ilewpoints Rese

Tamacola - A Meta Language Kit for the Web

Takashi Yamamiya, Yoshiki Ohshima

This paper was presented at the Workshop on Self-sustainign Systems (S3)2010,
The University of Tokyo, Japan, September 27-28, 2010, ACM Digital Library (to be published).

This material is based upon work supported in part
by the National Science Foundation under

Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National

VPRI Technical Report TR-2010-002 Science Foundation.

Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

squeak
Typewritten Text
This material is based upon work supported in part
by the National Science Foundation under
Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

squeak
Typewritten Text
This paper was presented at the Workshop on Self-sustainign Systems (S3)2010,
The University of Tokyo, Japan, September 27-28, 2010, ACM Digital Library (to be published).

Tamacola — A Meta Language Kit for the Web *

A Report on creating a self-hosting Lisp compiler on the Tamarin VM

Yoshiki Ohshima

Viewpoints Research Institute
1209 Grand Central Ave., Glendale, CA 91201

takashi@vpri.org

Takashi Yamamiya

yoshiki@vpri.org

Abstract

Tamacola is a dynamic, self-sustaining meta-language system
grounded upon the Tamarin VM.' Tamacola compiles a Scheme-
like S-expression language into ActionScript bytecodes, and con-
tains meta-linguistic features, such as a PEG parser generator and
macro system, which make it useful for defining new languages. In
fact, Tamacola is written in itself, using its meta-linguistic features.

Since the Tamarin VM can load ActionScript bytecode files to
extend and replace running programs, Tamacola can extend itself
and define new languages while it is running. Furthermore, since
the Tamarin VM is part of the ubiquitous Adobe Flash player,
this self-modification can be accomplished while running in a web
browser, with no extra installation requirement.

Objects in Tamacola are intimately tied to their ActionScript
counterparts, providing good interoperability between Tamacola
and the Flash Player. To show that the system is ready for practical
use, we used Tamacola to implement both an interactive program-
ming environment (“Workspace”) and a simple particle language.

Categories and Subject Descriptors D.3.2 [Programming Lan-

guages]: Extensible Languages; D.3.4 [Programming Languages]:

Translator Writing Systems and Compiler Generators
General Terms Design, Languages

Keywords compiler, self hosting, Adobe Flash

1. Introduction

In the “STEPS” project [10], we have been writing various pro-
gramming language processing systems and experimenting ideas
with them. Among these, Piumarta’s COLA system [12][13][14]
aims to be the bottommost substrate that serves as the target lan-
guage for the higher-level languages.

* This material is based upon work supported by the National Science Foun-
dation under Grant No. 0639876. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

! The source code of Tamacola is freely available under the MIT license at:
http://www.vpri.org/vp_wiki/index.php/Tamacola.

[Copyright notice will appear here once "preprint’ option is removed.]

VPRI Technical Report TR-2010-002

[P x|

Adobe Flash Player 10

File View Control Help

Life Game ;tq:-aFcra-]_ig.

o g =
This is the workspace #or the Forall Lan'glaué% on fﬁ.
. _ l-:-
) e . - ;
R e

N = 100; n

axz = newll, N] g - '.:i
i --H] = Math.£; :(}:aa zengon(l + 0.5); gl (ark]; $'
..N] = Math.f radlom() + 0.5); o
step = m:t).cn () L
arrli:l. N, 3:1..0] = arz(i-1, 340] + aczli- 1G 'h_l-n i EH 1, 3411 + H
arrli, 3-11 + (azsli 02) 3+1]
arr(il, i-1] +.arm 11” + i, Izl
FArrayFlip(arr); - L '?

tall{ali, j] <arrjdo {a= (a3 10) ==3 21 : &8 3 10) =2 2 (a // 10}* n).),
FArrayFlip(arr);

stage().graphics.clear():
stage().graphics. bEgln!‘lll(lGﬁllQSE)
ssuchla == 1 | alt, 3] < arr] :ic: u(scagem-gra .dral 114240, 3 ;‘it” +4 4) g
atage () .addEventListener (™ EncErFramE atel !I {:"-" " H
. Ve £
. - 2
L] B 1

T (Ma

(A T]

[| [Reload] [Do It] [Print It]

Figure 1. An interactive programming environment application
done in Tamacola.

COLA’s vision is to provide “Chains of Meanings” that succes-
sively transform structures and meaning through various forms to
produce (for example) executable machine code as output. COLA
provides the meta-linguistic facilities to define new languages. The
meta-language of COLA is implemented in itself. It also imple-
ments its own execution runtime, so once properly bootstrapped,
the entire system can stand on its own.

Our Tamacola work is inspired by COLA; the central idea of
Tamacola is that the Chains of Meanings could be “grounded”
onto other existing execution environments. Among such execution
environments, we found the Tamarin VM [2] very attractive for a
few reasons: a) the Tamarin VM is virtually ubiquitous (being used
in the Adobe Flash Player, the vast majority of client computers
have it); b) the Tamarin VM is open-source and the bytecode
specification is well-documented; and c¢) the Tamarin VM allows
dynamic loading of code and replacement of existing functions.

After about one-year of effort, our system (named ‘“Tamacola”
as a simple abbreviation of the related technologies) reached the
point of being self-sustaining and ready for wider audience. Tama-
cola runs on top of the Tamarin VM and compiles a program to
ActionScript bytecode, which can be loaded into the Tamarin VM.
The meta-linguistic features, primarily a PEG parser generator with
structural pattern matching, is sufficiently powerful that Tamacola
is implemented in itself. Support libraries provide an interface with
the Flash Player, so the environment can run in a Web-browser with
zero installation.

We hope that Tamacola will enable students, hobbyists and
others to try software built for the STEPS project. Also, our group

2010/10/14

has been interested in the educational aspect of computing. This
implementation could be a good vehicle for deploying dynamic
software. Care was taken to keep the system simple (about 10,000
lines of code) and we also believe that the code serves as a good
example of Tamacola programming itself.

