal semantics.

The syntax is thus that of a simple, standard imperative language except for the always and once statements,
which declare constraints. An always constraint must hold for the rest of the programs execution, whereas a
once constraint is satisfied by the solver and then retracted. Note that for simplicity this semantics implicitly
gets stuck whenever the solver cannot satisfy a constraint, either due to an unsatisfiable constraint or due
to the solver being unable to determine whether the constraint is satisfiable. In a practical implementation,
we would likely want to differentiate between these cases, since it’s useful if we can inform the programmer

10

VPRI Technical Report TR-2014-002b

that the constraints are truly not satisfiable. We could also add standard exception handling to remove the
unsatisfiable or unknown constraint and continue, but omit this here for simplicity.

4.4.2 Semantics

The semantics is defined by several judgments, defined below. These judgments depend on the notion of an
environment, which is a partial function from program variables to program values. Metavariable E ranges
over environments. When convenient we also view an environment as a set of (program variable, program
value) pairs. For each operator ⊕ in the language we assume the existence of a corresponding semantic
function denoted J⊕K.

E ` e ⇓ v

“Expression e evaluates to value v in the context of environment E.”

E ` c ⇓ c (E-Const)

E(x) = v

E ` x ⇓ v
(E-Var)

E ` e1 ⇓ v1 E ` e2 ⇓ v2 v1 J⊕K v2 = v

E ` e1 ⊕ e2 ⇓ v
(E-Op)

E |= C

This judgment represents a call to the constraint solver, which we treat as a black box. The proposition
E |= C denotes that environment E is a solution to the constraint C (and further one that is optimal according
to the solver’s semantics, as discussed earlier).

stay(x=v, ρ) = C

stay(E, ρ) = C

This judgment defines how to translate an environment into a source-level “stay” constraint. It takes a
priority as an argument, which is not used at this stage of the semantics. It will, however, be used in all the
later languages.

E = {(x1, v1), . . ., (xn, vn)} stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn

stay(E, ρ) = C1 ∧ · · · ∧ Cn
(StayEnv)

stay(x=c, ρ) = weak x=c (StayConst)

<E|C|s> −→ <E′|C′>

11

VPRI Technical Report TR-2014-002b

“Execution starting from configuration <E|C|s> ends in state <E′|C′>.”

A “configuration” defining the state of an execution includes a concrete context, represented by the environ-
ment, a symbolic context, represented by the constraint, and a statement to be executed. The environment
and statement are standard, while the constraint is not part of the state of a computation in most languages.
Intuitively, the environment comes from constraint solving during the evaluation of the immediately pre-
ceding statement, and the constraint records the always constraints that have been declared so far during
execution. Note that our execution implicitly gets stuck if the solver cannot produce a model.

E ` e ⇓ v stay(E, ρ) = Cs E′ |= (C ∧ Cs ∧ x = v)

<E|C|x := e> −→ <E′|C>
(S-Asgn)

stay(E, ρ) = Cs E′ |= (C ∧ Cs ∧ C0)

<E|C|once C0> −→ <E′|C>
(S-Once)

<E|C|once C0> −→ <E′|C> C′ = C ∧ C0

<E|C|always C0> −→ <E′|C′>
(S-Always)

<E|C|skip> −→ <E|C> (S-Skip)

<E|C|s1> −→ <E′|C′> <E′|C′|s2> −→ <E′′|C′′>

<E|C|s1;s2> −→ <E′′|C′′>
(S-Seq)

E ` e ⇓ true <E|C|s1> −→ <E′|C′>

<E|C|if e then s1 else s2> −→ <E′|C′>
(S-IfThen)

E ` e ⇓ false <E|C|s2> −→ <E′|C′>

<E|C|if e then s1 else s2> −→ <E′|C′>
(S-IfElse)

E ` e ⇓ true <E|C|s> −→ <E′|C′> <E′|C′|while e do s> −→ <E′′|C′′>

<E|C|while e do s> −→ <E′′|C′′>
(S-WhileDo)

E ` e ⇓ false

<E|C|while e do s> −→ <E|C>
(S-WhileSkip)

5 Babelsberg/Records

For this next language, we augment Babelsberg/PrimitiveTypes with immutable records. This language is
interesting on its own as an expository language and as a step toward Babelsberg/Objects; but we will also
continue to use these immutable records in the formal semantics for Babelsberg/Objects to represent value
classes (see Section 7).

Records are written as lists of name/value pairs in curly braces:

{x:5, y:10}

There is no notion of object identity for Babelsberg/Records — we can test whether two records are equal,
but whether or not they are identical would be an implementation issue and not part of the semantics.

The syntax is extended to include record constructors and field access. Here are examples of expressions,
assignment statements, and constraints involving records:

12

VPRI Technical Report TR-2014-002b

Test 12
p := {x:2, y:5}; /* assign a record to p */

a := p.x; /* access a field of a record and assign it to

a variable */

q := p; /* q is now a copy of p (or maybe it’s shared;

we can ’t tell the difference) */

always p.x = 100; /* a constraint on a record field */

always q.x = p.x && q.y = p.y;

always q.y = 20;

Note the difference between the assignment q:=p and the constraint always q=p. After the always p.x=100

constraint, we have p 7→ {x:100, y:5} but q 7→ {x:2, y:5}— at this point p and q are unrelated, so adding
the constraint on p.x had no effect on q. However, after the final constraint, we have p 7→ {x:100, y:20}
and q 7→ {x:100, y:20}, since p and q are now constrained to be equal.

The solver must now also handle records. To tame the power of the solver so that it does not (for exam-
ple) invent new fields for records, we add structural compatibility checks on constraints. These structural
compatibility checks are assertions that are checked dynamically before sending the constraints involving
records to the solver, for example, checking whether a variable is bound to a record, and whether the record
has the necessary fields. While these assertions are checked, unlike constraints the system will never change
anything to enforce them — if one is violated it’s just an error. Instead, the programmer must ensure that a
record with the expected fields is first assigned to a variable used in record constraints, just as a programmer
would need to ensure that a record with the expected fields was assigned to a record-valued variable in a
standard language.

Here are a few examples of structural compatibility checks.

p := {x:2, y:5};

always p.x = 100;

The structural compatibility check is that p is a record that has an x field, which succeeds.

The following program is OK — just as in Babelsberg/PrimitiveTypes, we can change the type of a variable
using an assignment.

Test 13 a := {x:1};

a := {y:10};

However, in contrast to Babelsberg/PrimitiveTypes, the following program fails the structural compatibility
checks — only an assignment can change the type of a variable, but the constraint would require the solver
to add a y field to a, and thus change its structural type.

Test 14 a := {x:1};

once a.y = y;

It is also not possible to use even equality between records:

Test 15 a := {x:1};

b := {x:1};

always a = b;

It’s a bit weird that this behavior treats immediate records differently from primitive types (in which a
similar program was OK). We decided against explicitly allowing only record equality operations, as it would
needlessly complicate the semantics. The above example could be ok, but we do not want later assignments
to ripple through the system. Once we introduce object identity, we will be able to have changes to the types

13

VPRI Technical Report TR-2014-002b

of variables ripple through the system via identity constraints (but it will need to be via identity constraints
and not value constraints). However, even so, the above constraint may be ok, if we chose the rules for our
stay constraints appropriately.

Here’s another example that illustrates the issue:

Test 16 a := {x:0};

b := {y:5};

always a = b

This example fails even if we allowed equality between records, even though there actually are records that
would satisfy the required a = b constraint — the issue is that the assignment to a leaves it with a record
type that has a single x field, the assignment to b leaves it with a record type that has a single y field, and
the structural compatibility check prevents the solver from changing either of these types. This illustrates
one aspect of using the structural compatibility checks to tame the solver — one could otherwise imagine the
solver coming up with the solution a 7→ {x:0, y:5} and b 7→ {x:0, y:5}, or even a 7→ {x:0, y:5, z:10}
and b 7→ {x:0, y:5, z:10}. See Appendix A.6 for more about this issue.

This next program illustrates why it would not be ok to allow comparison operations between records:

Test 17 a := {x:1};

b := {x:1};

always a != b;

a := b;

Here, we are asking that two records be not equal. For line 3, we can create stay constraints so that the solver
changes b.x to be a different integer for the always constraint. This would be done by forcing the solver to
keep the structure of records during solving, including the structure of its fields, recursively. However, we
want to allow the solver to change the structure of records during assignments, thus complicating the rules for
line 4. If we make the stays on the structure of all records weak, then nothing prevents the solver from setting
b.x to be the empty record, rather than a different integer, a solution that would clearly be undesired and
violate our desire to have structurally deterministic solutions. For simplicity in the rules, we thus disallow
operations on entire records completely, requiring the programmer to explicitly reference the fields down to
primitive types. While this may seem like a strong restriction, once we introduce object-oriented methods,
these explicit field accesses would be hidden in comparator methods.

This program fails the structural compatibility checks as well:

Test 18 a := {x:1};

b := {x:1};

always a.x = b.x;

a := {a:1, b:10};

Here, assigning a record with a different structure to a is OK on its own, but the always constraint would
also require b to change. As mentioned above, we want to prevent such changes from rippling through the
system. Via equality constraints.

A few more examples:

These two programs fail, because as in Babelsberg/PrimitiveTypes only assignment can initialize variables.

once a.y = 10;

14

VPRI Technical Report TR-2014-002b

Test 19 a := {y:10};

always b.y = a.y;

The following program also fails the structural compatibility checks, since the always constraint expects p

to have a y field but it doesn’t:

Test 20 p := {x:2};

always p.y = 100;

This program fails as well, since constraining a record to be equal to a number fails the compatibility check:

Test 21 p := {x:2};

always p = 5;

The following program passes the structural compatibility checks, but ends up with an unsatisfiable constraint
error, since we are requiring that p.x be both 100 and 2:

Test 22 p := {x:0, y:0};

always p.x = 100;

p := {x:2, y:5};

However, the following program is OK:

p := {x:0};

always medium p.x = 3;

always medium p.x = 4

The solution will be that p is a record with a single field x bound to a number, with the exact value
depending on the solver (3, 4, or 3.5 being the most reasonable possibilities). Note that the solver may
need to adjudicate among solutions that have different primitive types in a given field, but the structural
compatibility checks ensure that it doesn’t need to decide between two records with e.g. different numbers
of fields.

5.1 Formalism

5.1.1 Syntax

The syntax from Section 4 is augmented now to support records and the ability to access fields of a record:

Expression e ::= · · · | {l1:e1,. . .,ln:en} | e.l
Label l ::= record label names

Value v ::= c | {l1:v1,. . .,ln:vn}

We now assume the solver “understands” records and record operations directly. We assume the equality
operator = can be used to compare two records for logical equality, but no other operators apply to record
values.

5.1.2 Semantics

E ` e ⇓ v

15

VPRI Technical Report TR-2014-002b

Expression evaluation is updated to support records.

E ` e1 ⇓ v1 · · · E ` en ⇓ vn

E ` {l1:e1,. . .,ln:en} ⇓ {l1:v1,. . .,ln:vn}
(E-Rec)

E ` e ⇓ {l1:v1,. . .,ln:vn} 1 ≤ i ≤ n

E ` e.li ⇓ vi
(E-Field)

E ` e : T

E ` C

“Expression e has type T in the context of environment E.”

“Constraint C is well formed in the context of environment E.”

We use a notion of typechecking to prevent undesirable non-determinism in constraints. Specifically, we
want constraint solving to preserve the structure of the values of variables, changing only the underlying
primitive data as part of a solution, in support of the goals listed in Section 3.2. We formalize our notion of
structure through a simple syntax of types:

Type T ::= PrimitiveType | {l1:T1,. . .,ln:Tn}

The typechecking rules are mostly standard. However, we check expressions dynamically just before con-
straint solving, so we typecheck in the context of a runtime environment, which is somewhat unusual.

E ` c : PrimitiveType (T-Const)

E ` x ⇓ v E ` v : T

E ` x : T
(T-Var)

E ` e1 : T1 · · · E ` en : Tn

E ` {l1:e1,. . .,ln:en} : {l1:T1,. . .,ln:Tn}
(T-Rec)

E ` e : {l1:T1,. . .,ln:Tn} 1 ≤ i ≤ n
E ` e.li : Ti

(T-Field)

E ` e1 : PrimitiveType E ` e2 : PrimitiveType

E ` e1 ⊕ e2 : PrimitiveType
(T-Op)

The rule T-Field ensures that a field of a record can only be referenced when it already exists in the
record. This is necessary to ensure that the solver will never have to invent record fields in order to satisfy
a constraint containing field accesses.

The rule T-Field above rule ensures that only primitive values can be combined with binary operations —
operations on records have to explicitly reference the fields in questions.

The following two rules simply ensure that a constraint is well typed.

E ` e : T

E ` ρ e
(T-Priority)

16

VPRI Technical Report TR-2014-002b

E ` C1 E ` C2

E ` C1 ∧ C2
(T-Conjunction)

E |= C

The solving judgment is unchanged from Babelsberg/PrimitiveTypes.

stay(x=v, ρ) = C

stay(E, ρ) = C

We add a stay rule to express stays on records. For records, we create fresh variables for each field and add
a stay on the variable to refer to a record with exactly the same fields, and the fresh variables as values.
We then add stay constraints for each of those variables to be equal to the current value of the field. When
solving in S-Once, the stay on the structure will be required, so the structure of records cannot change
when adding a fresh constraint. During assignment, however, the stay will be weak, so that the structure
can change through imperative updates.

x1 fresh · · · xn fresh stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn

stay(x = {l1:v1,. . .,ln:vn}, ρ) = (ρ x = {l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn
(StayRecord)

<E|C|s> −→ <E′|C′>

The semantics for executing statements is essentially identical to what we had before, except that now we
typecheck constraints before we solve them. Implicitly we get “stuck” if such a check fails. In a practical
language, this could be extended to generate an exception instead. We only show the modified rules below.

E ` e ⇓ v E[x 7→ v] ` C stay(E, weak) = Cs E′ |= (C ∧ Cs ∧ x = v)

<E|C|x := e> −→ <E′|C>
(S-Asgn)

The second premise above is necessary so that we don’t pass the solver an ill-typed set of constraints.
Specifically, since the assignment can change the type of x, we have to make sure that the global constraints
in scope, C, are well typed with respect to this new type. Note that the stay constraint for x within Cs may
not be well typed with respect to the new type of x, but that’s OK since the required constraint x = v will
take precedence. The syntax E[x 7→ v] denotes the environment identical to E but with x mapped to the
value v.

E ` C0 stay(E, required) = Cs E′ |= (C ∧ Cs ∧ C0)

<E|C|once C0> −→ <E′|C>
(S-Once)

5.2 Adding Mutable Records

It would be easy to extend Babelsberg/Records to allow mutable records. Syntactically, we would simply
allow field accesses as l-values, e.g.,

17

VPRI Technical Report TR-2014-002b

p := {x:0, y:0};

p.x := 100;

After the second assignment, we would have p 7→ {x:100, y:0}. This doesn’t add any particular complica-
tions to the semantics.

We can equivalently express this program without mutable records as follows:

Test 23 p := {x:0, y:0};

once p.x = 100

However, the only additional feature provided by such an extension would be the syntax allowing field
accesses as l-values — we can always convert such a program into one that only has immutable records by
making a new record whose fields are simply copied from those in the old record, except for the field being
assigned. For example, the above program is equivalent to the following program in Babelsberg/Records:

p := {x:0, y:0};

p := {x:100, y:p.y};

In any case there still would be no notion of object identity. Consider:

p := {x:0, y:0};

q := p;

p.x := 100;

After executing the three statements p 7→ {x:100, y:0}, but q 7→ {x:0, y:0}.

Mutable records would thus simply provide a syntactic convenience, rather than some new capability. We
would still want immutable records as well (which we will use to model instances of value classes in the
formal semantics for Babelsberg/Objects), so this would also add clutter to the languages. We therefore
don’t include Babelsberg with mutable records as a separate language.

6 Babelsberg/UID

Babelsberg/UID adds a number of features to the language. As another step toward representing objects,
we augment Babelsberg/PrimitiveTypes with records that live on the heap, and that are mutable, have an
identity, and can be aliased. As with Babelsberg/Records these are represented as lists of name/value pairs
in curly braces:

{x:5, y:10}

However, to emphasize that we now allocate records with object identity on the heap, we use the keyword
new when creating one. The syntax includes field accesses as both r-values and l-values.

In all the examples in this section, we will only use records with object identity. However, later, when
we are formalizing Babelsberg/Objects, we will use both kinds of records: records with object identity to
model objects that have identity, and immutable records (as in Babelsberg/Records) to model instances of
value classes (which are immutable objects for which object identity is not significant). It should be clear
from context when we use the word “record” what kind we mean; but when it’s necessary to distinguish
them, we’ll use the terms “i-record” and “uid-record” for immutable records and records with object identity
respectively.

Only uid-records live on the heap — primitive values and i-records do not. (It would be possible to store all
data on the heap, but we elected not to, since having everything on the heap makes the descriptions more

18

VPRI Technical Report TR-2014-002b

complex — there would always be a level of indirection to get to data. If one wants the effect of storing an
integer or boolean or i-record on the heap, it is easy to simulate this by constructing a uid-record that has
a single field that holds the integer or boolean or i-record.)

A field of a uid-record holds either a primitive type, a i-record, or a reference to another uid-record. There is
no syntax for creating a nested uid-record directly — nested records have to be constructed with references, so
each record must have a variable that refers to it, even if it is only used in a nested structure. This simplifies
the semantics. (Nested uid-records could be supported directly with just a source code transformation. In
any case, when we get to Babelsberg/Objects, we will remove this restriction and allow expressions that do
involve creating new objects.)

Since object identity is now significant, we add identity constraints to the language (following Smalltalk
syntax, written ==, in contrast to = for equality constraints). For records p and q, if p and q are identical,
they must also be equal, but the converse is not necessarily true — if p and q are equal, they might or might
not be identical.

