
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

An association-based model of dynamic behaviour

 Ian Piumarta

VPRI Technical Report TR-2011-003

squeak
Typewritten Text
This material is based upon work supported in partby the National Science Foundation underGrant No. 0639876. Any opinions, findings, andconclusions or recommendations expressed in thismaterial are those of the author(s) and do notnecessarily reflect the views of the NationalScience Foundation.

squeak
Typewritten Text
For the workshop on Free Composition at ECOOP 2011. The proceedings were publishedby the ACM digital library.

squeak
Typewritten Text

squeak
Typewritten Text

An association-based model of dynamic behaviour∗

Ian Piumarta
Viewpoints Research Institute, Glendale, CA, USA

ian@vpri.org

ABSTRACT
Dynamic programming languages seem to spend much of
their time looking up behaviour associatively. Data struc-
tures in these languages are also easily expressible as asso-
ciations. We propose that many, and maybe even all, in-
teresting organisations of information and behaviour might
be built from a single primitive operation: n-way associative
lookup. A fast implementation of this primitive, possibly in
hardware, could be the basis of efficient and compact im-
plementations of a diverse range of programming language
semantics and data structures.

1. INTRODUCTION
Languages with dynamic dispatch [9], first-class environ-
ments, and similar late-binding mechanisms, use associative
lookup as a central component of the mechanisms and se-
mantics they provide. For example, message sending (or
calling a virtual function) uses an association from types
and message (or function) names to function implementa-
tions. Multiple dispatch [2] typically associates a sequence
of several (potentially many) type names with a function or
method implementation. Even simple objects with named
fields, or indexable arrays, are associations between an ob-
ject identifier and a field name or numeric index that need
not specify further how the storage is implemented.

This leads to the question of whether many (maybe even
all) useful organisations of information and behaviour in a
dynamic language might be constructed from a single prim-
itive operation: n-way associative lookup.

We could explore this question top-down by choosing a
range of interesting behaviours and organisations and show-
ing how they can be composed from a single primitive, or
bottom-up by showing how a single primitive operation can

∗This material is based upon work supported in part by
the National Science Foundation under Grant No. 0639876.
Opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author and almost
certainly do not reflect those of the NSF—or of anyone else,
for that matter.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FREECO’11, July 26, 2011, Lancaster, UK
Copyright 2011 ACM 978-1-4503-0892-2/11/07 ... $10.00.

be used alone or in composition with itself to arrive incre-
mentally at a number of familiar and widely-used behaviours
and organisations. Since the latter seems more open-ended,
that is the approach we take here.

2. AN ABSTRACT MODEL OF MEMORY
We will distinguish between application and primitive mech-
anisms.

Application mechanisms are the fundamental semantic op-
erations needed to implement some programming system. In
Smalltalk [5], for example, we would identify dynamic bind-
ing as the critical semantic operation. These mechanisms
form the essential part of the programming model exposed
to users of the system, even if they are not always made
directly available to users.

Primitive mechanisms are the raw material used by the
language implementor as a platform on which to build the
application semantics. In most Smalltalk implementations
we would have to admit that the primitive mechanisms are
memory allocation (hidden within primitives new and new:)
and base+offset addressing of that memory (hidden within
the various primitives at: and at:put:).

2.1 Primitive mechanism
Our primitive mechanism provides a memory that is a map
m associating one or more keys ki with a value v.

m : K∗ → V

m[k1, ..., kn] = v

This memory supports two primitive operators, associa-
tive read and associative write, which we will be written as
‘[]’ and ‘[]�’ respectively:

m[k1, ..., kn] value in m associated with keys ki
m[k1, ..., kn] � v update m; subsequently m[ki] = v

(The notation m[k] is used instead of m(k) to remind us that
m is not a function but an associative lookup.) The state of
m is therefore relative to a particular time, the passage of
which will be implied but not stated in this discussion.1

The domain K of keys and range V of values in m are
the same. A distinguished value ε (the “undefined” value) is
initially associated with every possible combination of keys

1Object models in which time, versioning, causality, etc.,
are significant are probably far better modelled by consid-
ering the time component as another key (a first-class user-
accessible value) rather than an intrinsic property of the
underlying model.