The contributions of this work are summarized as follows:

e It demonstrates the feasibility of implementing a dynamic self-
sustained meta-language system on top of Adobe’s Tamarin
VM and Flash Player.

e It provides a compact and zero-install-requirement implemen-
tation of a self-sustained system that students of programming
languages can easily access.

e It illustrates a clean mapping from a higher-order functional
language to the execution engine designed for ActionScript.

Section 2 presents the design principles of Tamacola along
with the relationship to its parents, namely the COLA system and
Scheme programming language. In Section 3, the Tamacola lan-
guage is explained. In Section 4, the components, or the links in
the Chain of Meaning, in Tamacola is described, along with an ex-
planation of the terminology and technology used. In Section 5, the
mapping of Tamacola function calls and variables to ActionScript
is discussed in detail. Section 6 describes the bootstrap process and
how the system becomes self-sustained. In Section 7, an interactive
shell environment (“Workspace™) is explained as an example. In
Section 8, another example, a larger end-user array language called
“Forall” is explained. Section 10 discusses related work, and Sec-
tion 11 concludes.

2. Design of Tamacola

We explain the design principles of Tamacola in this section.
In preparation, we first clarify some terminology used with the
Tamarin VM and related Adobe Corporation technology.

2.1 Terminology and Technology around Tamarin VM

The Flash Player is a well-known, media-rich application environ-
ment that most users of Web-browsers often experience. The stan-
dard language for specifying Flash content is called “ActionScript
3”; in this paper, we refer to it simply as “ActionScript”. Adobe
has implemented a virtual machine called the “Tamarin VM” to
run ActionScript, and released it under an open-source license.
The Tamarin Project provides a standalone shell program called
“avmshell”. For developers’ convenience, avmshell has a simple
I/O API that lets a program running on it access the file system and
interactive console.

While the implementation is referred to as the Tamarin VM, the
specification of the VM is Adobe Virtual Machine 2 (AVM2) [1].
The input file format for AVM2 is ActionScript Byte Code (ABC).
An ABC file (typically with file name “.abc”) may contain func-
tion definitions (as sequences of bytecode instructions), class defi-
nitions, and a constant table.

Shockwave Flash Format (SWF) is the file format for the Flash
Player. A SWF file serves as a container for various kinds of media
data, such as vector graphics, video, and audio, in addition to ABC
data.

While the VM technology used is the same, the Flash Player
and avmshell work differently. The Flash Player does not have file
I/O and can only load SWF files. Avmshell can load and execute
both ABC and SWF from files.

2.2 Design Principles and Goals

Tamacola’s primary goal is to provide a meta-linguistic facility for
implementing a wide range of programming languages. The facility
needs to be powerful enough to implement Tamacola itself. It is

VPRI Technical Report TR-2010-002

also essential for the implementation to be compact and clean,
since we would like users to understand the whole system and
make necessary extensions and changes without becoming lost in
complexity.

Tamacola’s design largely draws upon COLA. We also found
inspiration from Scheme, a compact and consistent S-expression
language, and we incorporated various Scheme syntax, function
names, and features.

Four main design goals were:

A Dynamic Self-Supporting Environment Being a meta-language
system implemented in itself, the entire system must be acces-
sible to developers. All parts of the compiler must be modifi-
able and accessible so that adding different features and meta-
features dynamically becomes feasible.

A Compact System The meta-implementation approach tends to
lead to a compact artifact that does not require any external
tools. This encourages developers to understand the whole sys-
tem. Tamacola is about 10,000 lines of code, including com-
piler, assembler, test cases, and all libraries.

Heavy Use of PEG with Structural Matching Typically, the com-
pilation of a program is implemented in stages that are pipelined
together (“Chain of Meaning”). By mobilizing a powerful PEG
parser generator that supports deep structural matching similar
to OMeta [17], most such stages can be written using succinct
declarative grammar definitions.

Familiar Environment By taking Scheme as an example, library
names and syntax are familiar and consistent. Also, as the
object and function models are based on those of ActionScript,
features provided by Flash are accessible from Tamacola in a
straightforward way.

In order to achieve these goals, on a third party’s execution en-
gine, certain things are left out. Tamacola does not aim to provide
the ultimate flexibility that the COLA system has in mind; Tama-
cola cannot change the method lookup logic, nor can it change ob-
jects’ layout in memory, etc. Also, modifying the execution engine
is not possible. COLA implements a “kernel” for itself that pro-
vides abstract machine instructions, multi-processing, reified acti-
vation records, continuations and so on, whereas Tamacola cannot
even have multi-processing since the Tamarin VM does not offer
such a feature.

There are some Scheme features that are also out of the scope
of Tamacola.

Tail Call Elimination Optimization Tamacola does not do tail
call optimization, mainly because the AVM2 does not allow
the jump instruction to jump beyond the enclosing function.
This favors the use of loops with destructive assignments over
the tail calls for implementing iteration. Note, however, that
higher-order functions in the library (such as fold in SRFI-
1) encapsulate their loops, so the use of such less-than-pure
operations can at least be hidden.

Continuations Because the Tamarin VM does not allow direct
access to the stack frame, Tamacola cannot create continua-
tions. For error handling, ActionScript-style exception handling
is provided.

Variable Arguments for a Function While it is possible to imple-
ment optional arguments in the Tamarin VM, the Tamacola lan-
guage omits this on grounds of simplicity. Note that with the
macro system, one can still write functions and special forms
that take variable arguments, such as and or cond. Another
workaround is to provide different functions for different ar-
gument counts, such as map and map2.

2010/10/14

Hygienic Macros Tamacola’s macro is the so-called traditional,
non-hygienic macro, where a symbol in the macro definition
can capture a variable of the same name in the caller. There are
simplicity versus complexity trade-offs here, and again Tama-
cola opted for simplicity.

3. The Tamacola Language

The Tamacola language is an S-expression language which sup-
ports not only functional language features but also the kinds of
object-oriented features provided by ActionScript. The basic fea-
ture set is confined to things that can be readily translated to ABC
code. Such features include: arithmetic and comparison functions,
control structures such as function application, let, lambda, if,
while and try-catch, and object-oriented features such as cre-
ating a new class, creating a new object, testing types of objects,
and object field access. A define at the top-level creates a binding
in the “global” context for the compilation unit. There is a macro
form that is also considered to be a basic feature. As explained in
Section 4, these are mostly implemented as simple transformation
rules in a PEG specification called syntax.g.