Unlike Babelsberg/PrimitiveTypes and Babelsberg/Records, the weak stays on variables are identity con-
straints rather than equality constraints. For uid-records, such a variable continues to refer to the same
object unless reassigned. This is a direct consequence of the weak stays referring to the references the vari-
ables hold, not the records on the heap. In addition, there are also weak stay constraints on the values in
the record fields.

For simplicity, we also allow identity tests and constraints on primitive types and i-records. (Otherwise we
would need two different translations for assignment.) Again for simplicity, two instances of a primitive type
or i-record are identical iff they are equal. (Allowing them to be equal but not identical would seem to imply
storing them on the heap, which would complicate the semantics.)

Here are some examples involving uid-record fields and constraints:

Test 24 p := new {x:2, y:5}; /* create a record on the heap and save the

reference in p */

a := p.x; /* read a field of a record and assign it

to a variable */

p.x := 6; /* assign 6 to the field p.x */

always p.x = 100;

As with Babelsberg/Records, there is no static type checking — checking is all done dynamically. As before,
our model includes structural compatibility checks on constraints, which tames the solver so that it doesn’t
do such things as inventing new records or adding fields to a record. (The only way to create a new record
is with an explicit new expression in the program, and this also defines all of the fields that it has and will
ever have.)

After executing the right hand side of the first statement, the heap is updated with a new object and a
reference r to point to it. The assignment and stay constraints then desugar into:

required p = r
required H(r) = {x : xr, y : yr}

weak xr = 2
weak yr = 5

The reference r is a constant. We assume the solver understands uninterpreted function symbols. The
uninterpreted function symbol H in the second constraint above is used to represent the heap’s mapping
from references to their contents; the constraint forces the solver to keep the reference r pointing to a record
that has only x and y fields. We introduce variables for the values of these fields and add weak stays so

19

VPRI Technical Report TR-2014-002b

these keep the values with which they were created — these can always be satisfied, because the variables
are fresh.

After the second statement we have the stay constraints on p and its fields, and the required constraint
resulting from the assignment:

weak p = r
required H(r) = {x : xr, y : yr}

weak xr = 2
weak yr = 5

required a = 2

After the third statement:

weak p = r
required H(r) = {x : xr, y : yr}

weak xr = 2
weak yr = 5
weak a = 2

required p.x = 6

And finally:

weak p = r
required H(r) = {x : xr, y : yr}

weak xr = 6
weak yr = 5
weak a = 2

required p.x = 100

After solving the final set of constraints we have the environment p 7→ r ∧ a 7→ 2, as well as the heap r 7→
{x:100, y:5}.

Here is an example that fails the structural compatibility checks.

Test 25 p := new {x:2, y:5};

always p.z = 5;

As before, the system is not allowed to add fields to records, so p would be required to have a z field already.

The following example demonstrates one form of aliasing:

Test 26 p := new {x:2, y:5};

q := p;

p.x := 100;

q := new {z:10};

p.x := 200;

After the assignment q:=p, q holds the same reference as p, so the subsequent assignment to p.x changes
both. But then we break the alias with another assignment to q, so the second assignment to p.x doesn’t
affect q (which by that point no longer has an x field).

There can also be explicit identity constraints:

20

VPRI Technical Report TR-2014-002b

Test 27 p := new {x:2, y:5};

q := p;

always q==p;

q := new {z:10};

After the last statement both p and q point to the same {z:10} record. Note that we don’t have structural
compatibility checks for re-satisfying identity constraints, so that the assignment to q that changes its
structure ripples through the identity constraint to change p as well. However, if the always constraint had
been a record equality constraint rather than an identity constraint, the last assignment to q would have
failed the structural compatibility check, which would have expected it to be a record with x and y fields.

In Section 3.2 we listed a number of goals for our design to attempt to tame the power of identity constraints
and the solver. In support of this, we require that variables be created in an assignment statement — the
above program would have been illegal if we didn’t have the q:=p statement but just tried to create q with
the always constraint. We also require that a new identity constraint be satisfied at the time it is created
— otherwise it’s an error (modeled in the formal semantics by the rules getting stuck). This restriction was
obeyed in the above program. Here is an example that violates it, and is hence not legal:

Test 28 p := new {x:2};

q := new {y:5};

always q==p;

Without the restriction, after the last statement p and q would definitely point to the same record, but
it might be either {x:2} or {y:5}. (In any case, p and q would still one of the records that was already
created by the new expressions — the solver wouldn’t invent a new one — but we want to tame the language
further.)

With the restriction, any changes to the types of variables must flow from an explicit assignment statement
— the effects can still ripple outwards via identity constraints — but they are deterministic. For the same
reason, we disallow disjunctions of identity constraints (since otherwise there could be programs with multiple
correct solutions to the identity constraints). It is only updates to values that can be non-deterministic as
the result of constraints. One item for future work will be to formalize and prove this statement, which
seems like a useful property for the language.

As another aspect of taming identity constraints, explicit priorities on identity constraints are not allowed —
there are only the implicit weak identity stay constraints on all variables. (We haven’t found any compelling
use cases for programmer-specified soft identity constraints, and omitting them simplifies reasoning about
identity constraints for the programmer.) For simplicity, there are no explicit conjunctions of identity
constraints, only the implicit conjunction resulting from writing several of them.

This program is thus illegal, since it uses explicit priorities on identity constraints:

Test 29 p := new {x:0};

q := new {x:5};

always medium p.x = 0;

always medium q.x = 5;

always weak p==q

Without the restriction, the programmer would need to interleave determining values and identities in
reasoning about the program’s behavior. For example, for the above program, to decide that we should leave
the weak identity constraint unsatisfied, we’d need to first solve the value constraints and then decide that
we can’t satisfy the weak identity constraint.

The solver can’t spontaneously create new uid-records if they are needed — new uid-records can only be
created with an explicit assignment with a new on the right hand side. Consider:

21

VPRI Technical Report TR-2014-002b

Test 30
a := new {x:1};

b := a;

always a.x=1;

always b.x=2;

After b:=a, a and b refer to the same record, but after the second always constraint, the solver would need
to spontaneously create a new record and point b at it to satisfy the constraints. So this program halts with
an unsatisfiable constraint error.

Similarly, the solver is not allowed to create a new record when an L-value is used on the left-hand side of
an assignment. So the next program fails, and the solver does not spontaneously create a record x with a
field l:

Test 31 x.l := 10

As a third example of this kind, the next program is also illegal – the last line makes the constraint unsat-
isfiable. The solver could satisfy is by adding a field b to the new object assigned to x, but we also disallow
this. Thus, when assigning x on the last line, the preceding value constraint no longer typechecks.

Test 32 x := new {b:0}

y := new {a:x}

always y.a.b == 0

x := new {c:0}

The solver also can’t switch identities around to satisfy value constraints. Here is the a program, where a
record with the required value for its x field happens to be lying around. But to no avail: this program halts
with an unsatisfiable constraint error as well, rather than silently changing b to refer to the {x:2} record. Our
formal semantics for Babelsberg/UID does not enforce that, but the full semantics for Babelsberg/Objects
does, by including appropriate rules for translating constraints to the solver. For now, we just implicitly
assume that there is a mechanism that prevents the solver from changing b.

Test 33 a := new {x:1};

b := a;

c := new {x:2};

always a.x=1;

always b.x=2;

6.1 Formalism

Since this version is significantly different than the prior formalisms, we present it in its entirety rather
than as a delta from those ones. Note that in this version we temporarily remove records as values. This
is to make the proofs for our theorems more concise. We will re-add them in the full Babelsberg/Objects
language.

6.1.1 Syntax

We use the following syntax for Babelsberg/UID:

22

VPRI Technical Report TR-2014-002b

Statement s ::= skip | L := e | x := new o | always C | once C

| s;s | if e then s else s | while e do s

Constraint C ::= ρ e | C ∧ C

Expression e ::= v | L | e ⊕ e | L==L | D
Object Literal o ::= {l1:e1,. . .,ln:en}
L-Value L ::= x | L.l
Constant c ::= true | false | nil | base type constants
Variable x ::= variable names
Label l ::= record label names
Reference r ::= references to heap records
Dereference D ::= H(e)

Value v ::= c | r

Metavariable c ranges over the nil value, booleans, and primitive type constants. A finite set of operators on
primitives is ranged over by ⊕. We assume that ⊕ includes an equality operator for each primitive type; for
convenience we use the symbol = to denote each of these operators. We also assume it includes an operator
∧ for boolean conjunction. The operator == tests for identity — for primitive values this behaves the same
as =. The symbol ρ ranges over constraint priorities and is assumed to include a bottom element weak and
a top element required. The syntax requires the priority to be explicit; for simplicity we sometimes omit it
in the rules and assume a required priority.

In the syntax, we treat H as a keyword used for dereferencing. Source programs will not use expressions of
the form H(e), but they are introduced as part of constraints given to the solver, which we assume will treat
H as an uninterpreted function. We also assume that the solver supports records and record equality, which
we also denote with the = operator.

6.1.2 Operational Semantics

The semantics includes an environment E and a heap H. The former is a function that maps variable
names to values, while the latter is a function that maps mutable references to “objects” of the form
{l1:v1,. . .,ln:vn}. When convenient, we also treat both E and H as a set of pairs ({(x,v),...} and
{(r,o),...}, respectively). The currently active value constraints are kept as a compound constraint C;
identity constraints are kept as a single conjunction referred to as I.

E;H ` e ⇓ v

“Expression e evaluates to value v in the context of environment E and heap H.”

The rules for evaluation are mostly as expected in an imperative language. We do not give rules for ex-
pressions of the form H(e), because they are not meant to appear in source. For each operator ⊕ in the
language we assume the existence of a corresponding semantic function denoted J⊕K.

E;H ` c ⇓ c (E-Const)

E(x) = v

E;H ` x ⇓ v
(E-Var)

E;H ` L ⇓ r H(r) = {l1:v1,. . .,ln:vn} 1 ≤ i ≤ n

E;H ` L.li ⇓ vi
(E-Field)

23

VPRI Technical Report TR-2014-002b

E;H ` r ⇓ r (E-Ref)

E;H ` e1 ⇓ v1 E;H ` e2 ⇓ v2 v1 J⊕K v2 = v

E;H ` e1 ⊕ e2 ⇓ v
(E-Op)

E;H ` L1 ⇓ v E;H ` L2 ⇓ v

E;H ` L1 == L2 ⇓ true
(E-IdentityTrue)

E;H ` L1 ⇓ v1 E;H ` L2 ⇓ v2 v1 6= v2

E;H ` L1 == L2 ⇓ false
(E-IdentityFalse)

E;H ` e : T

E;H ` C

“Expression e has type T in the context of environment E and heap H.”

“Constraint C is well formed in the context of environment E and heap H.”

We use a notion of typechecking to prevent undesirable non-determinism in constraints. Specifically, we
want constraint solving to preserve the structure of the values of variables, changing only the underlying
primitive data as part of a solution. We formalize our notion of structure through a simple syntax of types:

Type T ::= PrimitiveType | {l1:T1,. . .,ln:Tn}

The typechecking rules are mostly standard. We check expressions dynamically just before constraint solving,
so we typecheck in the context of a runtime environment. Note that we do not include type rules for identities.
This ensures that constraints involving them do not typecheck, so identity checks cannot occur in ordinary
constraints.

E;H ` c : PrimitiveType (T-Const)

H(r)={l1:v1,. . .,ln:vn} E;H ` v1 : T1 · · · E;H ` vn : Tn

E;H ` r : {l1:T1,. . .,ln:Tn}
(T-Ref)

E(x) = v E;H ` v : T

E;H ` x : T
(T-Var)

E;H ` L : {l1:T1,. . .,ln:Tn} 1 ≤ i ≤ n
E;H ` L.li : Ti

(T-Field)

E;H ` e1 : PrimitiveType E;H ` e2 : PrimitiveType

E;H ` e1 ⊕ e2 : PrimitiveType
(T-Op)

E;H ` e : T

E;H ` ρ e
(T-Priority)

E;H ` C1 E;H ` C2

E;H ` C1 ∧ C2
(T-Conjunction)

24

VPRI Technical Report TR-2014-002b

E;H |= C

This judgment represents a call to the constraint solver, which we treat as a black box. The proposition
E;H |= C denotes that environment E and heap H are an optimal solution to the constraint C, according to
the solver’s semantics.

We assume several well-formedness properties about a solution E and H to constraints C:

• any object reference appearing in the range of E also appears in the domain of H

• any object reference appearing in the range of H also appears in the domain of H

• for all variables x in the domain of E there is some type T such that E;H ` x : T

• E;H ` C

stay(x=v, ρ) = C

stay(r=o, ρ) = C

stay(E, ρ) = C

stay(H, ρ) = C

As in Kaleidoscope, the semantics ensure that each variable has a stay constraint to keep it at its current
value, if possible. The stay rules take a priority as a parameter. When solving value constraints, this priority
is set to required, to ensure that the structures of objects and the relationship between l-values and object
references cannot change. When solving identity constraints as part of executing an assignment statement,
the priority is set to weak to allow structural changes.

To properly account for the heap in the constraint solver, we employ an uninterpreted function H that maps
references to objects (i.e., records). The rules below employ this function in order to define stay constraints
for references.

stay(x=c, ρ) = weak x=c (StayConst)

stay(x=r, ρ) = ρ x=r (StayRef)

x1 fresh · · · xn fresh stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn

stay(r = {l1:v1,. . .,ln:vn}, ρ) = (required H(r)={l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn
(StayObject)

E= {(x1, v1), . . ., (xn, vn)} stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn

stay(E, ρ) = C1 ∧ · · · ∧ Cn
(StayEnv)

H= {(r1, o1), . . ., (rn, on)} stay(r1=o1, ρ) = C1 · · · stay(rn=on, ρ) = Cn

stay(H, ρ) = C1 ∧ · · · ∧ Cn
(StayHeap)

25

VPRI Technical Report TR-2014-002b

stayPrefix(E, H, L) = C

stayPrefix(E, H, I) = C

These judgments are another form of stay constraints that ensure that the “prefix” L of an l-value L.l is
unchanged; this is necessary to ensure that updates to the value of L.l are deterministic.

stayPrefix(E, H, x) = true (StayPrefixVar)

L = x.l1.. . ..ln n > 0 E;H ` x ⇓ r0 E;H ` r0.l1 ⇓ r1 · · · E;H ` rn−2.ln−1 ⇓ rn−1

stayPrefix(E, H, L) = x=r0 ∧ r0.l1=r1 ∧ · · · ∧ rn−2.ln−1=rn−1
(StayPrefixField)

I = L1==L2 ∧ · · · ∧ L2n−1==L2n stayPrefix(E, H, L1) = C1 · · · stayPrefix(E, H, L2n) = C2n

stayPrefix(E, H, I) = C1 ∧ · · · ∧ C2n
(StayPrefixIdent)

E;H ` C C′

We use these judgments to translate a constraint into a constraint suitable for the solver. Specifically, each
occurrence of an expression of the form L.l, where L refers to a heap reference r, is translated into H(L).l

(recursively, as required), and each occurrence of the identity operator == is replaced by ordinary equality.
We do not give these rules, because they are straightforward.

solve(E, H, C, ρ) = E′;H′

“Solving constraint C in the context of E and H using stay constraints with priority ρ produces the new
environment and heap E′ and H′.”

This judgment represents one phase of constraint solving – either solving “value” constraints or identity
constraints.

stay(E, ρ) = CE stay(H, ρ) = CH E;H ` C C′

E′;H′ |= (C′ ∧ CE ∧ CH)

solve(E, H, C, ρ) = E′;H′
(Solve)

<E|H|C|I|s> −→ <E′|H′|C′|I′>

“Execution starting from configuration <E|H|C|I|s> ends in state <E′|H′|C′|I′>.”

A “configuration” defining the state of an execution includes a concrete context, represented by the envi-
ronment and heap, a symbolic context, represented by the constraint and identity constraint stores, and a
statement to be executed. The environment, heap, and statement are standard, while the constraint stores
are not part of the state of a computation in most languages. Intuitively, the environment and heap come
from constraint solving during the evaluation of the immediately preceding statement, and the constraint
records the always constraints that have been declared so far during execution. Note that our execution
implicitly gets stuck if the solver cannot produce a model.

26

VPRI Technical Report TR-2014-002b

The rule below describes the semantics of assignments. We employ a two-phase process. First the identity
constraints are solved in the context of the new assignment. This phase propagates the effect of the assign-
ment through the identities, potentially changing the structures of objects as well as the relationships among
objects in the environment and heap. In the second phase, the value constraints are typechecked against the
new environment and heap resulting from the first phase. If they are well typed, then we proceed to solve
them. This phase can change the values of primitives but will not modify the structure of any object.

Implicitly this rule gets stuck if either a) the identity constraints cannot be solved, b) the value constraints do
not typecheck, or c) the value constraints cannot be solved. A practical implementation would add explicit
exceptions for these cases that the programmer could handle.

E;H ` e ⇓ v stayPrefix(E, H, L) = CL stayPrefix(E, H, I) = CI
solve(E, H, CL ∧ CI ∧ L=v∧ I, weak) = E′;H′ E′;H′ ` C solve(E′, H′, C∧ L=v, required) = E′′;H′′

<E|H|C|I|L := e> −→ <E′′|H′′|C|I>

(S-Asgn)

The next rule describes the semantics of object creation, which is straightforward. For simplicity we require
a new object to be initially assigned to a fresh variable, but this is no loss of expressiveness.

E;H ` e1 ⇓ vn · · · E;H ` en ⇓ vn
E(x)↑ H(r)↑ E′ = E

⋃
{(x, r)} H′ = H

⋃
{(r, {l1:v1,. . .,ln:vn})}

<E|H|C|I|x := new {l1:e1,. . .,ln:en}> −→ <E′|H′|C|I>
(S-AsgnNew)

The next two rules describe the semantics of identity constraints. The rules require than identity constraint
already be satisfied when it is asserted; hence the environment and heap are unchanged.