VPRI Technical Report TR-2011-003

in m. If ε is used as a key, the associated value is also ε
(regardless of the other keys).

m[k1, ..., kn] = ε for any ki = ε

A simple application model might choose to let an ε value
propagate through subsequent operations, or to raise an ex-
ception immediately when an ε is read, etc.

2.2 Application mechanism
Application mechanisms are presented as read and write op-
erations on memory via the functions r and w, respectively.

r : K∗ → V
w : K∗ × V → ε

r(k1, ..., kn) read value associated with keys ki
w(k1, ..., kn, v) write value associated with keys ki

For a given object model we would like to define its ‘char-
acteristic’ functions r and w of k in terms of the primitive
operations [] and []�. To illustrate this we will consider the
simplest possible object model: a flat address space.

3. PHYSICAL MEMORY
Reading a memory address yields a value; writing a memory
address updates its value. The functions r and w are trivially
defined as the two fundamental operations on m.

r(k) = m[k]
w(k, v) = m[k] � v

In a w-bit computer (with no paging or segmentation) we
might have K = {n ∈ N0 | 0 ≤ n < 2w }, which is just the
memory addresses representable by a w-bit word. This flat
address space model completely ignores the useful properties
of the primitive mechanism, but would work.

4. DICTIONARIES
Two addresses k1 and k2 are associated with each value.

r(k1, k2) = m[k1, k2]
w(k1, k2, v) = m[k1, k2] � v

This describes arrays and traditional structures. (The lat-
ter are arrays whose indices are encodings of the structure
field names written by the programmer.) Furthermore, with
suitable initialisation of k2 for each k1 “created”, r and w im-
plement virtual memory in which k1 is a segment identifier
and k2 is an address within k1. At sufficiently small granu-
larity, k1 is an identifier for a strongly-encapsulated “object”
and k2 a field designator within that object. (In other words,
k1 identifies a “dictionary” object and k2 a “slot” within that
dictionary.)

Hardware implementations of this kind of memory (with
bounded keys) have treated k1 as a base address, k2 as an
offset, and ε as an access violation. A more dynamic rep-
resentation (such as an object or hash table) would be ap-
propriate if the keys k1 and/or k2 are potentially unbounded
(generated arbitrarily by the running program, for example).

5. RECURSIVELY-DEFINED SEMANTICS
Instead of signalling an error (or being converted to some
default application value) we will let reading ε from m cause
the read operation to be restarted with the original keys
transformed by a set of functions βi.

r(k1, k2) =

{
m[k1, k2] for m[k1, k2] 6= ε
r(β1(k1), β2(k2)) for m[k1, k2] = ε

In other words, the β functions repeatedly transform the
combination of keys ki to find an associated non-ε value in
m.

Let σ denote a particular well-known key, distinct from
any other application key. One useful set of β-transforma-
tions is

β1(k) = m[k, σ]
β2(k) = k

that, when substituted back into r, yield

r(k1, k2) =

{
m[k1, k2] for m[k1, k2] 6= ε
r(m[k1, σ], k2) for m[k1, k2] = ε

which delegates [7] the lookup of the “slot” k2 within the
“object” k1 to the object stored as the value of the σ slot in
k1, whenever k1 has no k2 slot of its own. In the case that
k2 is being used as a message name then the above describes
the dynamic binding part of the method lookup operation
in delegation-based message passing.

Expressing this delegation as a pair of β-transformations
on keys in an associative memory emphasises a fundamental
symmetry of the delegation mechanism that is ignored by
most object-oriented programming languages:

• if β1(k) = m[k, σ] and β2(k) = k then several different
objects k1 delegate between themselves the search for a
non-ε value associated with a particular slot name k2;

• if β1(k) = k and β2(k) = m[k, σ] then several different
slot names k2 delegate between themselves the search
for a non-ε value within a particular object k1.