Tamacola uses ActionScript objects for its data representation.
To access them, a few special language constructs are provided.

Free Variables Tamacola’s functions are lexically scoped; that is,
a function that refers to free variables “closes-over” these vari-
ables. When a function closure outlives the function activation
that created it, any free-variables are preserved and still can be
found in one of the lexically-enclosing function activations.

“#self” When a Tamacola function is used as a method for an
ActionScript object, the receiver, or “this” in ActionScript, is
accessed via a pseudo-variable called “#self”.

“#undefined” Tamacola uses the special name #undefined to
represent the “undefined” value in ActionScript. This is used
as the initial value for slots in newly-created objects, and is also
used as the return value from expressions with side-effects such
as define or set!.

Numbers, Strings, Booleans Numbers, strings and Booleans are
mapped to the corresponding ActionScript objects. A side-
effect of this mapping is that unlike Scheme, where only #f is
treated as false for conditionals, the number zero (0), an empty
string, > (), and #undefined are all also (in Boolean expres-
sions) treated as equivalent to false; this is the same way that
ActionScript’s conditional works. Similarly, the eq? function
is mapped to strict equality === in ActionScript; but note that
this is not strict enough to tell the difference between a floating
point value and an integer; thus:

(eq? 1.0 1) => #t

Symbols, Pairs Symbols and pairs are ActionScript classes cre-
ated in the Tamacola library. The null value (namely, ’> () in
Tamacola) is the same as null in ActionScript.

eval eval takes a program in a string as argument and evaluates
it in the top-level context. (See Section 4.6 for details of its
behavior.)

There are object-oriented features provided to access Action-
Script objects and to call the Flash API. With them, for instance,
we can build Flash applications entirely within Tamacola.

Classes and Objects There is a form called class to create a
new class with specified superclass, properties and constructor
expressions. The new form creates a new object of a given
class, and there are forms for testing type inclusion, and to test
whether an argument is “undefined”.

VPRI Technical Report TR-2010-002

Slot-access There are a few forms to get and set a property of an
object. For example, a form:

(slot-get object string-or-number)

looks up a property of the object (if the object is an Array, a
numeric index can be used instead of property name). Similarly,
to store a value into a property there is a form slot-set!.

Message-Sending The send form in:
(send object selector arguments ...)

invokes the specified method on the object with arguments.

3.1 Macros

Tamacola has two ways to define macros. define-form is used
to define simple, traditional macros, while define-pattern pro-
vides macros that can use pattern matching. These macros are not
hygienic, and symbols are evaluated in the caller’s context.

¢ (define-form name argument expander)

define-form transforms argument using expander. Expander
is a Tamacola expression which returns an S-expression. Argu-
ment is expanded by expander and embedded at the “call” site.
For example, Tamacola’s begin form is defined as follows:

(define-form begin e (cons ’let (comns ’() e)))

® (define-pattern (template pattern)...)

define-pattern is a pattern-template based macro similar to
syntax-rules in Scheme. Any common variables found in
both template and pattern are substituted by actual values
in place of the template. The macro name is the car value of
template. For example, Tamacola’s cond form is defined as
follows:

(define-pattern
((cond) O
((cond (cO . b0) . rest) (if cO
(begin . b0)
(cond . rest))))

Unlike syntax-rule in Scheme, ellipsis (...) is not sup-
ported.

One may wonder why we provide two kinds of macros, when
theoretically define-pattern could be implemented with de-
fine-form? The major advantage of define-pattern is that it
is implemented with simple list transformations, whereas define-
form needs to evaluate the expander at compile time. In the de-
velopment process of Tamacola, a macro system without dynamic
evaluation was needed because we had to implement a PEG parser
generator by macros before the eval function was ready to use.
Even after the bootstrapping process was done, define-pattern
is still used more often than define-form in Tamacola’s source
code because the mechanism and notation are simpler.

3.2 Command-Line Tools of Tamacola

For the programmer’s convenience, a few commands are provided
to invoke various Tamacola features to produce different types of
files.

tamacc is the compiler that reads Tamacola code in .k files and
generates corresponding ABC . abc files.

tamacola is a command line shell. It serves as a high-level driver;
.k files and . abc files can be specified as its command-line ar-
guments. It compiles the .k files and executes all arguments.

2010/10/14

tamacola also provides the interactive shell within which pro-
grammers can evaluate expressions interactively. Expressions
entered are evaluated in the global context, so global variables
are visible to such expressions.

mkswf creates an SWF file from the list of .abc files specified
as arguments. If SymbolClass is supplied as a command-line
option, it generates a SWF file which can be loaded onto the
Flash Player in web browsers.

mkpeg translates a PEG specification in a . g file to Tamacola code
in a .k file. Tamacola’s PEG is described in more detail in
Section 4.

Figure 2 depicts the file types used in the Tamacola system and
the commands to handle them.

PEG source

.g = COLA grammar (PEG) language

mkpeg d
LISP source
tamace .k = COLA kernel (S-expression) language
| *.abc | | *.abc | | *.abc | ABC binary
mkswf bt

Flash binary

Figure 2. Tamacola tools

4. Implementation

In this Section we explain Tamacola’s three main components,
namely ABCSX, the PEG parser generator, and the compiler.

4.1 ABCSX: AVM2 assembler using S-expressions

ABCSX [18], written by author Yamamiya, is an assembler for
AVM2. ABCSX generates ABC files from lists of instructions and
metadata provided in S-expressions.

ABCSX has two input formats. One, called the “ABC-form”,
is a low-level format whose list structure corresponds to the log-
ical layout of the ABC format. This form is used when low-level
debugging or fine-grained manipulation of ABC files is necessary.
ABC-form does a minimum of management of the jump table with
labels, but does not handle constant table creation.

Another format, called the “ASM-form”, is higher-level, con-
cise and human-readable. When input is given in the ASM-form,
ABCSX scans the constants used and then creates a constant table
from the embedded literal expressions. This form is used for the
Tamacola compiler as its output.