E;H ` L0 ⇓ v E;H ` L1 ⇓ v

<E|H|C|I|once L0 == L1> −→ <E|H|C|I>
(S-OnceIdentity)

<E|H|C|I|once L0 == L1> −→ <E|H|C|I> I′ = I ∧ L0 == L1

<E|H|C|I|always L0 == L1> −→ <E|H|C|I′>
(S-AlwaysIdentity)

The following two rules describe the semantics of value constraints. Recall that these constraints cannot
contain identity constraints in them (because identity constraints do not typecheck). As we show later,
solving value constraints cannot change the structure of any objects on the environment and heap.

E;H ` C0 solve(E, H, C∧ C0, required) = E′;H′

<E|H|C|I|once C0> −→ <E′|H′|C|I>
(S-Once)

<E|H|C|I|once C0> −→ <E′|H′|C|I> C′ = C ∧ C0

<E|H|C|I|always C0> −→ <E′|H′|C′|I>
(S-Always)

The remaining rules are standard for imperative languages, only augmented with constraint stores, and are
only given for completeness.

<E|H|C|I|skip> −→ <E|H|C|I> (S-Skip)

<E|H|C|I|s1> −→ <E′|H′|C′|I′> <E′|H′|C′|I′|s2> −→ <E′′|H′′|C′′|I′′>

<E|H|C|I|s1;s2> −→ <E′′|H′′|C′′|I′′>
(S-Seq)

27

VPRI Technical Report TR-2014-002b

E;H ` e ⇓ true <E|H|C|I|s1> −→ <E′|H′|C′|I′>

<E|H|C|I|if e then s1 else s2> −→ <E′|H′|C′|I′>
(S-IfThen)

E;H ` e ⇓ false <E|H|C|I|s2> −→ <E′|H′|C′|I′>

<E|H|C|I|if e then s1 else s2> −→ <E′|H′|C′|I′>
(S-IfElse)

E;H ` e ⇓ true <E|C|H|I|s> −→ <E′|H′|C′|I′>

<E′|H′|C′|I′|while e do s> −→ <E′′|H′′|C′′|I′′>

<E|H|C|I|while e do s> −→ <E′′|H′′|C′′|I′′>
(S-WhileDo)

E;H ` e ⇓ false

<E|H|C|I|while e do s> −→ <E|H|C|I>
(S-WhileSkip)

6.1.3 Properties

Here we state and prove two key theorems about our formalism.

We assume that a given configuration E|H|C|I is well formed, meaning that it satisfies these sanity conditions:

• any object reference appearing in the range of E also appears in the domain of H

• any object reference appearing in the range of H also appears in the domain of H

• for all variables x in the domain of E there is some type T such that E;H ` x : T

• E;H ` C

• E;H ` I ⇓ true

Well-formedness follows from the assumptions made on the constraint solver described earlier.

The first theorem formalizes the idea that any solution to a value constraint preserves the structures of the
objects on the environment and heap:

Theorem 1 (Structure Preservation) If <E|H|C|I|s> −→ <E′|H′|C′|I′> and s either has the form once

C0 or always C0 and E;H ` C0 and E;H ` L : T, then E′;H′ ` L : T.

Proof. If s has the form once C0 then the result follows by Lemma 1. If s has the form always C0,
then since <E|H|C|I|s> −→ <E′|H′|C′|I′> and C0 is not an identity test, by rule S-Always we have
<E|H|C|I|once C0> −→ <E′|H′|C|I>. Then again the result follows from Lemma 1. �

Lemma 1 If <E|H|C|I|once C0> −→ <E′|H′|C′|I′> and E;H ` C0 and E;H ` L : T, then E′;H′ ` L : T.

Proof. Since <E|H|C|I|once C0> −→ <E′|H′|C′|I′> and C0 is not an identity test, by S-Once we have
that E;H ` C0 and solve(E, H, C∧ C0, required) = E′;H′. By the assumption of well-formedness we have E;H

` C so by T-Conjunction also E;H ` C∧ C0. Therefore the result follows from Lemma 2. �

Lemma 2 If E;H ` C and solve(E, H, C, required) = E′;H′ and E;H ` L : T, then E′;H′ ` L : T.

28

VPRI Technical Report TR-2014-002b

Proof. Since solve(E, H, C, required) = E′;H′ by Solve we have that stay(E, required) = CEs
and stay(H,

required) = CHs and E;H ` C C′ and E′;H′ |= (C′ ∧ CEs ∧ CHs). We prove this lemma by structural
induction on T.

By Lemma 3 there exists a value v such that E;H ` L ⇓ v and E;H ` v : T. Then by Lemma 4 there exists a
value v′ such that E′;H′ ` L ⇓ v′. Furthermore, if v is an object reference r, then also v′ = r. Case analysis
on the form of v′:

• Case v′ is a constant c′. Then also v is a constant c. Since E;H ` v : T, the last rule in this derivation
must be T-Const so T is PrimitiveType and the result follows from T-Const.

• Case v′ is a reference r′. Since E′;H′ ` L ⇓ v′ by Lemma 5 there is a type T′ such that E′;H′ ` L : T′

and E′;H′ ` r′ : T′. So it suffices to show that T = T′. Case analysis on the form of v:

– Case v is a constant c. Since E;H ` v : T, the last rule in this derivation must be T-Const, so
we have T = PrimitiveType. Case analysis on the last rule in the derivation of E;H ` L ⇓ v:

∗ Case E-Variable. Then L is a variable x and E(x) = c. Since stay(E, required) = CEs
, by

StayEnv we have that CEs
includes a conjunct Cx such that stay(x=c, required) = Cx, and

by StayConst Cx has the form weak x=c.
Since E′;H′ ` L ⇓ r′, the last rule in this derivation must be E-Variable, so we have E′(x) =
r′. We know that assigning x to c satisfies the weak stay constraint above. Therefore there
must be some constraint on x in C that causes the change in value for x from c to r′.

∗ Case E-Field. Then L has the form L0.li and E;H ` L0 ⇓ r0 and H(r0) = {l1:v1,. . .,ln:vn}
and 1≤ i≤ n and r′ = vi. Since stay(H, required) = CHs , by StayHeap we have CHs includes
a conjunct Cr0 such that stay(r0={l1:v1,. . .,ln:vn}, required) = Cr0 . By StayObject Cr0
has the form (required H(r0)={l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn, where x1 . . . xn are
fresh variables and stay(xi=vi, required) = Ci. Then by StayConst Ci has the form weak

xi=c.
Since E;H ` L0 ⇓ r0, by Lemma 4 we have E′;H′ ` L0 ⇓ r0. Since E′;H′ ` L ⇓ r′, the last rule
in this derivation must be E-Field, so we have that H′(r0) = {l1:v′1,. . .,ln:v′n} where v′i,
and hence xi is r′. We know that assigning xi to c satisfies the weak stay constraint above.
Therefore there must be some constraint on an l-value of the form L00.li in C, where E;H `
L00 ⇓ r0, that causes the change in value for xi from c to r′.

Therefore in either case, there must be some constraint on an l-value L′′ in C, where E;H ` L′′ ⇓ c

but E′;H′ ` L′′ ⇓ r′. By Lemma 5 there is some T′′ such that E;H ` L′′ : T′′ and E;H ` c : T′′. The
last rule in the derivation of E;H ` c : T′′ must be T-Const so T′′ is PrimitiveType. We argue
a contradiction by case analysis of the immediate parent expression of any occurrence of L′′ in C.
We are given E;H ` C so this parent expression must also be well typed.

∗ Case L′′.l. Then by T-Field L′′ must have a record type, contradicting the fact that E;H `
L′′ : PrimitiveType.

∗ Case L′′ is an immediate subexpression of an ⊕ operation. But these operations only apply
to primitives, so the solver cannot satisfy them by assigning x to r′.

∗ Case ρ L′′. This constraint is only satisfied if x is a boolean, so the solver will not assign x

to r′.

• Case v is a reference r. Then r = r′. Since E;H ` v : T, by T-Ref we have that H(r)={l1:v1,. . .,ln:vn}
and E;H ` v1 : T1 · · · E;H ` vn : Tn and T is {l1:T1,. . .,ln:Tn}. By T-Field we have E;H ` L.li :
Ti for each 1 ≤ i ≤ n, so by induction E′;H′ ` L.li : Ti for each 1 ≤ i ≤ n.

Since stay(H, required) = CHs , by StayHeap we have that CHs includes a conjunct Cr such
that stay(r={l1:v1,. . .,ln:vn}, required) = Cr. By StayObject Cr has the form (required

H(r)={l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn, where x1 . . . xn are fresh variables and stay(xi=vi,

29

VPRI Technical Report TR-2014-002b

required) = Ci. Therefore any solution to (C′ ∧ CEs
∧ CHs

) must map r to an object value of
the form {l1:v′1,. . .,ln:v′n} in H′.

Since E′;H′ ` L.li : Ti for each 1 ≤ i ≤ n, by Lemma 3 we have E;H ` L.li ⇓ v′′i and E;H ` v′′i : Ti for
each 1 ≤ i ≤ n. Since the last rule in each of these evaluation derivations must be E-Field we have
that v′′i = v′i for each 1 ≤ i ≤ n. Finally, since E′;H′ ` r : T′, the last rule in this derivation must be
T-Ref, so we have that T′ = {l1:T1,. . .,ln:Tn}.

�

Lemma 3 If E;H ` L : T, then there exists a value v such that E;H ` L ⇓ v and E;H ` v : T.

Proof. By structural induction on L:

• Case L is a variable x: Then by T-Var we have that E(x) = v and E;H ` v : T. Finally by E-Var we
have E;H ` x ⇓ v.

• Case L has the form L′.li: By T-Field we have that E;H ` L′ : {l1:T1,. . .,ln:Tn} and 1 ≤ i ≤ n and
T = Ti. By induction there exists a value v′ such that E;H ` L′ ⇓ v′ and E;H ` v′ : {l1:T1,. . .,ln:Tn}.
Case analysis of the derivation of E;H ` v′ : {l1:T1,. . .,ln:Tn}:

– Case T-Const: Then {l1:T1,. . .,ln:Tn} = PrimitiveType and we have a contradiction.

– Case T-Ref: Then we have v′ = r and H(r)={l1:v1,. . .,ln:vn} and E;H ` vi : Ti. Finally, by
E-Field we have E;H ` L′.li ⇓ vi.

�

Lemma 4 If E;H ` C and solve(E, H, C, required) = E′;H′ and E;H ` L ⇓ v, then there exists a value v′

such that E′;H′ ` L ⇓ v′. Furthermore, if v is an object reference r, then also v′ = r.

Proof. Since solve(E, H, C, required) = E′;H′ by Solve we have that stay(E, required) = CEs
and stay(H,

required) = CHs and E;H ` C C′ and E′;H′ |= (C′ ∧ CEs ∧ CHs). We proceed by structural induction
on L:

• Case L is a variable x. Since E;H ` L ⇓ v, by E-Var we have that E(x) = v. Then since stay(E, required)
= CEs

, by StayEnv we have that CEs
includes a conjunct Cx such that stay(x=v, required) = Cx.

Case analysis of the rule used in the derivation of stay(x=v, required) = Cx:

– StayConst: Then Cx has the form weak x=v and v is a constant c. Therefore the variable x

appears in the constraint (C′ ∧ CEs ∧ CHs), so any solution to the constraint must include some
value v′ for x in E′, and the result follows by E-Var.

– StayRef: Then Cx has the form required x=v and v is an object reference r. Therefore any
solution to (C′ ∧ CEs

∧ CHs
) must map x to r in E′, and the result follows by E-Var.

• Case L has the form L′.li. Then by E-Field we have E;H ` L′ ⇓ r and H(r) = {l1:v1,. . .,ln:vn}
and 1 ≤ i ≤ n and v = vi. By induction we have E′;H′ ` L′ ⇓ r. Since stay(H, required) = CHs , by
StayHeap we have that CHs

includes a conjunct Cr such that stay(r={l1:v1,. . .,ln:vn}, required) =
Cr. By StayObject Cr has the form (required H(r)={l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn, where

30

VPRI Technical Report TR-2014-002b

x1 . . . xn are fresh variables and stay(xi=vi, required) = Ci. Therefore any solution to (C′ ∧ CEs
∧

CHs) must map r to an object value of the form {l1:v′1,. . .,ln:v′n} in H′, where v′i is the value assigned
to variable xi by the solution. Therefore by E-Field we have E;H ` L′.li ⇓ v′i. Finally suppose vi is
an object reference ri. Then by StayRef Ci has the form required xi = ri so any solution to the
constraints must map xi to ri, so also v′i is ri.

�

Lemma 5 If E;H ` L ⇓ v then there is some type T such that E;H ` L : T and E;H ` v : T.

Proof. By induction on the derivation of E;H ` L ⇓ v:

• Case E-Variable. Then L is a variable x and E(x) = v. Then by well formedness there is some type
T such that E;H ` x : T and by T-Var also E;H ` v : T.

• Case E-Field. Then L has the form L′.li and E;H ` L′ ⇓ r and H(r) = {l1:v1,. . .,ln:vn} and 1 ≤ i
≤ n and v = vi. By induction there is some type T′ such that E;H ` L′ : T′ and E;H ` r : T′. Then by
T-Ref T′ has the form {l1:T1,. . .,ln:Tn} where E;H ` vi : Ti. Then by T-Field also E;H ` L : Ti.

�

Lemma 6 If E;H ` L ⇓ r then r is in the domain of H.

Proof. Case analysis on the last rule in the evaluation derivation.

• Case E-Variable. Then L is a variable x and E(x) = r. Then the result follows from the assumption
that E and H are well formed.

• Case E-Field. Then L has the form L′.li and E;H ` L′ ⇓ r′ and H(r) = {l1:v1,. . .,ln:vn} and 1 ≤
i ≤ n and r = vi. Then the result follows from the assumption that E and H are well formed.

�

The second theorem formalizes the idea that all solutions to an assignment will produce structurally equiv-
alent environments and heaps:

Theorem 2 (Structural Determinism) If <E|H|C|I|L := e> −→ <E1|H1|C1|I1> and <E|H|C|I|L := e>

−→ <E2|H2|C2|I2> and E;H ` x : T0, then there exists a type T such that E1;H1 ` x : T and E2;H2 ` x : T.

Proof. By S-Asgn we have E;H ` e ⇓ v and stayPrefix(E, H, L) = CL and stayPrefix(E, H, I) = CI and
solve(E, H, CL ∧ CI ∧ L=v∧ I, weak) = E′1;H

′
1 and E′1;H

′
1 ` C and solve(E′1, H′1, C∧ L=v, required) = E1;H1.

Also by S-Asgn and Lemma 13 we have solve(E, H, CL ∧ CI ∧ L=v∧ I, weak) = E′2;H
′
2 and E′2;H

′
2 ` C and

solve(E′2, H′2, C∧ L=v, required) = E2;H2. By Lemma 7 we have that E′1 = E′2 and H′1 = H′2. Since E;H ` x :
T0, by T-Var x is in the domain of E, so it is also in the domain of E′1 and by E-Var we have E′1;H

′
1 ` x ⇓

vx where E′1(x) = vx. Then by Lemma 5 there is some type T′ such that E′1;H
′
1 ` vx : T′ and E′1;H

′
1 ` x : T′.

Finally by Lemma 2 we have that E1;H1 ` x : T′ and E2;H2 ` x : T′, so the result is shown with T = T′.

�

31

VPRI Technical Report TR-2014-002b

Definition 1 We say that L1 and L2 are aliases given E and H if either:

• L1 and L2 are the same variable x

• L1 has the form L′1.l and L2 has the form L′2.l and there is a reference r such that E;H ` L′1 ⇓ r and
E;H ` L′2 ⇓ r

Definition 2 We say that L and L′ are the operands of the constraint L == L′.

Definition 3 We define the induced graph of I and L given E and H as follows. Let S be the set that
includes L as well as all operands of identity tests in I. Partition S into equivalence classes defined by the
alias relation: L1 and L2 are in the same equivalence class if and only if they are aliases given E and H. Then
the induced graph has one node per equivalence class and an undirected edge between nodes N1 and N2 if
there is a conjunct L1==L2 in I such that L1 belongs to node N1 and L2 belongs to node N2.

Definition 4 We say that a node in the induced graph of I and L given E and H is relevant if it is reachable
from L’s node in the graph; an l-value is relevant if its node in the graph is relevant.

Definition 5 The relevant update of E and H for I and L=v is the environment E′ and heap H′ that are
identical to E and H except that for each relevant l-value L0 in the induced graph of I and L given E and H:

• If L0 is a variable x, then E′(x) = v.

• If L0 has the form L′0.l and E;H ` L′0 ⇓ r, then E′;H′ ` r.l ⇓ v.

Lemma 7 If stayPrefix(E, H, L) = CL and stayPrefix(E, H, I) = CI and solve(E, H, CL ∧ CI ∧ L=v∧ I, weak)
= E1;H1 and solve(E, H, CL ∧ CI ∧ L=v∧ I, weak) = E2;H2, then E1 = E2 and H1 = H2.

Proof. By Solve we have stay(E, weak) = CE and stay(H, weak) = CH and E;H ` (CL ∧ CI ∧ L=v∧ I)
C′ and E′;H′ |= (C′ ∧ CE ∧ CH) and E′′;H′′ |= (C′ ∧ CE ∧ CH).

By Lemma 9, E′ and H′ include all the updates of the relevant update (which we will call E0 and H0) of E and
H for I and L=v, and similarly for E′′ and H′′. To complete the proof we argue that both of these solutions
are in fact identical to the relevant update. WLOG we consider E′ and H′. By Lemma 8 the relevant update
of E and H for I and L=v is a solution to the constraint C′ ∧ CE ∧ CH . Therefore if E′ and H′ is not the
relevant update, then by Definition 5 either:

• there is a variable x such that E0(x) = E(x) but E′(x) has a different value

• there is a reference r and field label l such that H0(r).l = H(r).l but H′(r).l has a different value

Consider the former. Since stay(E, weak) = CE , by StayEnv, StayConst, and StayRef we have that CE
includes a weak constraint x=vx, where E(x) = vx. Since E′ and H′ include all the updates of the relevant
update, E′ and H′ satisfy strictly fewer weak constraints than the relevant update, contradicting the optimality
of E′ and H′.