Combining delegation along both of these “axes” within a
two-dimensional delegation space k1 × k2 provides the basis
for several kinds of useful encapsulation and sharing mech-
anisms, capable of addressing problems such as behavioural
inheritance [8] in a dynamic and open system.2

The above β functions are “post-lookup” transformations.
It is also useful to consider “pre-lookup” transformations.
Consider a set of functions αi that are applied to ki produc-
ing a transformed set of keys to which r is then applied.

r(k1, k2) = r′(α1(k1), α2(k2))

r′(k1, k2) =

{
m[k1, k2] for m[k1, k2] 6= ε
r′(β1(k1), β2(k2)) for m[k1, k2] = ε

Let τ denote a particular well-known key, distinct from
any other application key. One useful set of α-transforma-
tions is

α1(k) = m[k, τ]
α2(k) = k

2For example, if slots contain named methods then ‘selector
inheritance’ allows multiple incompatible versions of meth-
ods to coexist without interference. In that case, delegation
should occur between types before names, such that a par-
ticular specialisation of behaviour would have the chance
to benefit from ‘normal’ inheritance between its own over-
ridden definitions of methods (along the type axis) before
delegating along the name axis (after falling off the end of
the supertype chain) to the ‘base’ set of methods that im-
plement the original behaviour. Delegation along multiple
axes is not meant to imply any kind of concurrent or non-
deterministic mechanism.

VPRI Technical Report TR-2011-003

that, when substituted back into r (keeping the β-transfor-
mations of the delegation example), yield

r(k1, k2) = r′(m[k1, τ], k2)

r′(k1, k2) =

{
m[k1, k2] for m[k1, k2] 6= ε
r′(m[k1, σ], k2) for m[k1, k2] = ε

which uses some “property” τ of an object k1 as the starting
point for the previous example’s lookup (following a “chain”
of σ slots). Put another way, if k2 is interpreted as a message
name then τ is the “type” of an object (grouping related
objects into a family) and σ the “supertype” of a type. In
other words

n = 2
α1(k) = m[k, τ]
β1(k) = m[k, σ]

is the dynamic binding mechanism for a class-based object
system with inheritance.

Of course, not all the complexity of a practical system is
contained within the three lines that characterise the mech-
anism. For example, in Smalltalk these three lines say noth-
ing about creating the initial class hierarchy, installing new
methods in classes, or implementing a ClassBuilder object.

6. KEYS ARE META-TAXONOMIC DIMENSIONS
Each particular well-known key, along with its recursive
β- and α-transformations, can generate a taxonomy within
which objects can be organised. In the above examples, ap-
plied to a Smalltalk-like system, τ is an object’s class pointer
and σ is a superclass pointer in a (meta)class (both of which
are hierarchical taxonomies of object types). Each is associ-
ated with a different concrete key, but both exist in the same
dimension (are used in the same position ki, where i = 2 in
this case).

Each additional key position (gained by increasing n by
1, for example) creates a new “dimension” or “taxonomic
space” in which any number of new taxonomies can be cre-
ated. These new taxonomies will all be orthogonal to (and
completely independent from) those in other key positions
(even if they share the same concrete keys).

Continuing with the delegation example, increasing n to
3 (adding the key k3)

r(k1, k2, k3) =

{
m[k1, k2, k3] for m[k1, k2, k3] 6= ε
r(m[k1, σ], k2, k3) for m[k1, k2, k3] = ε

gives us multiple (disjoint) perspectives on objects, each as-
sociated with a particular concrete k3, with delegation oc-
curring between objects only within a single perspective. In
effect, k3 is a ‘namespace’ constraining both the content of,
and the extent of the taxonomies defined by concrete keys
and their β functions between, objects ‘residing’ within it.

If we have a namespace ω in which global relationships
are expressed and let

β3(k) = m[k, σ, ω]

then perspectives (the k3 keys) on a given object will dele-
gate to each other (via their σ slot).