Following is a complete example of a “Hello, World” program
in ASM-form:

(asm
(method
(((signature
((return_type *) (param_type ()) (name "hello")
(flags 0) (options ()) (param_names ())))
(code
((getlocal 0)
(pushscope)
(findpropstrict ((package "") "print"))
(pushstring "Hello, World!!")
(callproperty ((package "") "print") 1)
(returnvoid))))))
(script (((init (method 0)) (trait ())))))

The ASM-form starts with a symbol “asm”, and may have sev-
eral sections. There are mandatory sections such as “method” and

VPRI Technical Report TR-2010-002

“script”. Also, there are optional sections such as “instance”,
“class”, “exception”, and “metadata”. (No such optional sec-
tions were needed in this example.)

The “method” section contains method definitions. Each method
definition consists of the method’s signature and the code. The
signature is metadata about the corresponding method’s type, the
debug name, information about optional arguments, and param-
eter names. In addition to regular methods, static methods, class
constructors and anonymous functions can also be defined in the
method section. The code consists of a list of ABC instructions.
ABCSX analyzes the instructions at assembly time, and calculates
necessary information required by the Tamarin VM such as the
stack size and the register size used by the code. (More details on
the stack and registers are in Section 5.)

The “script” section specifies the initialize script for the ABC
data. In a typical case, avmshell runs the initialize script when an
ABC is loaded, and binds functions and classes to the “global”
context of the compilation unit.

ABCSX itself is an independent project. It is written in a subset
of Scheme, and the same code base can be used for both COLA
and Tamacola, along with other Scheme implementations such as
Racket (a system formerly known as PLT-Scheme) and Gauche [9].

4.2 PEG Parser Generator

Tamacola heavily uses PEG [6] to specify most of the stages of
the compiler. Since Tamacola’s PEG is capable of matching deeply
nested structures, transforming such structures can be concisely
specified.

A PEG grammar consists of a series of rules. Each rule has a
rule name on the left hand side and a parsing expression on the
right hand side, separated by an equal sign =.

greeting = "Hello"

The PEG parser generator compiles each rule into a Tamacola
function of the corresponding name (via macro expansions). The
function needs to take two arguments, namely the input stream and
the parser object, and the output is a boolean value which denotes
whether the input matches or not. The following pseudo-code is the
translated result from the rule above:

(define greeting
(lambda (stream parser)
(If the head of the stream matches "hello"?
(Record "Hello" in parser, and answer #t)
(Otherwise, Answer #f))))

The possible return values (#t and #f) indicate whether the rule
succeeds or not; the actual value is recorded in the parser object.
The translation of a PEG rule to a function is straightforward.
Programmers may write such functions by hand and use them in
conjunction with rules defined in PEG.
We now show excerpts from the actual Tamacola compiler stage
by stage.

4.3 PEG as the String Parser

A set of rules to recognize S-expressions comes first. The parser
recognizes strings such as “42”, “hello”, and “(+ 3 4)” (a sequence
of “(*, “+”, a space, “3”, and so on) and constructs a corresponding
list structure. The following is an excerpt from the S-expression
parser specification:

char = [+-*/abcdefghijklmnopqrstuvwxyz]

dig = [0123456789]

sp = [\t\r\nl=*

sym = char+ :s sp -> (intern (->string s))

num = dig+ :n sp -> (string->number (->string n))

2010/10/14

arity = .*:x ->

insts = inst* :xs ->

inst = is-number:x ->
| is-symbol:x ->
| >(C °+ inst:x inst:y) ->
| >C - inst:x inst:y) ->
| >(°% inst:x inst:y) ->
| >C ’/ inst:x inst:y) ->
|

>(inst:f &arity:n insts:a) ->

(length (->list x))
(concatenate (->list xs))

¢ ((pushint ,x))

‘((getlex ((ns "") ,(symbol->string x))))
‘(,6x ,0y (add))

‘(,6x ,Qy (subtract))

‘(,ex ,Q@y (multiply))

‘(,0x ,0y (divide))

‘(,0f (pushnull) ,@a (call ,n))

Figure 3. An Excerpt of Tamacola Compiler (syntax.g)

sexp = sym
| num
| "(" sexpx:e ")" -> (->list e)

The char and dig rules match one of the characters enclosed in
corresponding brackets. The sp rule matches any number of white
space characters, because the star operator * repeats the previous
expression zero-or-more times. (The plus operator + repeats the
previous expression one-or-more times.) The sym rule matches a
sequence of chars followed by white space. The sequence of chars
is bound to the variable s, as : specifies a variable-binding action.

An arrow operator —> specifies a semantic rule which creates
Tamacola data and records it as the result of the rule. Any Tamacola
expression can be used on the right hand side of the arrow operator.
In this sym rule, the ->string function converts its argument,
which is the sequence of objects bound to s, to a string object. In
turn, the intern function converts the string to a symbol object.

Similarly, the num rule returns a number object.

The vertical bar operator | specifies prioritized choices. Rules
separated by | are tried in order, and the result from the first
successful match is used. The sexp rules use operators to match
an S-expression with symbols and numbers.

The PEG parser in Tamacola supports memorization of inter-
mediate results and direct left-recursion optionally. For a complex
grammar that requires a lot of backtracking, memorization provides
good performance that is virtually linear to the input string. Left-
recursion is also useful when writing a grammar that has multiple
levels of operator precedence, for instance.

4.4 PEG as List Transformer

From the list structure that the parser creates, the compiler then
generates code in ASM-form. Figure 3 shows the core part of this
phase of the compiler (the inst rule), also written in PEG.

Before the inst rule, two helper rules are defined. arity counts
all pending objects in the stream, and return the number. insts
takes a list of lists (returned from 1ist* expression), and concate-
nates them into a single list.

The is-number rule and the is-symbol match with a number
value and a symbol value, respectively. If the compiler finds a num-
ber at the head of the stream, it generates the pushint instruction.
Likewise, if a symbol is found, the getlex instruction is generated
with the name space specification and the symbol to retrieve the
value from a global variable.