Similarly, consider the latter. Since stay(H, weak) = CH , by StayHeap and StayObject CH includes a
required constraint H(r)={l1:x1,. . .,ln:xn} where the xi variables are fresh and l is some li. Then by
StayConst and StayRef there is a weak constraint of the form xi = vi where H(r).li = vi. Since E′ and

32

VPRI Technical Report TR-2014-002b

H′ include all the updates of the relevant update, E′ and H′ satisfy strictly fewer weak constraints than the
relevant update, contradicting the optimality of E′ and H′.

�

Lemma 8 If stay(E, weak) = CE and stay(H, weak) = CH and stayPrefix(E, H, L) = CL and stayPrefix(E,
H, I) = CI and E;H ` (CL ∧ CI ∧ L=v∧ I) C′ and the constraint C′ ∧ CE ∧ CH is satisfiable, then the
relevant update E′ and H′ of E and H for I and L=v is a solution to the constraint C′ ∧ CE ∧ CH .

Proof. It suffices to show that all required constraints in C′ ∧ CE ∧ CH are satisfied in E′ and H′. We
consider the various constraints in turn:

• CE : Since stay(E, weak) = CE , by StayEnv, StayConst, and StayRef there are no required con-
straints in CE , so all required constraints are satisfied vacuously.

• CH : Since stay(H, weak) = CH , by StayHeap, StayObject, StayConst, and StayRef the only
required constraints in CH have the form H(r)={l1:x1,. . .,ln:xn} where the xi variables are fresh and
H maps r to some value of the form {l1:v1,. . .,ln:vn}. By Definition 5 also H′ maps r to a value of
the form {l1:v′1,. . .,ln:v′n} so the constraint is satisfied.

• CL: By StayPrefixField the conjuncts in CL have the form x=v or r.l=v. Suppose the relevant
update fails to satisfy one of these conjuncts. We consider each form in turn:

– x=v: Then the relevant update maps x to some v′ 6= v in E′. But by Solve and Lemma 9 any
solution to the constraint C′ ∧ CE ∧ CH must map x to v′ in the environment, which violates
the constraint x=v. So there must be no solution to the constraints, contradicting our assumption
of satisfiability.

– r.l=v: Then the relevant update maps r.l to some v′ 6= v in H′. But by Solve and Lemma 9
any solution to the constraint C′ ∧ CE ∧ CH must map r.l to v′ in the environment, which
violates the constraint r.l=v. So there must be no solution to the constraints, contradicting our
assumption of satisfiability.

• CI : By StayPrefixIdent the conjuncts in CL have the form x=v or r.l=v. So the argument is
identical to that above for the CL constraint.

• L=v: By Definitions 3 and 5 we have that L is relevant for I and L given E and H. Then by Lemma 10
we have E′;H′ ` L ⇓ v, so by E-Op and the semantics of equality we have E′;H′ ` L=v ⇓ true.

• I: Consider a conjunct L0 == L1 in I. We have two cases:

– L0 is relevant for I and L given E and H. By Definitions 4 and 3, L1 is also relevant. Then by
Lemma 10 we have E′;H′ ` L0 ⇓ v and E′;H′ ` L1 ⇓ v, so by E-IdentityTrue we have E′;H′ `
L0==L1 ⇓ true.

– L0 is not relevant for I and L given E and H. By Definitions 4 and 3, L1 is also not relevant. By
well formedness we have E;H ` L0==L1 ⇓ true, so by E-IdentityTrue there is some v0 such
that E;H ` L0 ⇓ v0 and E;H ` L1 ⇓ v0. Then by Lemma 11 we have E′;H′ ` L0 ⇓ v0 and E′;H′ `
L1 ⇓ v0, so by E-IdentityTrue we have E′;H′ ` L0==L1 ⇓ true.

�

33

VPRI Technical Report TR-2014-002b

Lemma 9 If stayPrefix(E, H, L) = CL and stayPrefix(E, H, I) = CI and solve(E, H, CL ∧ CI ∧ L=v∧ I, weak)
= E′;H′ and L0 is a relevant l-value of I and L given E and H, then E′;H′ ` L0 ⇓ v and:

• If L0 is a variable x, then E′(x) = v.

• If L0 has the form L′0.l and E;H ` L′0 ⇓ r, then E′;H′ ` r.l ⇓ v.

Proof.

By Definition 4, we know that L0’s node in the induced graph for I and L given E and H is reachable from
L’s node. The proof proceeds by induction on the length k of the path between these nodes.

• Case k = 0. Then by Definition 3, L and L0 are aliases given E and H. Case analysis on the structure
of L:

– Case L is a variable x. Then by Definition 1 also L0 is x. Since solve(E, H, CL ∧ CI ∧ L=v∧ I, weak)
= E′;H′ we must have E′;H′ ` x=v ⇓ true, so by E-Op and the semantics of equality we have
E′;H′ ` x ⇓ v. Then by E-Var also E′(x) = v.

– Case L has the form L′.l. Then by Definition 1 also L0 has the form L′0.l and E;H ` L′ ⇓ r and
E;H ` L′0 ⇓ r. We are given stayPrefix(E, H, L) = CL. Then since solve(E, H, CL ∧ CI ∧ L=v∧ I,
weak) = E′;H′ we must have E′;H′ ` CL ⇓ true. Similarly we are given stayPrefix(E, H, I) = CI
so by StayPrefixIdent we have also stayPrefix(E, H, L0) = CL0 where CL0 is a conjunct within
CI . Then since solve(E, H, CL ∧ CI ∧ L=v∧ I, weak) = E′;H′ we must have E′;H′ ` CL0 ⇓ true. So
by Lemma 13 and Lemma 12 we have E′;H′ ` L′ ⇓ r and E′;H′ ` L′0 ⇓ r. We also know E′;H′ `
L=v ⇓ true, so by E-Op and the semantics of equality we have E′;H′ ` L ⇓ v. Then by E-Field
we have H′(r) is a record whose l field has value v. Then by E-Field also E′;H′ ` r.l ⇓ v and
E′;H′ ` L0 ⇓ v.

• Case k > 0. Then by Definition 3 there is some neighbor node of L0’s node that is only k − 1 hops
away from L’s node, which contains an l-value L′1 such that L′0 == L′1 or vice versa is in I, where L′0 is
an alias of L0 given E and H. By induction we have E′;H′ ` L′1 ⇓ v. Then since the identities in I are
satisfied in E′ and H′, by E-IdentityTrue also E′;H′ ` L′0 ⇓ v. Case analysis on the structure of L′0:

– Case L′0 is a variable x. Then by Definition 1 also L0 is x and by E-Var also E′(x) = v.

– Case L′0 has the form L′.l. Then by Definition 1 also L0 has the form L00.l and E;H ` L′

⇓ r and E;H ` L00 ⇓ r. We are given stayPrefix(E, H, I) = CI so by StayPrefixIdent we
have also stayPrefix(E, H, L′0) = CL′

0
where CL′

0
is a conjunct within CI . Then since solve(E, H,

CL ∧ CI ∧ L=v∧ I, weak) = E′;H′ we must have E′;H′ ` CL′
0
⇓ true. By the same argument we must

also have E′;H′ ` CL0
⇓ true where stayPrefix(E, H, L0) = CL0

. So by Lemma 13 and Lemma 12
we have E′;H′ ` L′ ⇓ r and E′;H′ ` L00 ⇓ r. Then since E′;H′ ` L′0 ⇓ v by E-Field we have H′(r)
is a record whose l field has value v. Then by E-Field also E′;H′ ` r.l ⇓ v and E′;H′ ` L0 ⇓ v.

�

Lemma 10 If stayPrefix(E, H, L) = CL and stayPrefix(E, H, I) = CI and E′ and H′ is the relevant update
of E and H for I and L=v and E′;H′ ` CL ⇓ true and and E′;H′ ` CI ⇓ true and L0 is a relevant l-value for
I and L given E and H, then E′;H′ ` L0 ⇓ v.

Proof. Case analysis of the structure of L0:

34

VPRI Technical Report TR-2014-002b

• Case L0 is a variable x: By Definition 5 E′(x) = v, so the result follows by E-Var.

• Case L0 has the form L′.l: First we argue that stayPrefix(E, H, L0) = CL0 and E′;H′ ` CL0 ⇓ true.
If L0 is L, then these follow from the assumptions of the lemma. Otherwise, by Definition 4 L0 is an
operand in an identity test in I. Then since stayPrefix(E, H, I) = CI by StayPrefixIdent we have
stayPrefix(E, H, L0) = CL0, where CL0 is a conjunct in CI . Then since E′;H′ ` CI ⇓ true also E′;H′ `
CL0 ⇓ true.

Then by Lemma 12 there is some r′ such that E;H ` L′ ⇓ r′ and E′;H′ ` L′ ⇓ r′. By Lemma 13 and
Definition 5 we have E;H ` r′.l ⇓ v and the result follows by E-Field.

�

Lemma 11 If stayPrefix(E, H, L) = CL and stayPrefix(E, H, I) = CI and E′ and H′ is the relevant update of
E and H for I and L=v and E′;H′ ` CL ⇓ true and and E′;H′ ` CI ⇓ true and L0 is an operand of an identity
test in I and L0 is not relevant for I and L given E and H and E;H ` L0 ⇓ v0, E′;H′ ` L0 ⇓ v0.

Proof. Case analysis on the structure of L0:

• Case L0 is a variable x. Since x is not relevant, by Definition 5 the value of x in E′ is the same as that
in Euid. Since E;H ` L0 ⇓ v0, by E-Var we have E(x) = v0, so also E′(x) = v0 and the result follows
by E-Var.

• Case L0 has the form L′.l. Since L0 is an operand in an identity test in I and stayPrefix(E, H, I) = CI ,
by StayPrefixIdent we have stayPrefix(E, H, L0) = CL0, where CL0 is a conjunct in CI . Then since
E′;H′ ` CI ⇓ true also E′;H′ ` CL0 ⇓ true.

Therefore by Lemma 12 there is some r′ such that E;H ` L′ ⇓ r′ and E′;H′ ` L′ ⇓ r′. Since E;H ` L0
⇓ v0 by E-Field and Lemma 13 we have that H(r′).l is v0. By Definition 5 H′(r′) also has a field
with label l, so by E-Field we are done if that field’s value is v0. Suppose not. Then by Definition 5
there is some relevant l-value L1 of the form L′1.l such that E;H ` L′1 ⇓ r′. But then by Definition 1
we have that L0 and L1 are aliases so they correspond to the same node in the induced graph of I and
L given E and H by Definition 3. But then since L1 is relevant, by Definition 4 so is L0 and we have a
contradiction.

�

Lemma 12 If stayPrefix(E, H, L.f) = C and E′;H′ ` C ⇓ true, then there is some reference r such that E;H

` L ⇓ r and E′;H′ ` L ⇓ r.

Proof. By StayPrefixField we have L.f = x.l1.. . ..ln and n > 0 and E;H ` x ⇓ r and E;H ` x.l1 ⇓
r1 · · · E;H ` x.l1.. . ..ln−1 ⇓ rn−1 and C is x=r∧ x.l1=r1 ∧ · · · ∧ x.l1.. . ..ln−1=rn−1.

• Case n = 1. Then L is x and C is x=r. Since E′;H′ ` C ⇓ true, by E-Op and the semantics of equality
we have E′;H′ ` x ⇓ v1 and E′;H′ ` r ⇓ v2 and v1 = v2. By E-Ref we have that v2 = r, so the result
follows.

• Case n > 1. Then L is x.l1.. . ..ln−1. Since E′;H′ ` C ⇓ true, by E-Op and the semantics of equality
we have E′;H′ ` L ⇓ v1 and E′;H′ ` rn−1 ⇓ v2 and v1 = v2. By E-Ref we have that v2 = rn−1, so the
result follows.

35

VPRI Technical Report TR-2014-002b

�

Lemma 13 (Determinism)

• If E;H ` e ⇓ v1 and E;H ` e ⇓ v2 then v1 = v2.

• If stay(E, ρ) = C1 and stay(E, ρ) = C2 then C1 = C2.

• If stay(H, ρ) = C1 and stay(H, ρ) = C2 then C1 = C2.

• If stayPrefix(E, H, L) = C1 and stayPrefix(E, H, L) = C2 then C1 = C2.

• If stayPrefix(E, H, I) = C1 and stayPrefix(E, H, I) = C2 then C1 = C2.

Proof. Straightforward. �

7 Babelsberg/Objects

In this final language, we add support for mutable objects, classes, methods, messages, and inheritance, along
with object-oriented constraint definitions (i.e., constraint definitions that can include method calls). This
language thus includes all the essential features of actual object constraint languages such as Babelsberg/R,
Babelsberg/JS, and Babelsberg/Squeak. It also re-adds records as values that we omitted for simplicity from
Babelsberg/UID. The proofs for UID still apply — records as values, when used as value classes, are merely
sugar, as explained in Section 7.3.

We can thus now write constraints on the results of message sends, such as the following constraint on the
x coordinate of the center of a rectangle:

always r.center().x() = 100;

The constraint here is on the result of sending the message center to r, then sending the x message to that,
and finally sending the = message to the result. Depending on how the rectangle is stored, the rectangle’s
center may well be computed in the center method rather than simply being looked up; and even x might
be computed rather than being stored, for example if the point is stored in polar coordinates. Further,
expressions such as a+b are now treated in an object-oriented fashion, so that this means “send the message
+ with the argument b to the object a,” with the meaning of + in this expression (and in constraints such as
a+b=c) depending on the class of a.

In the earlier Babelsbergs presented in this memo, in the semantics we assume a solver language that is
essentially the same as the program language. Constraints that are sent to the constraint solvers could thus
be in the program language. This changes for objects. As before, the solver needs to know about uid-records
as well as primitive types and i-records; but it does not know about methods or inheritance. So we add a
translation in this semantics to inline method calls before passing constraints to the solver.

To accomplish this, we start with a standard model for an object-oriented language with instances, classes,
messages, methods, and inheritance, and add constraints on top of that. Some of the classes and methods in
the object-oriented language have corresponding primitive types and operations which we can pass directly to
the solver. For example, the classes Integer, Float, and Boolean in the source language might be mapped
to the primitive integers, floats, and booleans. The semantics includes an automatic boxing and unboxing
between instances of these classes and their primitive equivalents. (This boxing and unboxing is part of

36

VPRI Technical Report TR-2014-002b

the formal semantics, but would not necessarily be done in a practical implementation, where we would
want primitive types to be represented efficiently.) The + method on Integer would expand to use the +
operation on a primitive representation of itself, and similarly for the + method for Float, the or method for
Boolean, and so forth. However, in Babelsberg/Objects, in contrast to prior languages, we may no longer
mix strings and floats, for example. Previously these both typed as PrimitiveType, but now these are full
objects that can have different structure (e.g., a floatvalue field to store the primitive representation on a
Float object versus a stringvalue field on a String). While for these cases, the structural compatibility
checks could be made to work (e.g., by using a primvalue field for these classes), in general there will
be classes in the object-oriented language that don’t map to a primitive type; and even for a class that
does have a corresponding primitive type, that class can have additional methods that aren’t mapped to
primitive operations. For example, a factorial method for Integer has no primitive equivalent and must
be translated for the solver.

As with the previous languages, in the semantics, after every statement execution the current set of con-
straints is solved and the environment is updated. The current set of constraints is determined as follows.
If the statement is an assignment, we evaluate the right hand side and then set up a constraint between the
resulting value and the left hand side. (As with Babelsberg/UID, and in contrast to the simpler languages,
this will be an identity constraint rather than an equality constraint.) Otherwise, it must be a method call,
which is evaluated by calling the method normally. In addition to any constraint resulting from an assign-
ment statement, each constraint in the constraint store is added to the set of constraints as well, and the
resulting set of constraints is given to the solver. If the solver finds a solution, the environment is updated;
but if the constraints have no solution, or if they are too hard for the solver, our execution implicitly gets
stuck.

7.1 Control Structures and Methods

Babelsberg/Objects has the simple if and while control structures that were introduced for Babels-
berg/PrimitiveTypes. There are no particular complications in including these in Babelsberg/Objects.

In addition, however, Babelsberg/Objects includes methods. Following our overarching design goal of having
a standard object-oriented language in the absence of constraints, in imperative execution mode, methods
are standard. Suppose we are evaluating x.m(a,b). We first look in x’s class for a method with selector m,
then its superclass, and so on up the superclass chain. If no such method is found, it is an error.2 Otherwise
we evaluate the body of the method in a new environment, and return the result. Arguments are passed
by value (with pointer semantics), as in most standard object-oriented languages. For instances of primitive
types and value classes, the argument can also be copied (since we can’t tell the difference between sharing
and copying in this case).

The following example shows that passing a variable of primitive type into a method that modifies its
argument does not affect the environment outside the method:

def addTo(a)

a := a + 3;

return a

end

Test 34 y := 10;

x := addTo(y)

2This is analogous to the structural compatibility checks from Babelsberg/Records, and just as in Babelsberg/Records we
don’t invent a new field for a record if needed to satisfy a constraint, in Babelsberg/Objects we don’t convert an object to an
instance of a different class, or synthesize a new method, to satisfy constraints — instead, if there is a missing method it’s just
an error. This lookup process isn’t represented in our formal semantics since it is standard and doesn’t introduce any issues for
our focus on constraints.

37

VPRI Technical Report TR-2014-002b

After the method returns, x will be 13 and y will have stayed at 10.

Methods called in the ordinary way can create new constraints, which then persist after the method returns.
There is an example in the next section to illustrate this.

Methods can also be invoked by constraint expressions. There are a number of restrictions on methods to
allow them to be used in this way — briefly, they can’t have side effects, and if they consist of more than just
a single return statement they can only be used in the forward direction in constraints. Creating an instance
of an ordinary class is regarded as a side effect, so methods that can be invoked by constraint expressions
can only create instances of value classes. See Section 7.6 for details, including a discussion of the rationale
for this particular choice of restrictions.