The occurrence of ε in m can be used to terminate dele-
gation (or other recursive relationships) in multiple dimen-
sions. Introducing distinct versions of r (one ri for each
dimension i in which delegation occurs) lets us choose the

precedence of axes in the n-dimensional delegation space.
For example,

r(k1, k2, k3) =

{
r1(k1, k2, k3) for r1(k1, k2, k3) 6= ε
r1(k1, k2,m[k3, σ]) otherwise

r1(k1, k2, k3) =

{
m[k1, k2, k3] for m[k1, k2, k3] 6= ε
r1(m[k1, σ], k2, k3) otherwise

delegates first between objects k1 within a single perspective
k3 and then between perspectives k3 on the original object,
whereas

r(k1, k2, k3) =

{
r3(k1, k2, k3) for r3(k1, k2, k3) 6= ε
r3(m[k1, σ], k2, k3) otherwise

r3(k1, k2, k3) =

{
m[k1, k2, k3] for m[k1, k2, k3] 6= ε
r3(k1, k2,m[k3, σ]) otherwise

delegates first between perspectives k3 on a single object k1
and then between distinct objects k1 in the original perspec-
tive k3.

One final example (among many): if we let v range over
methods of arity n within a memory indexed by k1, ...kn,
then the above model (with appropriate α- and β-transfor-
mations) can easily describe binding mechanisms for multi-
method (generic function) dispatch.

7. FUNCTION W AND ITS TRANSFORMATIONS
These are constructed in exactly the same manner as for
the function r, with the same possibilities for pre- and post-
transformations and for recursive recombination, in the ob-
vious manner.

The simplest useful definition of w, the application write
function,

w(ki, ..., kn, v) = m[ki, ..., kn] � v

introduces new keys into m directly with no attempt to rea-
son about “where” the new value v should be “placed” within
any taxonomies defined by r. In the same manner as was
done for r, pre-transformations γi and post-transformations
δi can be introduced.

w(k1, ..., kn) =w′(γ1(k1), ..., γn(kn))

w′(k1, ..., kn) =

w′(δ1(k1), ..., δn(kn))
for some condition
on ε, r, αi, βi, γi, δi

m[k1, ..., kn] � v otherwise

It is worthwhile to note that this “simplest useful” defini-
tion of w is often the most appropriate. (For the inheritance
and delegation mechanisms described above it is precisely
what is wanted.) More exotic constructions for w would be
identical in nature to those already examined for the func-
tion r.

8. UNIFICATION
The primitive read and write operations on m can be unified
into a single operation. To write a value v, a statement

m[k1, ..., kn, v]

is made about its presence within the memory. (If v = ε
the value is “deleted”.) Unifying a single variable v within a
similar statement

v = m[k1, ..., kn, ?]

VPRI Technical Report TR-2011-003

retrieves a value. It is trivial to rephrase this entire paper
using the above formulation.

This simplification suggests a very powerful extension that
would allow the ‘unified’ variable(s) to appear in any key
position, not just the last. The primitive mechanism is now
directly applicable to the semantics of local operations of
relational languages.3 (Support for publish-subscribe would
then require ‘just’ the addition of a global notification mech-
anism. One possibility might be ‘future unification’ where a
process blocks until a non-ε value becomes available for each
unified variable in a statement.)

Such extensions are not without practical and philosoph-
ical costs (far beyond the already considerable implementa-
tion challenges presented by the basic primitive mechanism).

9. PRACTICAL CONSIDERATIONS
Some of the application-level models of organisation and dy-
namic behaviour described in this paper are trivial to im-
plement on (or are intrinsic to) current computer hardware.
All of them are trivial to implement given the primitive []
and []� operators. Furthermore, if these implementations
are efficient then the resulting programming system will be
efficient, with complexity increasing commensurately (in the
absolute worst case exponentially) with n.

Software implementations for all of the models/behaviours
presented for are common for n = 2, and can be made very
efficient (through various caching techniques) for αi that
map many objects onto a much smaller set of object fami-
lies. Hash tables work well for ‘singleton’ associations where
n = 2 and alpha(k) = k, but already present problems of
garbage collection: values should be deleted from m when
either k1 or k2 becomes unreachable, but it is usual to con-
sider only k1. The problem becomes increasingly difficult
as generality is preserved while n grows beyond 2, where
unreachability of any given key k must imply deletion of
all values for which some ki = k (for any i : 0 ≤ i < n).
It seems clear that some cooperation between the primitive
mechanism and end-user storage management collector is re-
quired, since the latter almost certainly places implicit con-
straints on the combinations of values stored in the memory
that would simplify (or even make possible) primitive stor-
age management.