Currently, predicate rules such as is-number and is-symbol
can not be written in PEG directly; instead they are supplied
as Tamacola functions. But recall that a hand-written function
can serve as a rule in PEG, as explained above. For example,
is-number is written as follows:

(define is-number
(lambda (stream parser)
(if (number? (stream/peek stream))

VPRI Technical Report TR-2010-002

(begin (stream/set-parser-result
parser
(stream/next stream))
#t)

#£)))

The inst rule is the core part of the transformer. The quoted-
parenthesis pattern > (...) matches a list structure, and the
rules specified inside are tried, in an attempt to match the content of
the list. For instance, a list beginning with a plus symbol + matches
with a choice in the rule and emits the add instruction; e.g., (+ 3
4) emits ((push 3) (push 4) (add)).

The last choice of the inst rule matches and emits a function
application. The prefix & means following arity does not consume
the stream, but just gets the result (the number of arguments). For
example, (print 42) is translated to:

((getlex ((ms "") "print"))
(pushnull)
(pushint 42)
(call 1))

This sequence of instructions would push the function named
print, null, arguments, and call (with the call instruction with
the number of arguments). In the case of a method call, the receiver
object (“this” object in ActionScript) is specified before the argu-
ments, but in this case, null is pushed instead because there is no
receiver for a pure function.

4.5 The Whole Compiler Pipeline

The complete compiler is the combination of the parser and the
compiler. The angle brackets operator “<... >” invokes a rule
with specified arguments, and can be used to combine different sets
of rules. Following is such an example:

compile = sexp:x <inst x>

In this case, the sexp rule converts the input text to a list
structure, and the list is used as the input to the inst rule. For
example, the rule compile converts “(print (+ 3 4))”to:

>((getlex ((ms "") "print"))
(pushnull)
(pushint 3)
(pushint 4)
(add)
(call 1)))

This section has explained the basic compilation stages with
PEG and ABCSX. But the mapping from a Lisp-like language to
the Tamarin VM’s model requires some more work. In the next
section, we shall discuss the mapping of Tamacola language to
Tamarin VM’s stack model.

2010/10/14

obj.f(10, 20) g(20) h(10, 30)

registers registers class Obj {
obj | 10 | 20 | g n/a | 20 function £(x, y) {
HEN | var g = function(z) {
Ecall operand stack call| operand stack callg) return h(x, 30)
g n/a | 20 h n/a X 30 : g(y)

pushscope {x: 10} iar obj = new Obj()

...................... newfunction (g) .
{x: 10} obj.£(10, 20)
scope stack |{h: ...} scope stack | {h: ...}

Figure 4. Runtime data structure on the Tamarin VM

4.6 The implementation of eval

Since the Tamacola compiler is available at runtime, compiling text
as a program and generating the ABC data is simple. However,
how the resulting ABC data is loaded has some implications. On
avmshell, the shell provides the loadBytes primitive to load the
ABC data from a byte array; so the compiler just generates the
bytecode into an array and calls 1oadBytes, and executes the code.
On the Flash Player however, SWF data is generated into a byte
array, and then by using the Flash Player’s asynchronous loading
feature (flash.display.Loader), the SWF data is loaded from
the data. When the loading is done, the code is evaluated and the
sender of eval is notified via a callback function.

5. The Mapping to the Tamarin VM’s Execution
Context

In the previous section, we presented a simplified view of the Tama-
cola compiler. But the actual compiler needed some more work to
deal with control structures, free variables, function creation, class
creation, etc. Most importantly, we wanted to implement some Lisp
features on top of the Tamarin VM, whose design is intimately tied
to ActionScript, and such features needed to be properly mapped
into the Tamarin VM’s memory model and instruction set.

The Tamarin VM has three memory areas to store variables in a
function; they are called registers, the operand stack, and the scope
stack. Figure 4 shows the runtime execution context of the function
calls in the Tamarin VM.

A set of registers are allocated for each function or method invo-
cation. Registers provide the storage for local variables, arguments,
temporary variables and the receiver of the message. The compiler
determines the number of registers needed by a function, and upon
a call to the function, the arguments and the receiver are stored at
the compiler-determined locations in the registers.

Whether it is a method call with a receiver, or a function call
without one, the zeroth register is reserved for the receiver (and
is occupied by a nominal placeholder object when there is no re-
ceiver) and arguments start from the first register. Since accessing
the zeroth register is no different from accessing the other regis-
ters for most of the instructions, Tamacola could have used the ze-
roth register to store the first argument and so on. However, for
the sake of interoperability, it was decided to keep the calling con-
vention in harmony with ActionScript conventions. Therefore, the
arguments for a Tamacola function start from the first register and
the Tamacola compiler generates an instruction to push null prior
to other arguments for each function invocation (unlike the Adobe
Flex compiler, which pushes the “global” context object for the
compilation unit, even though it is not used in the function).

VPRI Technical Report TR-2010-002

For example, in a method call obj.f (10, 20) of the example
in Figure 4, the receiver obj is stored into the zeroth register, and
the arguments 10 and 20 are stored in the first and second register,
respectively. But for the function call such as g (20) in the example,
the zeroth register is not used, and 20 is stored at the first register
as the sole argument.

The operand stack is used to store operands, or intermediate
results of the execution, for instructions in the function. Each in-
struction makes specific changes to the operand stack; For example,
add takes two objects from the operand stack and pushes the result.
Similarly, for a function call or a method call, the function object,
the receiver (may be a nominal for a function call), and arguments
are pushed onto the operand stack and the call instruction is exe-
cuted. After call, these operands are popped and the return value
is pushed at the top of stack.

The scope stack is used to access global variables or free vari-
ables from a closed-over inner function. This stack is necessary be-
cause neither the registers nor the operand stack could be accessed
from other functions. The scope stack stores a chain of scope ob-
jects, each of which is either an activation object or a regular object
and used as a dictionary for looking up the value from the variable
name. At the bottom of the stack, the global context object that
contains all global names stays, and a scope object is pushed to the
stack when a new lexical scope is needed.

Unlike registers and the operand stack, whose lifetimes are
limited to the corresponding function call, the scope stack works
differently. A snapshot of the scope stack is remembered when a
function is created by the newfunction instruction and the created
function has an implicit reference to the snapshot so that the stack is
available when the function is called, even if the enclosing function
has already terminated.