If the method can be used in a constraint but only in the forward direction, then it can still be called in
the usual way, including passing any parameters by value with pointer semantics. For example, suppose we
have a constraint always c=x.m(a,b), and method m has multiple statements so that it can only be used in
the forward direction, i.e., we can find a value for c given values for x, a, and b but not any other direction.
In that case, m can be called in the usual way, passing a and b by value with pointer semantics. If the other
constraints are such that the correct solution involves finding a value for b given values for c, x, and a, a
practical system will halt with an error that the constraints are too hard for it to solve, due to a method
called from the constraint that can’t be inlined (or in the formal semantics, we get stuck). However, in
contrast to all the previous examples of constraints that were too hard, the fact that they are too hard is a
limitation of the transformations we use for methods called by constraints, rather than being a limitation of
the solver.

On the other hand, if method m can be used multi-directionally, so that for example we can find a value for
b given values for x, a, and c, then in the semantics the method is inlined so that the resulting constraints
can be turned over to the solver, and we can potentially solve for any of x, a, b, or c. This done by creating
an environment for method m and inlining the returned expression with respect to that environment. The
parameters in that environment are constrained to be identical to a and b respectively, and self is constrained
to be identical to x.

7.2 Value Classes

Babelsberg/Objects includes value classes as well as ordinary, full-featured, classes. The restrictions on
value classes make it easier to use them with constraints. A number of existing languages have proposals or
support for forms of value classes, such as Java3 and Scala4 respectively. In Babelsberg/Objects, instances
of value classes are immutable (that is, we need to provide values for all the fields at object creation time,
and after that the value class instance cannot be modified).5 Finally, object identity is not significant for
value class instances — we define the identity test method, but it performs a test for equality rather than
identity on its argument. However, value classes are more than simple record declarations, since they support
methods and inheritance.

In this section, we will use Point and Rectangle as our example value classes. To distinguish them from
ordinary classes, we will create instances just by supplying the arguments, e.g., Point(10,20), whereas
instances of ordinary classes will be created using the new message, e.g., Window.new(...).

In a practical implementation of Babelsberg, ideally the host language will itself support value classes, so
that we can use them directly. If not, we can use ordinary classes, with appropriate conventions about object
creation, modification, and not testing for object identity.

3http://openjdk.java.net/jeps/169
4http://docs.scala-lang.org/sips/completed/value-classes.html
5For use with e.g. distributed systems applications, we would also want to restrict instances of value classes to only hold

references to primitive types or to other value class, but this restriction isn’t needed for our purposes here.

38

VPRI Technical Report TR-2014-002b

http://openjdk.java.net/jeps/169
http://docs.scala-lang.org/sips/completed/value-classes.html

Finally, to foreshadow the formal semantics, for simplicity we omit details about object creation, method
lookup, and inheritance (which are completely standard), and represent ordinary instances as uid-records
and value class instances as i-records.

7.3 Value Classes as Sugar

Value classes are in fact not necessary for Babelsberg — there is a simple transformation that can be used
to remove them. However, they are of practical importance, since using them can make Babelsberg/Objects
programs much clearer.

To eliminate a use of a value class in a constraint expression, we can instead create a new (ordinary) instance
outside of the constraint, and in the constraint replace it by appropriate constraints on the attributes of the
(new) instance. Consider again a constraint on the center of a rectangle:

always r.center() = Point(10,20)

We can rewrite this as:

point1 := MutablePoint.new(0,0)

always r.center() = point1 && point1.x=10 && point1.y=20

If the new value class instance is created using expressions, we need to add appropriate read-only annotations
in the rewritten code. For example,

always r.center() = Point(d,d+10)

is rewritten as:

point1 := MutablePoint.new(0,0)

always r.center() = point1 && point1.x=d? && point1.y=d?+10

The read-only annotations are necessary since we don’t want to satisfy the constraint by changing d.

A remaining issue is that r.center() returns a new computed point, which we disallow if points are not
instances of a value class, as creating new objects on the heap is considered a side-effect. We can handle
this in the following way: when, during our inlining, a constructor is encountered, the object is allocated in
a special part of the heap that cannot be reached by user code (using pointer magic or VM introspection or
the like). The constructor of the object is not inlined; instead, each argument expression is required to be
equal to a field on the new object. This implies limitations on how these objects are constructed, in that
their constructors can only assign each argument to a field, in order, and not do any computation. Given
these limitations, we will have created a fresh and hidden reference with required equalities in its parts,
which makes it effectively immutable. Constraint inlining then proceeds with this object.

Note that the identity of the new (ordinary) instance used in this rewriting cannot escape from the constraint,
since ordinary constraint expressions cannot use identity constraints.

Finally, we might create an instance of a value class outside of a constraint expression. These uses of value
classes can be replaced by ordinary classes that have no methods that change the state of an instance
after it is created, and that override the default identity test method to test for equality instead. For this
transformation for statements that create value class instances outside of constraint expressions, we rely on
the fact that value class instances cannot be changed after they are created. To illustrate this, consider an
example using value classes, and suppose that in fact value class instances were mutable.

39

VPRI Technical Report TR-2014-002b

a := Point(10,20);

b := a;

a.x := 30;

Just as in Babelsberg/Records, at the end of this program a=Point(30,20) but b=Point(10,20). However,
if we do the same thing with mutable objects:

a := MutablePoint.new(10,20);

b := a;

a.x := 30;

then both a and b have x=30 (since they are identical).

7.4 Examples

Here is a constraint on the center of a rectangle, where the center is a computed value rather than being
stored as an instance variable. (Both Rectangle and Point are value classes in this example.)

r := Rectangle(Point(2,2), Point(10,10));

always r.center() = Point(10,20)

The center method for Rectangle is defined as follows:

def center()

return (self.upper_left + self.lower_right) / 2;

end

Note that since Point is a value class, we can make an instance of it in the constraint expression itself
(“Point(10,20)”), and also in the center method, since we are doing point addition and division in that
method. (If it had been an ordinary class, creating such an instance would have been a side effect, disallowing
this constraint.)

The constraint is evaluated in the following way. The code for Rectangle’s center method
is found, and inlined to construct an equality constraint between the result of evaluating
(self.upper_left + self.lower_right) / 2 and a new point with x=10, y=20. Constructing the center
point from the first expression, as well as looking up and inlining the = method on it, explodes into a network
of simpler constraints, all required, that can then be handed to the solver in one conjunction. Note how the
local names are translated into a global solver environment by appending a digit to every duplicate name.

40

VPRI Technical Report TR-2014-002b

// constraint for the receiver of the center method
required self1 = {upper left : {x : 2, y : 2}, lower right : {x : 10, y : 10}}

// the point addition called from the center method
required self2 = self1.upper left
required arg1 = self1.lower right

// the point constructor called from the point addition method
required x1 = self2.x + arg1.x
required y1 = self2.y + arg1.y

// point division by scalar called from center method
required self3 = {x : x1, y : y2}
required arg2 = 2

// point constructor called from point division method
required x2 = self3.x / arg2
required y2 = self3.y / arg2

// point constructor for the static point
required x3 = 10
required y3 = 20

// and for the point equality
required self4 = {x : x2, y : y2}
required arg3 = {x : x3, y : y3}
required self4.x = arg3.x ∧ self4.y = arg3.y

As mentioned, for each variable name in a scope a unique global variable name is created. The solver works
only on the global names. During evaluation, each local name maps to a global name, which in turn maps
to a value. Entering the center method creates a local environment in which self is bound to the rectangle
by value. A global alias self1 is created and constrained to refer to that same value. Similarly, the global
alias self2 is a point, namely the upper left corner of the mutable rectangle. This alias is then used when
we explode the + message to that point. self3 is also a point, namely the new point that is returned by the
point addition method and now used as receiver of the scalar division method on points. For methods that
take arguments, global names for the argument names are created and constrained similarly. For example,
arg1 is the global name in this exploded constraint for the argument to the + method for Point. Thus, the
solver never has to deal with different scopes or name clashes.

Now consider a similar example but using mutable rectangles and points on the heap, using the translation
when using their constructors in constraints as defined in Section 7.3.

41

VPRI Technical Report TR-2014-002b

// stays for the heap
required H(r) = {upper left : pul, lower right : plr}
required H(rul) = {x : x1, y : y1}
required H(rlr) = {x : x2, y : y2}
required pul = rul
required plr = rlr
required x1 = 2
required y1 = 2
required x2 = 10
required y2 = 10

// the center method
required self1 = r

// the point addition called from the center method
required self2 = H(self1).upper left
required arg1 = H(self1).lower right

// the point constructor called from the point addition method
required H(rc) = {x : x3, y : y3}
required self3 = rc
required x3 = H(self2).x + H(arg1).x
required y3 = H(self2).y + H(arg1).y

// point division by scalar called from center method
required self4 = self3
required arg2 = 2

// point constructor called from point division method
required H(rd) = {x : x4, y : y4}
required self5 = rd
required x4 = H(self4).x / arg2
required y4 = H(self4).y / arg2

// point constructor for the static point
required H(rs) = {x : x5, y : y5}
required self6 = rs
required x5 = 10
required y5 = 20

// and for the point equality
required self7 = self5
required arg3 = self6
required H(self7).x = H(arg3).x ∧ H(self7).y = H(arg3).y

Before we inline the methods, we create appropriate stays on the heap. Entering the center method creates
a local environment in which self is bound to r, which is a reference to the mutable rectangle on the heap.
We create aliases for the receivers and arguments as before, but now treat constructors specially, in that we
create a new reference on the heap, bind it to a new self alias, and use the arguments to the constructor
as constraints on the parts of the object, in effect turning the assignment of these arguments to the parts
of the newly created object into required equality constraints. This means we execute constructors in a sort
of “mixed mode,” in which heap objects are created as needed and their arguments are turned into equality
constraints on their fields. This implies limitations on the constructors, namely that they be just methods
binding arguments to the fields of the newly created object, without any control structures.

This example also illustrates why we need to solve for object identity and type before values — if r had been
an instance of a class with a different implementation of the center method, it would have been exploded
in a different way.

42

VPRI Technical Report TR-2014-002b

Now consider an example with mutable rectangles (instances of MutableRectangle) but points again as
instances of a value class. If we assign to the rectangle’s upper_left, the solver will update lower_right

to keep the center at Point(10,20):

Test 35 r := new MutableRectangle(Point (2,2), Point (10 ,10));

always r.center () = Point (10 ,20);

r.upper_left := Point (100 ,2);

We can also accomplish the same thing using a once constraint:

Test 36 r := new MutableRectangle(Point (2,2), Point (10 ,10));

always r.center () = Point (10 ,20);

once r.upper_left.x = 100

Finally, this test fails because the always and once constraints are incompatible:

Test 37 r := new MutableRectangle(Point (2,2), Point (10 ,10));

always r.center () = Point (10 ,20);

once r.center ().x = 100

Here is another example of using a method in a constraint. Suppose we add a double method to Float, and
then use it in a constraint:

def double()

return 2*self;

end

Test 38 x := 0;

y := 0;

always y=x.double ();

y := 20;

After the program runs, y will be 20 and x will be 10.

For this program, the constraint y=x.double() explodes into the following network:

required self1 = x
required y = 2 ∗ self1

This conjunction of constraints works equally well for determining x or determining y, even though double

is actually a message to x.

As noted above, methods called in the ordinary way can create new constraints, which then persist after the
method returns. Here is a simple example. Suppose we have a BankAccount class that includes a balance

method. We can then define the following method:

def require_min_balance(acct,min)

always acct.balance >= min?

end;

Now suppose we call require_min_balance(a,10) on some account a. (This is just calling the method
from an ordinary statement, either at the top level or some other method, not from a constraint expression.)
Thereafter the balance in the account a must be at least 10 (a persistent constraint). We use a ? annotation
on the variable min to make it read-only with respect to this constraint — otherwise the solver would be free
to change either the account balance or the local variable min. Section 3 includes a discussion of read-only

43

VPRI Technical Report TR-2014-002b

annotations; as noted earlier, we do not include rules for read-only annotations in the semantics, but they
would be straightforward to add.

Note the consequences of our calling convention for such methods. Consider:

Test 39 a := BankAccount.new;

m := 10;

require_min_balance(a,m);

m := 100

Even though we reassigned m, the minimum balance for the account stays at 10, since we passed m (a primitive
type) by value. Of course, we are passing the account a by value as well:

a := BankAccount.new;

require_min_balance(a,10);

a := BankAccount.new;

After the second assignment, a is bound to a new account — but the minimum balance constraint is on
the previous instance of BankAccount (which will presumably be garbage collected since there aren’t any
references to it).

If we do want a constraint that continues to be enforced even if the account or the minimum is rebound, we
can instead write a method that is a minimum balance test and use it in a constraint:

def has_min_balance(acct,min)

return acct.balance >= min;

end

Test 40 a := BankAccount.new;

m := 10;

always has_min_balance(a,m?);

m := 100;

Programmers will need to be aware of the different semantics for these two cases, and select the appropriate
variant when it makes a difference. Note the placement of the read-only annotation on the variable m in the
always constraint — it would make no sense to place it on min in the has_min_balance method, since that
is just a method, not itself a constraint.

Implementing such methods requires that the semantics (and implementations) keep the local variables in
such a method invocation as long as the constraints it creates are active. Here is a somewhat artificial variant
of the original require_min_balance method to illustrate this:

def require_min_balance_with_locals(acct,min)

b := acct.balance;

always b = acct.balance;

always b >= min?;

end;

We could also add a minimum balance constraint in the initialization method for BankAccount. This version
requires that the initial balance be provided, but has a default of 0 for the minimum balance in case it isn’t
provided.

def init(initial_balance,min=0)

self.balance := initial_balance;

always self.balance >= min?;

end;

44

VPRI Technical Report TR-2014-002b

7.5 Arrays

While it is not strictly necessary to include arrays in Babelsberg/Objects, we have used arrays in some
examples that follow. We treat the length of an array is part of its structure, and use the same structural
compatibility checks for the existence of array elements that we do for the existence of fields in a record.
Thus, we would not, for example, grow an array to allow a constraint on its ith element to be satisfied if it
didn’t already have an ith element.

7.6 Additional Restrictions on Constraint Expressions

Methods can of course have side effects, but such methods can’t be used in the expressions that define
constraints. (This is one of the restrictions noted in Section 4.1 on requirements for constraint expressions.)
This subsection describes some consequences of this restriction when we have objects, methods, and object
identity. There are also some additional restrictions on methods called from constraints that are used in
other than the forward direction, discussed below.

Regarding side effects in methods, consider the pop method for a class Stack, which has a side effect as well
as returning the value popped from the stack. This program fragment is OK:

x := stack.pop;

This works, because the RHS of the assignment is evaluated first, and then we set up a once constraint
using the value popped from the stack. (Thus the RHS of an assignment can have side effects, in contrast
to always or once constraints.)

In contrast, these program fragments are not OK:

once x == stack.pop;

always x == stack.pop;

It’s easy to see why we don’t want to allow this: we should be able to evaluate the constraint expression as a
test, and if it evaluates to true the constraint is satisfied. This would just not work in these stack examples.

As noted previously, creating an instance of an ordinary class is regarded as a side effect, so methods that
can be invoked by constraint expressions can only create instances of value classes and not ordinary classes.6

Creating a constraint is a kind of side effect, at least potentially, so another consequence of the prohibition on
side effects in constraint expressions is that methods called from a constraint expression cannot themselves
create other constraints, or call further methods that do so. The following program is not allowed, and
illustrates side effects resulting from adding constraints in methods called from other constraints.

def test(i)

always medium i=5;

return i+1;

end

Test 41 x := 0;

y := 0;

always medium x=10;

always y=test(x);

6As also noted previously (Footnote 1), in a practical implementation the programmer might be able to make cautious use
of benign side effects in a constraint expression. Such benign side effects might include creating instances of ordinary classes,
for example, constructing a temporary instance of an ordinary class that is garbage collected before it is visible outside the
constraint. In the formal semantics, however, we simply disallow side effects in constraint expressions.

45

VPRI Technical Report TR-2014-002b

Suppose we are using a least-squares solver that supports soft constraints. Every time we evaluate the
expression y=test(x), we add another medium constraint that x=5. Since we are finding a least squares
solution, this nudges x more toward 5 each time, diminishing the influence of the x=10 constraint.7

Here are two other issues with constraints that call methods that add constraints, for the record in case we
do want to try to allow this in some restricted set of circumstances:

First, we would need to solve their constraints eagerly rather than just accumulating the constraints and
solving all at once. Here’s an example that demonstrates this.

def test(x)

y := 11;

always y=x;

if y>10 then return x else return 11;

end;

a := 5;

always b=test(a);

The expected outcome is that this method always returns a value larger than 10. If we don’t solve eagerly,
however, y is 11 and x is 5 when we evaluate the if statement, so when used in a constraint, this method
would in this case return 5.

Another reason why nested constraints are disallowed is because the method could add soft constraints,
and itself be invoked by a soft constraint — for example, suppose that in the above program we instead
had always weak b=test(a). We would need an algebra for combining priorities, for example, take the
minimum of the priorities.

Methods called by constraints can assign to variables, but users should be careful with assignments that
would be visible outside the method. A valid use-case for global assignment is caching, but it would produce
unpredictable results if, for example, a global counter were incremented and returned on each call.

If there are assignments, the method can only be used in the forward direction in constraints that call it
(i.e., to compute the result given the inputs). The only way that statements in a method other than the final
return aren’t dead code is if they have side effects, so for practical purposes we can restate this restriction
as follows: for a method to be used in other than just the forward direction in constraints that call it, the
method must consist of a single return statement.

It would be possible to relax this restriction somewhat, so that other kinds of methods could be used in
reverse in constraints, but the resulting restrictions would be harder to express, and would have an ad hoc
feel, likely making it harder for the programmer to keep track of them. So in the design presented here we
use a simple, easily understood restriction that covers an important set of practical cases. See Appendix A.7
for a description of a backward compatibility mode for methods that accommodates some methods with
multiple statements, which is currently implemented in Babelsberg/Ruby.