In some models the storage management should partic-
ipate in simplifying end-user structures when keys vanish.
For example, given three keys ka, kb and kc for which a model
defines a β(k) as

β1(k) = m[k, σ] such that

m[ka, σ] = kb and
m[kb, σ] = kc

then the unreachability of kb (which occurs between ka and
kc in a transitive relationship) should cause all values in
m associated with kb to be re-associated with ka, and the
relationship between the keys simplified to

m[ka, σ] = kc

Hardware support for large memories with unconstrained
(or a relatively large limit on) n would enable efficient im-
plementations of a wide variety of interesting object models,

3Looking at it from the other direction: an efficient relational
language is sufficient to implement all of the mechanisms
described in this memo.

both commonly used and many yet to be imagined. Current
virtual memory hardware might not be far from useful, if it
could be scaled, for this purpose.

Nothing has been said here about several facilities that
were tacitly assumed throughout the paper:

• access to non-key data: bytes, integers, floats, etc.;

• arithmetic and logical operations on keys and non-key
data;

• choice mechanisms, to select between alternatives in the
piecewise definitions or ‘otherwise’ clauses;

• many other kinds of program sequencing and data ma-
nipulation that would be present in a general program-
ming system.

One question is whether the mechanisms described in this
paper can be efficiently supported by a relational database
engine [3]. Simple experiments with an in-memory Sqlite [10]
database4 suggests not, with dynamic binding operations
taking several orders of magnitude longer than would be
possible with a dedicated implementation typical of a lan-
guage runtime support library. In the absence of hardware,
the approach presented in this paper could still be valuable
as a means to present and compare dynamic behaviours, or
as a concise notation for dynamic mechanisms to be com-
piled and run on stock architectures as part of the language
runtime support library.

10. DISCUSSION
A dynamic language implementation built indirectly, using
the association primitive described above and without hard-
ware acceleration, is unlikely to be more efficient than a
direct implementation. The direct implementation would
use algorithms either equivalent to the association primitive
or (more likely) specialised and optimised for the particu-
lar language in ways that are inappropriate for a generic
primitive, and therefore more efficient.

Independent of any possibility for hardware support, the
association primitive is useful to understand the semantics
and complexity of a particular application mechanism and
to compare and contrast different mechanisms. One kind
of question that might be more easily answered is whether
two dynamic mechanisms are fundamentally different, or
whether they are the result of breaking the symmetries of a
generic mechanism in two different ways. (The symmetry
between type-centric and selector-centric inheritance, de-
scribed in Section 5, is one example.) Understanding and
comparing different mechanisms as specialisations of a gen-
eral common mechanism might also suggest possibilities for
new combinations of mechanisms.

Section 6 already suggests a general mechanism that can
be parameterised by number of axes (or dimensions) in-
volved in lookups. As pointed out in [6], one way to choose
the meaning of successive axes results in a progression from
object-oriented to subject-oriented to context-oriented pro-
gramming. Similarly, Worlds [13] is a simple addition of
an axis to an existing association/aggregation mechanism.
We could continue to invent new and exciting mechanisms
beyond context-orientation and Worlds, ad absurdum, or
recognise they are all just points within a dimensionally un-
bounded space of related, self-similar mechanisms.

4Sqlite has the fastest in-memory implementation of the
freely-available relational databases.

VPRI Technical Report TR-2011-003

This suggests using the association primitive as part of
a language definition, to be translated automatically into
an efficient implementation. The dynamic mechanisms with
which we are familiar (as described above, as well as those
that have not been invented yet) could, and probably should,
be nothing more remarkable than the consequences of par-
ticular arrangements of implications made from properties of
objects described by the programmer as part of the specifica-
tion of the environment in which their application program
will be written and executed.5

11. RELATED WORK
Context-oriented programming [6] addresses similar issues,
but provides solutions at a much higher level of abstraction
by extending high-level languages (Lisp and Java) within
themselves to add another axis to the binding process.