In the example, when g(20) is invoked, the global function
h is found in the bottommost entry in the scope stack. Then an
object with the free variable x is stored on top of the global scope.
This scope object with x is initialized by an instruction pushscope
when the function g is created inside the method obj.f. (x must
be on the scope stack because the function g cannot access the
registers of the method obj.f.)

There is some consideration on how actually to use the scope
stack. In theory, a 1et could be syntax sugar for a function call with
newly introduced variables as arguments, so we could naively map
an inner function in Tamacola to an inner function in ActionScript.
However, this would impose a significant performance penalty be-
cause a function call in the Tamarin VM is slow. So, when the inner
scope is introduced by a mere let and not a lambda, which may
escape and outlive the enclosing function call, we would like to
optimize it away.

2010/10/14

peg-boot.k
(Handwritten paser)

peg-grammar.g- peg-grammar.k

Bootstrapping Phase

(String Parser for S-expression and PEG grammar)

(Bootstrapping source code)
syntax.g 4 peg-grammar .k syntax.k (Listtransformer)

Stage1: Hybrid Phase

| peg-grammar.k | | syntax.k |

ABCSX

Bootstrapping compiler (COLA program)

assembler | | » stage1 compiler

Tamacola source code

Y Stage2: Production Phas;

stage1 compiler

> stage2 compiler

(Tamarin program)

Figure 5. Building Process

To make an efficient variable mapping, the Tamacola compiler
does the free-variable analysis when compiling a function to see
if arguments for the function, or new variables introduced by let,
are referenced by an inner function. Such variables are marked as
“activation variables” and in the generated ABCSX code, activation
variables are placed in an object on the scope stack. For all other
variables are assigned to registers.

The regular object in the scope stack is also used to implement
(unpopular) with syntax in ActionScript, for explanatory purpose
we can show the compilation result in ActionScript with with: For
example, a Tamacola function:

(lambda (x)
(let ((y 10)
(z 20))
(lambda ()
(print x z))))

is compiled into the the same bytecodes as the following Action-
Script function would be compiled into:

function(x) {
with ({"x" : x}) {
var y = 10;
with ({"z" : 20}) {
return function() { print(x, z); };
}
}
}

6. Building Process

Because a primary goal of Tamacola was to write the system in it-
self, we needed to start the process of building the system before we
had a compiler to compile the compiler’s code. A typical approach
to solve this situation of course is to write a compiler on another
system (and possibly in another language) at first to compile the
compiler.

However, one of our goals is to provide a compact and sim-
ple system, and we had an interesting opportunity to achieve the
goal with minimal dependency on other systems because the central
piece of Tamacola’s compiler is written in a high-level PEG specifi-
cation stored in a single file called syntax.g. Syntax.g specifies
the transformation from S-expressions to the input for the ABCSX
assembler. As OMeta has shown along the line of META-II [16], a
grammar of PEG and translation of the grammar to procedural code
can be written very compactly, especially with help from a unified
pattern matcher (as we have shown in Section 4.2). This means
that once we bootstrap the PEG parser generator, we can translate
syntax.g to produce a compiler, and we can keep refining the pro-

VPRI Technical Report TR-2010-002

cess to reach to the point where the whole system can be compiled
by itself.

Figure 5 shows the building process. In the following, we de-
scribe the process step by step.

6.1 The Bootstrapping Phase

Bootstrapping of Tamacola is done on the COLA system, because
COLA has its own PEG parser generator and the bootstrap ver-
sion of it has already been written by hand (by Piumarta). We
borrow the bootstrap parser for COLA and feed the Tamacola’s
“real” PEG parser generator specification in to it via a file called
peg-grammar.g. The resulting peg-grammar.k file contains a full-
featured and working Tamacola PEG parser generator that runs on
top of COLA. This PEG then processes syntax.g to generate the
core of the Tamacola compiler that can run on COLA.

We needed to write some additional supporting code for the
bootstrapping PEG, including code to absorb differences between
COLA and avmshell, a stream library to handle byte arrays, and
I/0O.

6.2 Stagel: Hybrid Phase

We run peg-grammar .k, syntax.k, ABCSX, and such supporting
code on top of COLA to parse all Tamacola code and generate
corresponding .abc files that constitute the compiler that can run
on top of the Tamarin VM. We call this phase “Hybrid” as the final
Tamacola code is run on top of COLA. This is possible because the
languages are almost identical. For macros in the Tamacola code,
the expansion is done by the COLA macro system at this stage.

6.3 Stage 2: Production

The ABC files generated by the stage 1 can now be loaded onto
avmshell. This “stage 2” compiler does run on the avmshell but is
not quite “there” yet. For one thing, the macros in .k files, including
syntax.k, from the previous stage were expanded by the COLA
macro expander, so the Tamacola’s macro systems are not exercised
yet. And also we need to make sure that the environment can run in
the form of the final product, including the different support code.
So, we now compile the same peg-grammar.g but this time with
different support code and with the macro system, then we move
onto compiling syntax.g with the new peg-grammar.k by this
compiler.

The resulting compiler is the “pure” Tamacola compiler; this
compiler can also compile the entire system without needing
COLA (even without using the macros expanded by COLA). Also,
it can provide the interactive shell and dynamic code loading. In
short, this is “full-featured” and self-sustained and can be used for
further development.

2010/10/14

arrayDecl = identifier:n (__ "[" identifier:i "]" -> ¢(,@ia-list ,i):ia-list)+

query = SUCH __ "{" expr:e __ "|" arrayDecl:n __
| ALL __ "{" identifier+:n __ "<" expr:s __
lstmt = IF lexpr:c THEN lstmt:t (ELSE lstmt:e)?
| expr:x __ "=" ! ("=") expr:v
| compound
|

query:q (1DO | 1DOINORDER):e compound:ss

-> ‘(array-decl ,n ,@ia-list)

"<" expr:s __ "}" -> ‘(such ,e ,n ,s)
"} -> ‘(all ,(->list n) ,s)

-> ‘(if ,c ,t ,e)
-> ‘(assign ,x ,v)

-> ‘(query ,e ,q ,ss)

Figure 6. An except of the parser specification of the Forall language.