Here are some examples.

Consider an iterative sum method for the class Array. This works as expected for normal imperative code.

7This issue only arises with soft constraints and a global comparator. With constraints that are required, re-adding a
required constraint is idempotent. Or if we use a local comparator, re-adding the soft constraint will also not change the
resulting solution. But in any case, adding a constraint is conceptually different from testing whether it is satisfied.

46

VPRI Technical Report TR-2014-002b

def sum()

ans := 0;

i := 0;

while i<self.length

ans := ans + self[i];

i := i+1;

end;

return ans;

end

We can also use it in the forward direction in a constraint:

a := Array.new(2);

a[0] := 10;

a[1] := 20;

s := 30;

always s = a.sum();

a[0] := 100;

After the always constraint is executed, s is 30; then after the final assignment to a[0], s becomes 120.

However, the method doesn’t work backwards — for example, we can’t constrain the sum of the array and
expect the system to update one or more elements to satisfy the constraint. So the constraint in the last
line below will be too hard for the system to solve:

a := Array.new(2);

a[0] := 10;

a[1] := 20;

always 50 = a.sum();

We can provide something that works both forward and backward by writing an ordinary method that sets
up the appropriate network of addition constraints. For this to work correctly, this method should take an
argument that holds the sum of the array and that is mutable. We will use an instance of a class Cell with
a value method that can be used to read or constrain the cell’s value. The following sum_equal method
sets up an appropriate network of constraints.

def sum_equal(array,sum)

helper(array,0,sum);

end;

def helper(array,start,sum)

if start>=array.length() then always sum.value()=0;

else

partial := Cell.new(0); /* create a local variable */

helper(array,start+1,partial);

always sum.value()=array[start]+partial.value();

end if;

end;

Now our example works:

a := Array.new(2);

a[0] := 10;

a[1] := 20;

sum_equal(a,Cell.new(50));

47

VPRI Technical Report TR-2014-002b

If we subsequently set a[1] to 5, a[0] will become 45 to keep the constraints satisfied.

Note that in contrast to the earlier version, the constraints are not automatically re-applied if a is reassigned;
the programmer needs to call sum_equal again.

Needing to call sum_equal explicitly if a is reassigned, as well as needing to use instances of Cell to hold
the sum, is slightly annoying. We can address both of these issues by making sum be an instance variable of
arrays, and setting up the necessary network of constraints in the array’s initialize method. (We’re still
using Cell in the helper method, but it’s not visible outside that method.)

def initialize()

c := Cell.new(0);

always c.value()=self.sum();

helper(self,0,c);

end;

As an aside, we expect that we will discover additional useful design patterns (like the pattern for constructing
multi-way constraints on collections) as we make further use of the Babelsberg implementations.

It is tempting to write sum as a method that returns the sum and that still can be used multi-directionally,
perhaps:

def sum()

return self.sum_from(0);

end;

def sum_from(start)

if start >= self.length

then return 0

else return self[start] + self.sum_from(start+1);

end;

end;

Unfortunately, this doesn’t meet the restriction that methods called from constraints consist only of a single
return statement. Worse, if we tried inlining it, the method would expand infinitely. So, at least for now,
sum_equal seems like it is as good as we can do.

A related example is a method for Array that tests whether the argument is one of the elements of that
array.

def contains(x)

i:=0;

while i<self.length && self[i]!=x

i:=i+1;

end;

return i<self.length;

end;

Since this includes more than one statement, it can only be used in a constraint in the forward direction:

a := Array.new(10);

a.fill(100);

c := false;

always c = a.contains(5);

a[3] := 5;

48

VPRI Technical Report TR-2014-002b

The analogous method to sum_equal, say must_contain, unfortunately would not be very useful: since we
don’t have Prolog-style backtracking, it would probably just be satisfied in the reverse direction by setting
the first element of the array.

7.7 Identity Constraint Examples

The following example illustrates how assignment for objects with object identity is handled. This uses
an example class MutablePoint, which is an ordinary class whose instances can be changed and that have
individual identities, in contrast to the value class Point used previously.

Test 42 p1 := MutablePoint.new (10 ,10);

p2 := p1;

p1 := MutablePoint.new (50 ,50);

The result is just the same as in Ruby or some other object-oriented language without constraints. After the
first statement, we have the new point with x=10,y=10 in the heap, and solve a required identity constraint
that p1’s value equal the reference to this point. After the second statement, the identity constraints are a
weak identity stay on p1, and a required constraint that p2 reference the same value as p1. After the third
statement, there is another point with x=50,y=50 in the heap, a required constraint that p1’s value now
equal the reference to this new point, and weak identity constraints that p1 refer to what it used to (which
can’t be satisfied), and that p2 refer to what it used to (which can be satisfied.)

As with Babelsberg/UID, in the interests of predictability, the system will not create a new object to satisfy
constraints. Thus, this program halts with an error:

Test 43 p := MutablePoint.new(0 ,0);

q := p;

always p.x=5;

always q.x=10;

After the third statement, both p and q refer to the same point, which has x=5,y=0. The final constraint on
q.x is unsatisfiable. We could satisfy the constraints by first cloning q from p and then changing its x, but
we forbid creating new objects to satisfy constraints. In the semantics, this results in getting stuck due to
an unsatisfiable required constraint.

While cloning a mutable point seems innocuous, consider a similar example with windows on the user’s
display, which again results in an error. (It seems dangerous to silently create a second window.)

w1 := Window.new(....);

w2 := w1;

always w1.width = 200;

always w2.width = 300;

However, this variant, in which we make the constraints on the window’s widths strong rather than required,
is OK. (We don’t create a new window to satisfy the strong constraints on the widths.)

w1 := Window.new(....);

w2 := w1;

always strong w1.width = 200;

always strong w2.width = 300;

As a point of comparison, this restriction on not creating new objects isn’t relevant for Babelsberg/Records
or when we use instances of value classes in Babelsberg/Objects. Here is one of the above examples using
value classes:

49

VPRI Technical Report TR-2014-002b

p := Point(10,20);

q := p;

always p.x=5;

always q.x=10;

This is fine, and at the end of the program, p and q will refer to two different value class instances.

There can be explicit identity constraints, as in Babelsberg/UID. Again as in Babelsberg/UID, identity
constraints must be satisfied when they are first created. For example:

Test 44 x:= Window.new (....);

y := x;

always y==x;

x := Circle.new (....);

Here x and y are identical at the time the identity constraint always y==x is created. And given this
identity constraint, after the last assignment both x and y refer to the newly created circle. This example
also illustrates how type changes must originate with an assignment statement, but can ripple further via
explicit identity constraints.

Identity constraint can also be created in methods, but that only makes sense if we pass real objects (with
pointer semantics):

def make_identical(a,b)

always a == b

end

Test 45 x:= Window.new (....);

y := x;

make_identical(x,y);

x := Circle.new (....)

To illustrate some effects of passing arguments to methods in constraints, here are a few more examples.

def make_equal_to_5(x)

always x = 5

end

Test 46 a := 0;

make_equal_to_5(a)

Here a is passed by-value, so the constraint is not visible outside the method and has no effect on a.

def make_a_equal_b_plus_3(a,b)

always a = b + 3

end

Test 47 x := 0;

y := 0;

make_a_equal_b_plus_3(x,y);

x := 10;

y := 10

Again, due to the by-value semantics, this has no effect on x and y.

Suppose we have a method that asserts a constraint on an object:

50

VPRI Technical Report TR-2014-002b

def pt_x_equals_5(pt)

always pt.x = 5

end

If we use a value object that lives on the stack, the constraint has no effect on the passed point, and q stays
at (0, 0):

Test 48 q := Point (0 ,0);

pt_x_equals_5(q)

However, if we pass a mutable point that lives on the heap, we pass it by-reference, and the constraint does
affect q:

Test 49 q := MutablePoint.new(0 ,0);

pt_x_equals_5(q)

After this code runs, q.x is 5.

7.8 Formalism

7.8.1 Syntax

The syntax is augmented to support method invocation as expressions. We introduce syntax for the method
body. Additionally, we allow creating new objects as expressions now. We also have a form of immutable
records and consider them as “value objects,” which can respond to methods. Finally, we introduce the nil

value. The entire syntax is given below.

Statement s ::= skip | L := e | always C | once C | s;s
| if e then s else s | while e do s

Constraint C ::= ρ e | C ∧ C

Expression e ::= v | L | e ⊕ e | I
| e.l(e1,. . .,en) | o | new o | D

Identity I ::= e == e

Object Literal o ::= {l1:e1,. . .,ln:en}
L-Value L ::= x | e.l
Constant c ::= true | false | nil | base type constants
Variable x ::= variable names
Label l ::= record label names
Reference r ::= references to heap records
Dereference D ::= H(e)

Method Body b ::= s; return e | return e

Value v ::= c | r | {l1:v1,. . .,ln:vn}

We assume that the set of variable names ranged over by metavariable x includes the name self.

7.8.2 Semantics

Since we have methods with local scopes now, we introduce a global E that maps global variable names
to values. The rules for execution still work on a local environment, but a local environment is only a
mapping from local names to globally unique names now. Method lookup creates new local environments,

51

VPRI Technical Report TR-2014-002b

and constraints are translated to translate local variable names to global variable names for the solver.
The solver still returns a global environment, and does not know about the local environments and their
mapping into the global environment. In addition, the constraint stores I and C are replaced with I and
C, respectively. These now store constraints in pairs with the local environment they were created in. For
readability, we now write H instead of H, so all the global stores are written in the same font.

lookup(v,l) = (x1 · · · xn,b)

“Lookup of method l in the object or value v returns the formal parameter names x1 through xn and the
method body b”

This judgment is opaque: our semantics does not depend on how method lookup is performed.

enter(E,E,H,C, I,v,x1 · · · xn,e1 · · · en) = (E′,Em,H′,C′,I′)

“Invoking a method on v with argument names x1 through xn and arguments e1 through en constructs the
method scope Em and may update the heap and constraint stores.”

This is a helper judgment that simplifies the definition of evaluation for method calls (shown below).

<E|E|H|C|I|e1> ⇓ <E1|H1|C1|I1|v1>
· · ·

<En−1|E|Hn−1|Cn−1|In−1|en> ⇓ <En|Hn|Cn|In|vn>
<En|Em|Hn|Cn|In|self := v> −→ <E0|E0|Hn|Cn|In>
<E0|E0|Hn|Cn|In|x1 := v1> −→ <En+1|E1|Hn|Cn|In>

· · ·
<E2n−1|En−1|Hn|Cn|In|xn := vn> −→ <E2n|En|Hn|Cn|In>
enter(E,E,H,C, I,v,x1 · · · xn,e1 · · · en) = (E2n,En,Hn,Cn,In)

(Enter)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|v>

“Evaluating expression e produces the value v, while possibly having side-effects on everything but the local
environment.”

<E|E|H|C|I|c> ⇓ <E|H|C|I|c> (E-Const)

E(x) = xg E(xg) = v

<E|E|H|C|I|x> ⇓ <E|H|C|I|v>
(E-Var)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|r> H′(r) = {l1:v1,. . .,ln:vn}
1 ≤ i ≤ n

<E|E|H|C|I|e.li> ⇓ <E′|H′|C′|I′|vi>
(E-Field)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|{l1:v1,. . .,ln:vn}> 1 ≤ i ≤ n

<E|E|H|C|I|e.li> ⇓ <E′|H′|C′|I′|vi>
(E-ValueField)

<E|E|H|C|I|r> ⇓ <E|H|C|I|r> (E-Ref)

52

VPRI Technical Report TR-2014-002b

<E|E|H|C|I|e1> ⇓ <E0|H0|C0|I0|v1>
<E0|E|H0|C0|I0|e2> ⇓ <E′|H′|C′|I′|v2>

v1 J⊕K v2 = v

<E|E|H|C|I|e1 ⊕ e2> ⇓ <E′|H′|C′|I′|v>
(E-Op)

<E|E|H|C|I|e1> ⇓ <E0|H0|C0|I0|v>
<E|E|H0|C0|I0|e2> ⇓ <E′|H′|C′|I′|v>

<E|E|H|C|I|e1 == e2> ⇓ <E′|H′|C′|I′|true>
(E-IdentityTrue)

<E|E|H|C|I|e1> ⇓ <E0|H0|C0|I0|v1>
<E|E|H0|C0|I0|e2> ⇓ <E′|H′|C′|I′|v2>

v1 6= v2

<E|E|H|C|I|e1 == e2> ⇓ <E′|H′|C′|I′|false>
(E-IdentityFalse)

<E|E|H|C|I|e> ⇓ <E0|H0|C0|I0|v>
lookup(v,l) = (x1 · · · xn,s; return e)

enter(E0,E,H0,C0, I0,v,x1 · · · xn,e1 · · · en) = (E1,Em,H1,C1,I1)
<E1|Em|H1|C1|I1|s> −→ <E′|E′|H′|C′|I′>
<E′|E′|H′|C′|I′|e> ⇓ <E′′|H′′|C′′|I′′|vr>

<E|E|H|C|I|e.l(e1,. . .,en)> ⇓ <E′′|H′′|C′′|I′′|vr>
(E-Call)

<E|E|H|C|I|e> ⇓ <E0|H0|C0|I0|v>
lookup(v,l) = (x1 · · · xn,return e)

enter(E0,E,H0,C0, I0,v,x1 · · · xn,e1 · · · en) = (E1,Em,H1,C1,I1)
<E1|Em|H1|C1|I1|e> ⇓ <E′|H′|C′|I′|vr>

<E|E|H|C|I|e.l(e1,. . .,en)> ⇓ <E′|H′|C′|I′|vr>
(E-CallSimple)

<E|E|H|C|I|e1> ⇓ <E1|H1|C1|I1|v1>
· · ·

<En−1|E|Hn−1|Cn−1|In−1|en> ⇓ <En|Hn|Cn|In|vn>
Hn(r)↑ H′ = (Hn

⋃
{(r, {l1:v1,. . .,ln:vn})})

<E|E|H|C|I|new {l1:e1,. . .,ln:en}> ⇓ <En|H′|Cn|In|r>
(E-New)

<E|E|H|C|I|e1> ⇓ <E1|H1|C1|I1|v1>
· · ·

<En−1|E|Hn−1|Cn−1|In−1|en> ⇓ <En|Hn|Cn|In|vn>
<E|E|H|C|I|{l1:e1,. . .,ln:en}> ⇓ <En|Hn|Cn|In|{l1:v1,. . .,ln:vn}>

(E-Value)

E;H ` e : T

E;H ` C

We typecheck with respect to the global environments E . Method calls do not typecheck: even though
we allow method calls in expressions and thus in constraints syntactically, our rules for creating constraints
given below inline method invocations. Identity constraints also do not typecheck: they are solved separately
and should not appear in ordinary constraints (see the rules for statement evaluation below). Finally, new
(non-value) object construction does not typecheck, since constraints must be side-effect-free.

53

VPRI Technical Report TR-2014-002b

Types distinguish between primitive values and objects, and for objects the type keeps track of their fields:

Type T ::= PrimitiveType | {l1:T1,. . .,ln:Tn}

E;H ` c : PrimitiveType (T-Const)

H(r)=o E;H ` o : T

E;H ` r : T
(T-Ref)

E(x) = v E;H ` v : T

E;H ` x : T
(T-Var)

We now transform all local variables to their global names using the inlining rules given below before passing
them to the solver. Thus, only global variable names type.

E;H ` e : {l1:T1,. . .,ln:Tn} 1 ≤ i ≤ n
E;H ` e.li : Ti

(T-Field)

We add a typing rule for dereferences. We assume dereferences will not appear in source programs, but only
in expressions that have been generated by our inlining judgment. This ensures that the inlined expressions
still typecheck, and simplifies the rules for constraint solving.

E;H ` e : T

E;H ` H(e) : T
(T-Deref)

E;H ` e1 : PrimitiveType E;H ` e2 : PrimitiveType

E;H ` e1 ⊕ e2 : PrimitiveType
(T-Op)

E;H ` e1 : T1 · · · E;H ` en : Tn

E;H ` {l1:e1,. . .,ln:en} : {l1:T1,. . .,ln:Tn}
(T-ValueObject)

E;H ` e : T

E;H ` ρ e
(T-Priority)

E;H ` C1 : T E;H ` C2 : T

E;H ` C1 ∧ C2
(T-Conjunction)

E;H |= C

As before we assume that the solver natively supports records and uninterpreted functions (which we use to
represent the heap). We do not assume, however, that the solver understands methods, which can now be
part of constraint expressions. This requires us to essentially inline methods before passing constraints to
the solver.

stay(x=v, ρ) = C

stay(r=o, ρ) = C

54

VPRI Technical Report TR-2014-002b

stay(E, ρ) = C

stay(H, ρ) = C

The rules for creating stay constraints are simply a combination of the UID rules plus the rule for stay
constraints on value classes from Babelsberg/Records, adapted to this formalism’s environment and heap.

stay(x=c, ρ) = weak x=c (StayConst)

stay(x=r, ρ) = ρ x=r (StayRef)

x1 fresh · · · xn fresh stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn

stay(x = {l1:v1,. . .,ln:vn}, ρ) = (ρ x = {l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn
(StayRecord)

For StayRecord, as in Babelsberg/Records, we do allow them to change through assignments, but not
when solving for value constraints.

x1 fresh · · · xn fresh stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn

stay(r = {l1:v1,. . .,ln:vn}, ρ) = (required H(r)={l1:x1,. . .,ln:xn}) ∧ C1 ∧ · · · ∧ Cn
(StayObject)

E= {(x1, v1), . . ., (xn, vn)} stay(x1=v1, ρ) = C1 · · · stay(xn=vn, ρ) = Cn

stay(E, ρ) = C1 ∧ · · · ∧ Cn
(StayEnv)

H= {(r1, o1), . . ., (rn, on)} stay(r1=o1, ρ) = C1 · · · stay(rn=on, ρ) = Cn

stay(H, ρ) = C1 ∧ · · · ∧ Cn
(StayHeap)

<E,E,H,C,I,e> <E′,eC,e′>

“Inlining expression e from the local environment E turns into expression e′. To connect variables across
method calls, the constraint expression eC is returned.”