Predicate dispatch [4] unifies many mechanisms for choos-
ing dynamically between methods within a generic function,
but is qualitatively different to the present approach in its
heavy reliance on compile-time static type analysis.

Maybe the most closely-related type-based work is λ{} [1]
which also seeks to unify the overloading of methods to form
generic functions, but does so dynamically and tries to use
the smallest number of operators to accomplish the task.

In contrast to the above, the association primitive is sim-
pler since it considers type as an optional runtime property
derived from a value, not as a formal property of an abstract
value at compile time.

12. CONCLUSION
This paper is an attempt to stimulate thinking about how a
very simple pair of primitive operations (that should be effi-
ciently realisable in sufficiently parallel hardware) can scale
to (and adequately implement with trivial additional work)
the complex structures and behaviours we struggle to imple-
ment in object-oriented, functional and relational systems.

Hopefully it also manages to demonstrate that many ap-
parently very different and interesting organisations and be-
haviours are in fact closely related as slight variations within
a general, parameterisable, n-way associative memory.

We may never see hardware support for the primitive op-
erators described here, but an efficient software implemen-
tation (capable of scaling to billions of entries) would make
a great doctoral thesis. The big challenges are not neces-
sarily to be found in the primitive operators, but rather in
the associated management—garbage collection, in particu-
lar.

13. REFERENCES

[1] G. Castagna (1997) Unifying overloading and

λ-abstractions: λ{}, Theoretical Computer Science,
Vol. 176, No. 1–2, pp. 337–345

[2] C. Chambers (1992) Object-Oriented Multi-Methods in
Cecil, Proc. European Conference on Object-Oriented
Computing (ECOOP’92), pp. 33–56

5This “meta programming” should be no more intimidating
than the current “meta” practices of defining a template li-
brary [11], or redefining operators new and delete, to extend
the environment in which C++ [12] programs are written,
for example.

[3] E. Codd (1970) A relational model of data for large
shared data banks, Communications of the ACM, Vol. 13,
No. 6, pp. 377–387

[4] M. Ernst, C. Kaplan and C. Chambers (1998) Predicate
dispatching: A unified theory of dispatch, Proc. 12th
European Conference on Object-Oriented Programming
(ECOOP’98), pp. 186–211

[5] A. Goldberg and D. Robson (1983) Smalltalk-80: The
Language and its Implementation, Addison-Wesley,
ISBN 0–201–11371–6

[6] R. Hirschfeld, P. Costanza and O. Nierstrasz (2008)
Context-oriented Programming, Journal of Object
Technology (JOT), Vol. 7, No. 3, pp. 125–151

[7] H. Lieberman (1986) Using Prototypical Objects to
Implement Shared Behavior in Object Oriented Systems,
Proc. First ACM Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA), Portland, OR

[8] B. Liskov and J. Wing (1994) A behavioral notion of
subtyping, ACM Transactions on Programming
Languages and Systems (TOPLAS), Vol. 16, No. 6,
pp. 1811–1841

[9] S. Milton and H. Schmidt (1994) Dynamic Dispatch in
Object-Oriented Languages, Technical Report
TR–CS–94–02, Commonwealth Scientific and Industrial
Research Organisation (CSIRO), Division of Information
Technology

[10] http://www.sqlite.org

[11] A. Stepanov and M. Lee (1994) The Standard
Template Library, Technical Report X3J16/94–0095,
WG21/N0482, ISO Programming Language C++
Project

[12] B. Stroustrup (1997) The C++ Programming
Language, Addison Wesley, ISBN 0–201–88954–4

[13] A. Warth, Y. Ohshima, T. Kaehler and A. Kay (2010)
Worlds: Controlling the Scope of Side Effects, Technical
Report TR–2010–001, Viewpoints Research Institute

Acknowledgements
The author is greatly indebted to the three anonymous re-
viewers who provided much useful feeback and who worked
valiantly in hope of turning this paper into something of aca-
demic value. Responsibility for failure to achieve that goal
rests entirely with the author.

VPRI Technical Report TR-2011-003