7. Case Study #1: COLA Workspace

COLA Werkspace
+ = filel///Users takashi/src/c3/ws/Workspace. html ¢ (Qr [+]

COLA/Flash Workspace

This is a COLA/Flash workspace. You
can evaluate any lisp programs in the
\document. Select each expression
Ibelow and click [Print It] or [Do It]
Ibutton on bottom of the screen.

(+ 3 4)
(print "Hello, World!\n")

|A page may have a hyper link. You use

a jump function to go to another page.

IThe [Home] button always let you back

lto this page. Select next expression and click Do It] button.

(jump "Overview.html™)

Home . html

[Back] [Heme] [Reload] [De It] [Print It]

Figure 7. COLA Workspace

A workspace is a text editor in which you can enter, edit, eval-
uate, and inspect a program. Unlike a read-eval-print-loop usually
provided in most Lisp implementations, a workspace works as doc-
umentation as well as as a debugging tool. A workspace is tradition-
ally used in Smalltalk environments, and Emacs’ scratch buffer and
Mathematica’s notebook provide similar features.

The COLA workspace (Figure 7) allows you to run a Tamacola
program in a Web-browser. It has a user interface that found in
a Smalltalk workspace, where you can simply eval an expression
(“Do It”) or print the evaluated result (“Print It”). The COLA
workspace consists of several pages where each page has its topic
and pages are connected by hyper links.

The contents of the page is stored using a subset of HTML
format. The COLA workspace shows the content by the htm1Text
property in flash.text.TextFiled of the Flash API.

8. Case Study #2: A Particle Language

We wanted to implement a non-trivial language on top of Tamacola
to validate its feasibility. Since the authors’ group has been inter-
ested in programming languages for particles, and also since the
language would be able to take advantage of Flash’s graphics capa-
bilities and the interactive programming of Tamacola, the language
we decided to implement is a particle language with an interactive
graphical environment. In analogy, the system would be like Pro-
cessing [15] but using Flash as the execution environment.

The language is tentatively called “Forall”. The basic syntax
resembles JavaScript but has a few features to support arrays of
data, i.e. particles:

VPRI Technical Report TR-2010-002

e Multi-dimensional arrays are supported.

e To support simulations that repeatedly calculate the new state
from the old state in the same buffer, the new state and the old
state of the same array are accessible (double buffering).

e For array processing, new control structures to specify iteration
concisely are introduced.

The multi-dimensional array in Forall uses comma-separated
indices in brackets, i.e., “arr[x, y]” instead of “arr[x] [y]”.
Internally, the actual buffer is a one-dimensional Tamacola Array
with the dimension information called “format™ attached. Double-
buffer is done with a pair of such buffers, so that the user data can
be used easily by the Flash APIs.

The syntax for “queries” in Forall looks like:

%all {a = arr[i:0..N, j:0..N]} do {a = f(a, i, j);}
%some{a = arr[i:0..N, j:0..N1} do {f(a, i, j);}

Notice that the user declares loop variables (in this example, i and
j) and the variable to access the slot (in this example a). The idea
of this syntax is that inside the compound statement after do, the
code looks like it is simply describing the concern of a simple
scalar variable a; but the code is “extended” by attaching a %-query
clause. The variable arr is visible in the block as well, so if the
code needs to access some other elements in arr, regular indexing
syntax can also be used.

8.1 Translating Forall to Tamacola

The implementation of Forall is done in a “typical manner” when
using PEG; namely, write a scannerless parser that constructs a
parse tree from the source code string, and then transform the tree
by another set of grammar rules, which effectively implement a
visitor pattern on the tree.

The parser is written in about one hundred lines of code. The
major part of it is used to specify the different levels of operator
precedence, and also the specification of keyword tokens. The
interesting addition is the syntax for the query clause. An excerpt
of the parser is shown in Figure 6. As you can see, parsing the
text and building the parse tree in S-expressions with quasi-quote
is very straightforward in PEG. The operator precedence takes
advantage of the left-recursion support and the memorization helps
the performance of parser.

From the parse tree, another pass of processing generates the
expression that Tamacola can execute. A part of the translator is
shown in Figure 8. As the transformation for the query is somewhat
complex, it uses helper functions (the long function names on the
right hand side of -> in the Figure) to create the index calculation
from the “format” of the multi-dimensional array.

One reason that the transformation is complex is that because
message-sending is relatively slow, care must be taken to avoid
message-sending in the translated code.

2010/10/14

make-query = ’(’such trans:cond array-decl:t tramns:a) .:rhs
-> ‘(let ,t
(let ((format (FArray-format ,a)))
(let ,(format-to-index-generator (reverse (cdr t)) O ’format)
, (cross-product-iteration-generator

(reverse (cdr t))

(slot-access-generator-for-query
(reverse (cdr t))
0 a (car t)
(if (null? cond) rhs ‘(if ,cond ,rhs ’())))

>format 1))))

query = ’(’query ’do .:lhs trans :rhs) <make-query lhs rhs>

Figure 8. An except of the translator from parse tree to Tamacola S-expression.

Assembler 1,687
SWEF writer 267
Compiler 1,025
PEG processor | 1,277
Libraries 1,260
Boot libraries 1,713
Miscellaneous 741
Total 7,970

Table 1. The source code line count

8.2 Interactive Environment

Since the Tamacola workspace (Section 7) lets us type in code

interactively and compile the code down to the ABC bytecode and

execute it, it is easy to hook up a new language to the workspace.
Figure 1 shows a screenshot of the execution.

9. Discussion

In the following, we show code size and performance benchmarks
and discuss their implications.

9.1 Code size

We fully understand that the number of lines of code is a very in-
adequate measure of program complexity. Nonetheless, we provide
some statistics on the Tamacola implementation in terms of LOC.
At a minimum, it does tell us the relative weight of each component
within Tamacola.

Table 1 shows the lines of code in each module of Tamacola,
excluding test cases, documentation, and examples. The core part
of the language consists of the ABCSX assembler, the SWF writer,
compiler, and PEG parser generator, and these modules are written
in 4,256 lines in total. The libraries include the stream library,
the pretty printer, list functions, and etc. The boot libraries are all
programs only necessary for the bootstrapping phase.