We use an inlining judgment to translate expressions into a representation suitable for the solver. This
combines the previous stayPrefix(E, H, L) = C and E;H ` C C′ judgments from Babelsberg/UID. In
particular, we translate local variables into their names in the global environment and provide a semantics
for method calls inside constraints. Arguments to method calls are constrained to be equal to the expression
that generated them. Inlining does not allow updates to the heap, so no new heap is returned. We do
allow assignments to locals in inlined methods, however, so the global environment can change as a result
of inlining. Since expressions are actually evaluated during inlining, if they do modify the heap, evaluation
stops and the rules fail.

<E,E,H,C,I,c> <E,true,c> (I-Const)

E(x) = xg

<E,E,H,C,I,x> <E,true,xg>
(I-Var)

<E,E,H,C,I,e1> <E1,eC1
,e′1> · · · <E,E,Hn−1,C,I,en> <En,eCn

,e′n>

<E,E,H,C,I,{l1:e1,. . .,ln:en}> <En,eC1
∧ · · · ∧eCn

,{l1:e′1,. . .,ln:e′n}>
(I-Value)

55

VPRI Technical Report TR-2014-002b

<E,E,H,C,I,e> <E′,eC,e′> <E′|E|H|C|I|e> ⇓ <E′′|H|C|I|r>
<E,E,H,C,I,e.l> <E′,eC∧e′=r,H(e′).l>

(I-Field)

The I-Field rule expresses the property of the E;H ` C C′ judgment from Babelsberg/UID that each
expression of the form e.l, where e evaluates to a heap reference r, is translated into H(e′).l (recursively
translating e into e′ through further inlining). It also includes the property from the previous stayPrefix(E, H,
L) = C judgment that the prefixes are constrained to stay as they are, through the addition of the constraint
e′=r. Not that, because we are recursively inlining the expression before the label, we also recursively add
required stays on any prior field accesses. Thus, for example, a.b.c = 1 would be translated by recursively
inlining and returning a = ra ∧ H(a).b = rb ∧ H(H(a).b).c = 1.

<E,E,H,C,I,e> <E′,eC,e′>
<E′|E|H|C|I|e> ⇓ <E′′|H|C|I|{l1:v1,. . .,ln:vn}>

<E,E,H,C,I,e.l> <E′,eC,e′.l>
(I-ValueField)

<E,E,H,C,I,r> <E,true,r> (I-Ref)

<E,E,H,C,I,e1> <E′,eCa
,ea> <E′,E,H,C,I,e2> <E′′,eCb

,eb>

<E,E,H,C,I,e1 ⊕ e2> <E′′,eCa∧eCb
,ea ⊕ eb>

(I-Op)

<E,E,H,C,I,e1> <E′,eCa
,ea> <E′,E,H,C,I,e2> <E′′,eCb

,eb>

<E,E,H,C,I,e1 == e2> <E′′,eCa
∧eCb

,ea == eb>
(I-Identity)

The I-Identity rule includes the StayPrefixIdent rule from Babelsberg/UID, but now works on arbitrary
expressions. Because we inline the expressions on either side, these, through I-Field and I-ValueField,
are forced to stay as they are up to the last part. Note: In contrast to the previous E;H ` C C′ judgment,
we no longer translate == to =, but instead assume that the solver treats it the same. This ensures that
inlined identity constraints still do not type (in S-Once), even if both operands have the same type.

<E|E|H|C|I|e> ⇓ <E0|H|C|I|v>
<E0|E|H|C|I|e1> ⇓ <E1|H|C|I|v1>

· · ·
<En−1|E|H|C|I|en> ⇓ <En|H|C|I|vn>
eC = (e=v ∧ e1=v1 ∧ · · · ∧ en=vn)

lookup(v,l) = (x1 · · · xn,s; return e)
enter(En,E,Hn,Cn, In,v,x1 · · · xn,e1 · · · en) = (E′,Em,H,C,I)

<E′|Em|H|C|I|s> −→ <E′′|E′|H|C|I>
<E′′|E′|H|C|I|e> ⇓ <E′′′|H|C|I|vr>

<E,E,H,C,I,e.l(e1,. . .,en)> <E′′′,eC,vr>
(I-Call)

Methods that have any statements at all can only be used in a one-way manner. This is ensured by evaluating
the return expression and using only the value in the constraint. Because we are retranslating all constraints
on each semantic step, this return value will get updated when its dependencies change, it just won’t work
in the other direction.

When inlining a method with more than one statement, the statements are simply executed. In particular,
this means that we eagerly choose which branch of if-statements to inline and eagerly unroll loops. Further,
the I-Call rule above and the I-MultiWayCall rule below ensure that methods being used in constraints
have no side effects. This is accomplished by requiring the initial heap to remain unchanged.

56

VPRI Technical Report TR-2014-002b

Similarly, methods used in constraints cannot declare nested constraints; this is accomplished by requiring
the initial sets of ordinary and identity constraints to remain unchanged.

<E,E,H,C,I,e0> <E′,eC0,e
′
0>

<E′|E|H|C|I|e0> ⇓ <E′′|H|C|I|v>
lookup(v,l) = (x1 · · · xn,return e)

enter(E′′,E,H,C, I,v,x1 · · · xn,e1 · · · en) = (E′′′,Em,H,C,I)
<E′′′,E,H,C,I,e1> <E1,eC1,e

′
1> · · · <En−1,E,H,C,I,en> <En,eCn,e

′
n>

Em(self) = xgself
Em(x1) = xg1 · · · Em(xn) = xgn

eC = (xgself
=e′0 ∧ xg1=e

′
1 ∧ · · · ∧ xgn=e

′
n)

<En,Em,H,C,I,e> <E′n,eCm
,e′>

<E,E,H,C,I,e0.l(e1,. . .,en)> <E′n,eC∧eCm
∧eC0

∧eC1
∧ · · · ∧eCn

,e′>
(I-MultiWayCall)

For methods that only return an expression, we inline the expression and pass it to the solver. Note that we
execute the argument expressions and receiver for their value (potentially executing through other methods),
and also inline them, potentially executing the same methods twice (once through I-Call and once through
E-Call.) Although not ideal in terms of providing the cleanest possible semantics, in practical terms this
should not be a problem, because we prohibit side-effects in these methods.

<E,E,H,I,C> <E′,C>

<E,E,H,C,I> <E′,C>

“Re-inlining the constraint store C returns a constraint C”

“Re-inlining the constraint store I returns a constraint C”

We use the below judgments to re-translate all constraints in the store using our inlining rules before solving.

<E,E,H,I,∅> <E,true> (I-ReinlineEmptyC)

<E,E,H,C,∅> <E,true> (I-ReinlineEmptyI)

C0 = C \ {(E, ρ e)} <E,E,H,I,C0> <E0,C0>

<E0,E,H,C0,I,e> <E′,eCe,e
′>

<E,E,H,I,C> <E′,C0 ∧ ρ (e′ ∧ eCe
)>

(I-ReinlineC)

I0 = I \ {(E, required e)} <E,E,H,C,I0> <E0,C0>

<E0,E,H,C,I0,e> <E′,eCe
,e′>

<E,E,H,C,I> <E′,C0 ∧ required (e′ ∧ eCe)>
(I-ReinlineI)

solve(E,E,H,C,I,ρ,e) = E′,H′

solve(E,E,H,I,C,ρ,e) = E′,H′

57

VPRI Technical Report TR-2014-002b

These are helper judgment for use in solving constraints. They generate the inlined constraint expression
from e, re-inline the constraints from the identity respectively constraint stores, and to generate the stay
constraints and solve for these. The steps and phases are exactly equivalent to those in Babelsberg/UID:
in the first phase, we use the first judgment above to inline the identity constraint store and generate the
stays on the heap and environment such that the solve can propagate the new equality constraint through all
existing identity constraints in order to update other variables and fields as needed. In the second phase we
use the second judgment above generate constraints for the non-identity constraint store, and we typecheck
under the new environment before solving.

stay(E, weak) = CEs stay(H, weak) = CHs <E,E,H,C,I> <Ei,Ci>

<E,E,H,C,I,e1> <Ee,ec,e
′> E′;H′ |= Ci ∧ ρ eC

solve(E,E,H,C,I,ρ,e) = E′,H′
(SolveIdentityConstraints)

stay(E, required) = CEs
stay(H, required) = CHs

<E,E,H,I,C> <Ec,Cc>

<E,E,H,C,I,e1> <Ee,ec,e
′> Ee;H ` e′ : T E′;H′ |= Cc ∧ ρ eC

solve(E,E,H,I,C,ρ,e) = E′,H′
(SolveValueConstraints)

<E|E|H|C|I|s> −→ <E′|E′|H′|C′|I′>

The stepping rules are refactored to work with the local environments and the new constraint and identity-
constraint stores.

E(x)↑ E(xg)↑
<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|v>

E′ = E
⋃
{(x, xg)} E′ = E

⋃
{(xg, v)}

<E|E|H|C|I|x := e> −→ <E′′|E′|H′′|C′|I′>
(S-AsgnNewLocal)

E(x) = xg
<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|v>

solve(E′,E,H′,C′,I′,required,xg=v) = E′′,H′′′ solve(E′′,E,H′′,I′,C′,required,xg=v) = E′′′,H′′′

<E|E|H|C|I|x := e> −→ <E′′′|E|H′′′|C|I>
(S-AsgnLocal)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|v>
solve(E′,E,H′,C′,I′,required,el.l=v) = E′′,H′′ solve(E′′,E,H′′,I′,C′,required,el.l=v) = E′′′,H′′′

<E|E|H|C|I|el.l := e> −→ <E′′′|E|H′′′|C′|I′>
(S-AsgnLValue)

Note that the above rule can only be used in constraint-construction mode if H=H′. This effectively restricts
assignments in constraints to work on values. Note also, that assignments in constraints are just executed,
but do not set up a required equality constraint between the LHS and RHS. (The current Babelsberg/Ruby
includes a “backwards compatibility mode” which sets up required equality constraints when assignment
occurs, but it’s not clear whether we should retain support for that. See Appendix A.7.)

We also do not allow the use of the following rules for once and always in constraint-construction mode,
because the inlining rules disallow updating the constraint store and heap. As discussed previously (Sec-
tion 7.6), in a practical implementation we might want to support benign side effects in methods that are

58

VPRI Technical Report TR-2014-002b

invoked by constraint expressions, including methods that themselves create new constraints; but this is not
modeled by this semantics.

<E|E|H|C|I|e0> ⇓ <E0|H|C|I|v> <E0|E|H|C|I|e1> ⇓ <E1|H|C|I|v>
<E1,E,H,C,I,e0> <E2,eC0

,e′0> <E2,E,H,C,I,e1> <E3,eC1
,e′1>

<E|E|H|C|I|once e0 == e1> −→ <E3|E|H|C|I>
(S-OnceIdentity)

Note that the above rule uses the inlining judgment to ensure that the expressions adhere to our restrictions
on what kind of expressions can appear in constraints. Expressions that update the heap, for example, will
be rejected in the inlining rules.

<E|E|H|C|I|once e0 == e1> −→ <E′|E|H′|C|I>
I′ = I

⋃
{(E, e0 == e1)}

<E|E|H|C|I|always e0 == e1> −→ <E′|E|H′|C|I′>
(S-AlwaysIdentity)

C0 = ρ e solve(E,E,H,I,C,ρ,e) = E′,H′

<E|E|H|C|I|once C0> −→ <E′|E|H′|C|I>
(S-Once)

<E|E|H|C|I|once C0> −→ <E′|E|H′|C|I>
C′ = C

⋃
{(E, C0)}

<E|E|H|C|I|always C0> −→ <E′|E|H′|C′|I>
(S-Always)

<E|E|H|C|I|skip> −→ <E|E|H|C|I> (S-Skip)

<E|E|H|C|I|s1> −→ <E′|E′|H′|C′|I′>
<E′|E′|H′|C′|I′|s2> −→ <E′′|E′′|H′′|C′′|I′′>
<E|E|H|C|I|s1;s2> −→ <E′′|E′′|H′′|C′′|I′′>

(S-Seq)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|true>
<E′|E|H′|C′|I′|s1> −→ <E′′|E′|H′′|C′′|I′′>

<E|E|H|C|I|if e then s1 else s2> −→ <E′′|E′|H′′|C′′|I′′>
(S-IfThen)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|false>
<E′|E|H′|C′|I′|s2> −→ <E′′|E′|H′′|C′′|I′′>

<E|E|H|C|I|if e then s1 else s2> −→ <E′′|E′|H′′|C′′|I′′>
(S-IfElse)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|true>
<E′|E|H′|C′|I′|s> −→ <E′′|E′|H′′|C′′|I′′>

<E′′|E′|H′′|C′′|I′′|while e do s> −→ <E′′′|E′′|H′′′|C′′′|I′′′>
<E|E|H|C|I|while e do s> −→ <E′′′|E′′|H′′′|C′′′|I′′′>

(S-WhileDo)

<E|E|H|C|I|e> ⇓ <E′|H′|C′|I′|false>
<E|E|H|C|I|while e do s> −→ <E′|E|H′|C′|I′>

(S-WhileSkip)

59

VPRI Technical Report TR-2014-002b

References

[1] Edward A. Ashcroft and William W. Wadge. Lucid, a nonprocedural language with iteration. Commu-
nications of the ACM, 20(7):519–526, July 1977.

[2] Greg J Badros, Alan Borning, and Peter J Stuckey. The Cassowary linear arithmetic constraint solving
algorithm. ACM Transactions on Computer-Human Interaction (TOCHI), 8(4):267–306, 2001.

[3] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hierarchies. Lisp and Symbolic
Computation, 5(3):223–270, September 1992.

[4] Tim Felgentreff, Alan Borning, and Robert Hirschfeld. Babelsberg: Specifying and solving constraints
on object behavior. Technical Report 81, Hasso Plattner Institute, University of Potsdam, Potsdam,
Germany, May 2014. Also published as TR-2013-001, Viewpoints Research Institute, Los Angeles, CA.

[5] Tim Felgentreff, Alan Borning, Robert Hirschfeld, Jens Lincke, Yoshiki Ohshima, Bert Freudenberg,
and Robert Krahn. Babelsberg/JS: A browser-based implementation of an object constraint language.
In Proceedings of the 2014 European Conference on Object-Oriented Programming. Springer, July 2014.
In press.

[6] Bjorn Freeman-Benson. Kaleidoscope: Mixing objects, constraints, and imperative programming. In
Proceedings of the 1990 Conference on Object-Oriented Programming Systems, Languages, and Appli-
cations, and European Conference on Object-Oriented Programming, pages 77–88, Ottawa, Canada,
October 1990. ACM.

[7] Bjorn Freeman-Benson. Constraint Imperative Programming. PhD thesis, University of Washington,
Department of Computer Science and Engineering, July 1991. Published as Department of Computer
Science and Engineering Technical Report 91-07-02.

[8] Bjorn Freeman-Benson and Alan Borning. The design and implementation of Kaleidoscope’90, a con-
straint imperative programming language. In Proceedings of the IEEE Computer Society International
Conference on Computer Languages, pages 174–180, April 1992.

[9] Bjorn Freeman-Benson and Alan Borning. Integrating constraints with an object-oriented language. In
Proceedings of the 1992 European Conference on Object-Oriented Programming, pages 268–286, June
1992.

[10] Bjorn Freeman-Benson, John Maloney, and Alan Borning. An incremental constraint solver. Commu-
nications of the ACM, 33(1):54–63, January 1990.

[11] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of the Fourteenth
ACM Principles of Programming Languages Conference, Munich, January 1987.

[12] Gus Lopez, Bjorn Freeman-Benson, and Alan Borning. Constraints and object identity. In Proceedings
of the 1994 European Conference on Object-Oriented Programming, pages 260–279, July 1994.

[13] Michael J. Maher. Logic Semantics for a Class of Committed-choice Programs. In Proceedings of the
Fourth International Conference on Logic Programming, pages 858–876, Melbourne, May 1987.

60

VPRI Technical Report TR-2014-002b

A Appendix

Sections A.1 – A.3 of this appendix discuss some issues that are important in practical implementations
of Babelsberg but that are mostly orthogonal to the task at hand of providing a formal semantics for
Babelsberg. The remaining sections include descriptions of some design alternatives that were considered
and later dropped, but that seem promising enough that we might come back to them some day.

A.1 Warnings and Debugging

We don’t deal with warnings and debugging in the formal semantics for Babelsberg. In a production
implementation, however, including such support would be key.

First, all of the places where the formal semantics gets stuck to model an error state should have explicit,
understandable error messages in a real implementation. A few additional issues:

A non-required always constraint might undo the result of an assignment.

x := 0;

always strong x=10;

x := 5;

x starts out as 0, then is 10 to satisfy the always constraint, then gets set to 5, and then at the next time
step, the always constraint causes it to be set back to 10. We may want to issue a warning in this case in a
practical implementation. (This would be a simple case to check for.)

As described previously, in the interests of predictability, the system will not create a new (standard) object to
satisfy constraints. There should be an appropriate error message in such a case if the unsatisfied constraints
are required, and a warning if they are soft.

A.2 Read-Only Annotations

First, here is some discussion of how read-only annotations work. Intuitively, when choosing a best solution
to a set of constraints, constraints should not be allowed to affect the choice of values for their read-only
variables, i.e., information can flow out of the read-only variables, but not into them. There is a formal,
declarative definition of read-only annotations in [3], which was in turn adapted from that in the ALPS flat
committed-choice logic language [13]. A one-way constraint can be represented by annotating all but one of
the constrained variables as read-only.

Here’s a simple example of the effect of a read-only annotation on a variable. First consider these constraints:

required x = y
strong x = 3

weak y = 4

This has the solution x 7→ 3, y 7→ 3, since the strong constraint trumps the weak one.

But suppose we add a read-only annotation:

required x = y?
strong x = 3

weak y = 4

61

VPRI Technical Report TR-2014-002b

Because y is read-only in the x = y? constraint, the solver can’t use that constraint in determining the value
of y, and so the solution this time is x 7→ 4, y 7→ 4.

Further, if we make the constraint x = 3 be required:

required x = y?
required x = 3

weak y = 4

the constraints now have no solution: on the one hand, any solution must satisfy the required x = 3
constraint, but on the other, we still can’t use x = y? in determining a value for y. (This is a so-called
“blocked” set of constraints [3].)

The constraint semantics presented in [3] and as discussed so far accounts for read-only annotations on
variables, but not expressions. In practical languages, programs are often more concise if we also permit
read-only annotations on expressions. To accommodate these, the implementations do a simple rewrite of a
read-only expression e? by introducing a fresh variable t, replacing e? in the original constraint with t?, and
adding a new required constraint t = e. For example, given these constraints:

strong x = (y + z + 5)?
medium x = 3

weak y = 0
weak z = 0

we would rewrite the first constraint using a new variable t:

strong x = t?
required t = y + z + 5
medium x = 3

weak y = 0
weak z = 0

The solution is x 7→ 5, y 7→ 0, z 7→ 0, as desired.

This extension is particularly useful for expressions involving method calls in Babelsberg/Objects, e.g., an
expression like rect.center()?, but works for the simpler Babelsbergs as well.

A.3 Adding New Solvers and Extending the Solver Language

In a practical Babelsberg implementation, it is useful to be able to add new solvers, if necessary extending
the solver language so that new kinds of constraints can be encoded and sent to the new solvers. This doesn’t
seem to create any issues for the formal semantics, so we note this only in this appendix.

One useful extension of this sort would be useful to include a solver for geometric constraints, either in 2 or
3 dimensions.

Some extensions that already exist in the practical languages are a solver (and constructs in the solver
language) for finite domain constraints, as in the clpfd library for SWI Prolog. Other additional solvers
are available for strings and local propagation constraints, as solved for example by DeltaBlue. Supporting
the latter required adding a construct for declaring local propagation constraints (including the propagation
methods) in the source language, and also adding local propagation constraints to the solver language.

In Babelsberg/JS, when a DeltaBlue constraint is constructed, and an equality constraint is encountered
with two variables of the same type on either side, when processing a constraint the interpreter doesn’t
descend further, but instead asserts the equality on those variables. So, for example, for two points the

62

VPRI Technical Report TR-2014-002b

constraint expression does not desugar into multiple constraints on the x and y variables. This works even
if the programmer does not specify a propagation function, because DeltaBlue has a default propagation
method for equality (and some other relations, such as scaling.)

Finally, we may be able to have a solver language and solver to encode Prolog-like goals, which would support
backtracking and Prolog-style programming within Babelsberg. A key observation here is that this would
be in a separate set of constraints — we wouldn’t try to change the basic Babelsberg semantics to allow
backtracking with Babelsberg if statements.

A.4 The Perturbation Model vs. the Refinement Model

A key issue in integrating constraints with imperative programming is how to represent variables that change
over time. Earlier versions of Kaleidoscope [7, 8, 9] used a refinement model, in which ordinary variables were
represented as a stream of “pellucid variables,” each holding a value at a different time. This was in turn
adapted from Lucid [1]. Later versions of Kaleidoscope [12] used a perturbation model, in which variables were
represented conventionally. Assignment perturbed the value of a variable, and then the constraints took over
and adjusted the values of other variables so that they were re-satisfied if necessary. The formal semantics
described here uses a variation of the perturbation model, which we believe is cleaner. (In particular, rather
than just perturbing the value of a variable by changing it, we model assignment as a once constraint between
the variable and the value of the expression on the right hand side of an assignment statement.)

The refinement model does provide additional capabilities — for example syntax for referring to both the
current and previous values of a variable — but at a cost, both conceptually for the programmer and also for
the language implementor. At least for the common cases, we believe the refinement model and our current
model provide the same answers. Consider again the example in Section 4 of unsatisfiable constraints arising
from the following program:

x := 5;

always x<=10;

x := x+15

This behavior we modeled with the rules for Babelsberg/PrimitiveTypes is the same as that of the refinement
model, in which the program would be equivalent to these constraints:

required x0 = 5

∀t > 0 required xt ≤ 10

weak x1 = x0?

weak x2 = x1?

required x2 = x1? + 15

The read-only annotations in the refinement model serve the same role as do the evaluation rules in our
current model. In the example, in our current semantics we model the final assignment x:=x+15 by first
evaluating x+15 in the old environment, and then adding a required once constraint that x be equal to
that value. In the refinement model, we model the final assignment as x2 = x1? + 15, where the read-
only annotation on x1 accomplishes the same thing, by preventing the solver from changing x1 to satisfy
this constraint even though the other constraint that gives x1 the value of 5 is only weak. Similarly, stay
constraints in the current semantics are modeled as weak constraints equating the variable with its current
value; in the refinment model these are weak constraints relating the variables representing the current and
previous versions, with the previous version annotated as read-only.

63

VPRI Technical Report TR-2014-002b

A.5 Issues with Using Once Constraints in the Semantics for Assignments

In all of the Babelsbergs, in the semantics we model an assignment by evaluating the right-hand-side,
creating a new variable if needed for the left-hand-side, setting it to the new value, and then solving the set
of constraints that include a once constraint that the left-hand-side equal that value. This lets assignment
interact correctly with other constraints in the constraint store, if any. For example, as a consequence of this
semantics, the following program will get stuck in the formal semantics, or raise an exception in a practical
implementation:

x := 0;

always x=10;

x := 5;

However, there are some subtle issues in connection with this representation.

The analogous program still gets stuck, as one would want, in Babelsberg/Records or when using value
classes, since records and instances of value classes are immutable.

x := {a:0};

always x.a=10;

x := {a:5};

But once we get to Babelsberg/UID and Babelsberg/Objects with ordinary objects, the situation changes.
Consider the analogous program in Babelsberg/UID:

x := new {a:0};

always x.a=10;

x := new {a:5};

Here, the right-hand-side of the last assignment is evaluated, the reference to the new record is assigned to x,
and then the system immediately changes its a field to 10 — it is only the reference that is immutable, not
the record on the heap. This is arguably weird, and so one of the design alternatives we considered was to
make the right hand side be read-only (recursively). However, this might be computationally expensive, and
would also cause difficulties when creating circular structures (see below). So in the current design, we just
evaluate the right-hand-side to a value, but don’t do anything further about making it recursively read-only.

A.5.1 Circular Structures

There is an issue regarding creating circular structures if we convert assignment statements to once con-
straints, with the value on the right hand side recursively annotated as read only. (The same issue arose in
an earlier version of the semantics in which we simply turned an assignment into a once constraint with the
right hand side annotated as read only, instead of first evaluating the right hand side.) Consider:

c := Cons.new(10,nil);

c.cdr := c;

If the second assignment is converted to the constraint once c.cdr == c? this is unsatisfiable. However,
there is a simple workaround, namely to replace such an assignment with a once identity constraint without
the read-only annotation:

c := Cons.new(10,nil);

once c.cdr == c

This would be a bit strange. But this solution doesn’t require any changes to the formal semantics, and
addresses all the previous issues.

64

VPRI Technical Report TR-2014-002b

Selectively Eliding the Read-Only Annotation. A variant that provides a more standard syntax is
to make the entire object on the right-hand side of the assignment be read-only, except for a field that is
assigned to (if any). The constraints would be exactly the same for all the examples except for the circular
structures one:

c := Cons.new(10,nil);

c.cdr := c;

Here, c.car and the reference to c itself are read-only, but not c.cdr.

Distinguishing Ownership from Reference. Another alternative to making the entire object on the
right-hand side of the assignment read-only is to distinguish ownership of parts from references to other
objects. If an instance variable is for an “owned” part, then that instance variable is made read-only; but
otherwise not. For compatibility with the host language, the default would be that instance variables do
not refer to owned parts; rather, this must be declared explicitly. (It only needs to be declared if there are
constraints on the parts or subparts.)

A.6 Alternatives to Structural Compatibility Checks

Our model includes structural compatibility checks on constraints, which prevent the solver from potentially
generating new kinds of records and other odd behaviors. But since these ideas seem to keep resurfacing, we
outline some of our rejected alternatives in this subsection, in case they end up being useful later.

We first consider records in Babelsberg/Records (immutable records, no UIDs).

If the solver will need to compare two records with different fields, we need to extend the comparators to
handle them. For LPB, there are at least two possibilities:

1. An equality constraint between records is either satisfied or it’s not. For example consider a constraint
p=q when p={x:0, y:1} and q={x:0, y:2}, versus when q={a:1000}. In both cases the constraint is
unsatisfied, and there is no reason to prefer one of these solutions over the other.

2. An equality constraint between records is unfolded into multiple constraints on the fields, each of
which is satisfied or not. (Such a constraint might be unsatisfied either because the values in one or
more corresponding fields weren’t equal, or were of different types, or because the corresponding field
didn’t even exist.) In the above example, for the first case we have p.x=q.x (satisfied) and p.y=q.y

(unsatisfied). For the second case we have p.x=q.x (unsatisfied) and p.y=q.y (unsatisfied), and an
additional constraint p.a=q.a (unsatisfied). The first solution would be preferred over the second
under LPB.

We also considered WSB for records. The error for {x:5}={x:5} or {x:5}={x:6} is clear enough (0 and 1
respectively). But what is the error for {x:5}={x:5,y:6} or {x:5}={y:6} or {x:5}={x:"squid"}? We need
to determine an error for additional or missing fields, and for comparing different types and this error needs
to be such that it can be meaningfully compared with the error for values of fields that hold numeric types.
Is the error for {x:0}={x:1000000000} less than for {x:0}={y:0}? We could come up with a definition,
but it’s not clear it’s that useful.

Another problem with having the solver handle records without filtering out weird cases with structural
compatibility checks is that it may result in less predictability for programmers. Consider:

p := {x:0};

q := {y:1};

always p=q;

65

VPRI Technical Report TR-2014-002b

If this isn’t rejected by a structural compatibility check, there there are a number of plausible values that the
solver could find for p and q — namely {x:0}, {y:1}, and {x:0,y:1} — and unclear which is better. The
non-determinism affects the structure of the result rather than just its value, and would prevent achieving
Goal 2 in our list in Section 3.2.

Yet another complication is that we would want a minimality condition on records. Suppose we let an always

constraint create a new record if need be:

always p.x = 5;

We want the solution to be p={x:5}, but not e.g. p={x:5, y:1000}.

These issues, along the lack of clear use cases for having a solver untamed by structural compatibility checks,
led us to reject the alternative outlined in this subsection.

For Babelsberg/Objects, the analog of this behavior would be to allow the constraint solver generate new
classes on the fly. Particularly since there would be multiple possible classes, as before, this seems overly
complex and unpredictable.

A.7 Backwards Compatibility Mode for Methods

Methods called by constraints must be free of side effects. (In a practical language, benign side effects might
be allowed, but we don’t model this in the formal semantics.) This seems like a reasonable restriction that
we shouldn’t attempt to change, although we probably ought to make precise what constitutes a benign side
effect.

In addition, if a method consists of more than just a single return statement, it can only be used in the
forward direction in constraints. This provides a straightforward way for both the programmer and the
implementor to understand how this should be handled: if the method is used in the forward direction only,
it can be called in the ordinary way; if it is potentially used multi-directionally, it is exploded.

If we are trying to add constraints to an existing language with a substantial class library, this restriction
does imply that many methods, even though they are side-effect-free, can only be used in the forward
direction. The Babelsberg/Ruby implementation provides a “backwards compatibility mode” that relaxes
the restriction in an attempt to make more of these existing methods be usable multi-directionally. (It won’t
allow an arbitrary method to be successfully used in all modes in a constraint, but it increases the chances
that it will work.) However, this mode is incompatible with the new semantics for Babelsberg described in
this memo. We describe it here for completeness; updating it to be compatible with the new semantics (or
simply removing it) is left for future work.

The Babelsberg/Ruby implementation uses two interpreter modes: standard imperative execution mode and
constraint construction mode. When methods are evaluated in constraint construction mode, assignment
statements are converted to two-way equality constraints. However, we’ve now decided that methods called
from a constraint expression cannot themselves create other constraints, or call further methods that do so
(Section 7.6), which rules out this transformation in its current form.

For the record, though, if we relaxed this restriction, we might want to support this conversion. It still
doesn’t seem entirely clean, so we should probably still omit it from the formal semantics. Instead, a practical
implementation of Babelsberg might elect to include a backwards compatibility mode for methods that does
this transformation, as well as other transformations that increase the chances the method can be used in
multi-directional constraints. In addition to converting assignments to constraints, the transformation should
create fresh variables each time a variable is used on the left-hand-side of an assignment, and systematically
use that new variable thereafter (until another assignment). First, here is an example that just uses straight-
line code.

66

VPRI Technical Report TR-2014-002b

def add_and_double(x,y,z)

sum := 0;

sum := sum+x;

sum := sum+y;

sum := sum+z;

return 2*sum;

end;

In backward compatibility mode this is rewritten as:

def add_and_double(x,y,z)

sum_1 = 0;

sum_2 = sum_1+x;

sum_3 = sum_2+y;

sum_4 = sum_3+z;

return 2*sum_4;

end;

Notice that a fresh variable is introduced for each assignment, but not for the return statement. Now, if we
evaluate the constraint always 100 = add_and_double(10,15,n), the system should satisfy the constraint
by making n be 25.

Conditionals, in which a variable might or might not be assigned to, can be handled by using a required
equality constraint to pass through the old value for the other branch of the conditional. For example:

def maybe_double(x)

ans := x;

if x<10

then ans := 2*ans;

end;

return ans;

end;

This becomes:

def maybe_double(x)

ans_1 = x;

if x<10

then ans_2 = 2*ans_1;

else ans_2 = ans_1;

end;

return ans_2;

end;

Note though that the semantics of conditional statements are unchanged — we still eagerly evaluate the test
and select the appropriate branch (with no backtracking to the other branch).

If we also had a way to explode methods on demand to support recursion, we might also be able to auto-
matically convert methods with loops to recursions that could then be used multi-directionally. Here is a
version of sum that might be automatically generated in this fashion:

def sum()

helper(0,i,0,ans);

return ans;

end;

67

VPRI Technical Report TR-2014-002b

def helper(old_i, new_i, old_ans, new_ans)

if old_i<self.length

then

temp_ans = old_ans + self[old_i];

temp_i = old_i + 1;

helper(temp_i,new_i,temp_ans,new_ans);

else

new_ans = old_ans;

new_i = old_i;

end;

end;

Here, helper is produced automatically from the while by parameterizing the helper method with the old
and new values of i and ans, and converting the while to an if with a recursive call. (Again, we still eagerly
evaluate the test in the conditional, i.e., we evaluate the original while statement a definite number of times
— this method won’t let us try different array lengths to satisfy the constraints.)

As we’ve been noting, these transformations won’t work in all cases. As an extreme example, if we have
an encrypt method that takes a plaintext message m and a public key k, we are unlikey to be able to run
the method backwards to find the original message given the cyphertext. Coming up with a good set of
transformations, a specification of when they will work, and whether the result covers a useful set of cases,
is an open problem. Certainly they work for methods consisting just of a sequence of assignment statements
and a final return statement, but this seems like not that useful a class of methods to run backwards.

For the record, here are some more straightforward examples of when the tranformation doesn’t work.

Consider an absolute value method for integers:

def abs()

if self>=0 then return self else return 0-self;

end;

Suppose we use it in this program:

x := 5;

y := 5;

always y=x.abs();

always x<0;

This works up until the final statement. However, when we try to satisfy x<0, because of the semantics
of the if statement (which eagerly evaluates the test, with no backtracking), we incorrectly conclude the
constraints are unsatisfiable.

Instead, the abs method as written should only be used in the forwards direction; if we want one that also
works backwards, we should write it as a disjunction that can be turned over to the solver (or add support
for Prolog-style backtracking — see the next section).

Another case that doesn’t work arises when the method has a conditional, and the two branches return
different types. Even if these are both value classes, this still doesn’t explode correctly using the current
rules. For example, suppose that in addition to standard points, we have a class ZeroPoint representing a
point with its x and y both 0 (which then avoids storing those fields). Also suppose that both kinds of points
implement an optimize method that returns a new object, which is the point represented in the optimal
way. For ordinary points, the method is:

68

VPRI Technical Report TR-2014-002b

def optimize()

if self.x=0 && self.y==0 then return ZeroPoint() else return self;

end;

For ZeroPoint, optimize just returns self.

Now consider this code that uses the optimize method:

p := Point(5,5);

q := Point(5,5);

always q = p.optimize();

If we implement this by exploding the optimize method, the existing transformations don’t work since
q might be either a Point or a ZeroPoint. We might be able to get it to work in this case, but the
transformations become more complex and probably more fragile, and it’s not clear that the complexity is
worth the price.

69

VPRI Technical Report TR-2014-002b

	Introduction
	Motivation
	Constraints
	Conjunctions and Disjunctions of Constraints
	Taming Identity Constraints

	Babelsberg/Reals and Babelsberg/PrimitiveTypes
	Requirements for Constraint Expressions
	Control Structures
	Adding Other Primitive Types
	Formalism
	Syntax
	Semantics

	Babelsberg/Records
	Formalism
	Syntax
	Semantics

	Adding Mutable Records

	Babelsberg/UID
	Formalism
	Syntax
	Operational Semantics
	Properties

	Babelsberg/Objects
	Control Structures and Methods
	Value Classes
	Value Classes as Sugar
	Examples
	Arrays
	Additional Restrictions on Constraint Expressions
	Identity Constraint Examples
	Formalism
	Syntax
	Semantics

	Appendix
	Warnings and Debugging
	Read-Only Annotations
	Adding New Solvers and Extending the Solver Language
	The Perturbation Model vs. the Refinement Model
	Issues with Using Once Constraints in the Semantics for Assignments
	Circular Structures

	Alternatives to Structural Compatibility Checks
	Backwards Compatibility Mode for Methods