Comparison of code size with other languages is always fraught
with difficulty. But just for reference, lua-5.1.4 includes 17,141
lines of code in src directory which includes all compiler, VM,
and libraries.

9.2 Benchmarks

Table 2 shows a few micro benchmark tests on Tamacola, Ac-
tionScript and Squeak (the interpreter without Cog JIT com-
piler). Avmshell used for both Tamacola and ActionScript were
built from the tamarin-central tree revision 714 and built with
--enable-debugger --target=x86_64-darwin flags. The test
code for ActionScript was built using the asc compiler in the Flex
SDK 4.0. An Etoys 4 image and Squeak3.8.1 VM were used for

VPRI Technical Report TR-2010-002

| Fibonacci Sieve Sieve with Vector
Tamacola 8.90s 8.77s 4.73s
ActionScript 8.87s 5.09s 1.41s
Squeak (not Cog) | 3.74s 2.57s

Table 2. The results from micro-benchmarks.

the Squeak benchmarks. The platform was Mac OS X 10.6.4 on a
MacBook Pro with Intel Core 2 Duo 2.5 GHz 4GB memory. The
numbers are execution times in seconds.

The ActionScript versions of the benchmarks are ported from
Squeak. The algorithm is the same, but the variables have type
annotations, which are all int.

Fibonacci calculates the first 36 Fibonacci numbers recursively.
This is a good test for measuring function call performance.

Sieve calculates the prime numbers up to 8,190 in the Eratosthenes
Sieve algorithm. The test here repeats it 3,000 times from within
one function. It is a good test of simple loops, arithmetic, and
array accesses.

Sieve with Vector uses homogeneous Vector instead of Array to
see the impact of parametric types in ActionScript.

By comparing the rows for Tamacola and ActionScript, we can
see how efficient the code generated from Tamacola is, as they are
on the same execution engine. For Fibonacci, Tamacola’s result
(8.90s) and ActionScript’s (8.87s) are very close. The bytecode
sequence for calling a function does not have much room for
optimization and we can say that Tamacola is producing code that
is as good as that produced by the Flex compiler. For the Sieve
example, however, there is about 40% slow down. This is mainly
due to the lack of type annotations in Tamacola.

Type annotations helps optimization in many ways. When the
compiler can tell the type of operands for arithmetic is int, the asc
compiler generates more specialized bytecode, e.g., add_i instead
of add. The Tamacola compiler generates the coerce_a instruction
prior to each and all stores into registers and to the operand stack, to
satisfy the ActionScript code verifier, which requires that the types
of the registers and operand stack slots be identical at a code loca-
tion that may be reached by different code paths. The ActionScript
compiler avoids this. Also, the ActionScript compiler does some
peephole optimization, such as emitting the increment_i instruc-
tion when possible, using ifle instruction instead of lessequal
and iftrue pair, eliminating redundant push and pop pairs.

Function call on the Tamarin VM is relatively slow compared
to Squeak, for example. The difference is smaller for Sieve but it
is still slower than Squeak. However, The Tamarin VM has some
more potential because its homogeneous Vector uses a more ef-
ficient fixed-length buffer. Sieve with Vector is 3.6 times faster

2010/10/14

than Sieve in ActionScript. The Forall language is implemented
with Array as of this writing, but this shows the possibility of op-
timizing the Forall language, when Tamacola has type annotations
added.

10. Related work

There are a few programming languages targeted to AVM2 besides
ActionScript. HaXe by Nicolas Cannasse [4] is a popular multi-
platform language written in OCaml. We referred to HaXe’s ABC
and SWF writer when implementing the ABCSX assembler.

Las3r by Aemon Cannon [5] is a Clojure-like compiler in Ac-
tionScript which can evaluate a program dynamically at runtime.
Tamacola’s dynamic code loader function for Flash Player is based
on Las3r and As3 Eval library by Metal Hurlant [8].

Happy ABC by Hiroki Mizuno [11] is a Scheme compiler writ-
ten in OCaml. Tamacola’s stack layout in its let expression is de-
rived from Happy ABC.

The Java Virtual Machine (JVM) and AVM2 share common
aspects in various ways, and both are designed for object oriented
languages. Languages in the Lisp family, such as Clojure by Rich
Hickey [7] and Kawa by Per Bothner [3] gave us inspiration to
design interoperability APIs for the VM.

11. Conclusions and Future Works

Thanks to the PEG parser generator and macros, the size of Tama-
cola source code is small, yet the system is powerful enough to
build itself. A programming language designer can modify Tama-
cola or create a new language, or even make better tools with them.
And the generated language is widely deployable on the Web with
rich multimedia API on the Flash Player.

But there is more work ahead to further the vision. To date,
the core compiler and only a few applications, the Forall language
for massive manipulation and the COLA workspace for simple
development within a Web browser, have been built. It is necessary
to make more applications to test the usability of the framework.

Tamacola can build itself on avmshell but it still cannot boot-
strap on the Flash Player alone because it needs a storage space for
the generated ABC files outside the running Flash Player. To make
a full development environment possible, it is necessary to write a
Web-server application for accommodating such files.

There are important features to be implemented; most notably,
the debugging support for this kind of generative language environ-
ment is always the big challange. A plausible path is to utilize the
fdb debugger and debugging informations such as variable names
and line numbers, but we would like to explore possibility of a self-
implemented debugging facility.

Also, tail call elimination optimization is another key issue.
While doing so for generic cases without incurring a performance
penalty in AVM2 is very challenging, we could borrow ideas from
existing JVM languages. Clojure has an explicit tail call expression
recur which allows control to jump back to the “recursion point”.
Scala also supports the tail call optimization only if it can be con-
verted to a jump instruction to the beginning of the same function.

The source code of Tamacola could be more compact and read-
able by using perhaps new domain specific languages more inten-
sively. Notably, there is much room for improvement in the assem-
bler, the SWF writer, and the pretty printer.

Designing a programming language is fun and practical. Some-
times choosing the right language makes your problem clear to de-
scribe and easy to understand. The harder we struggle with a prob-
lem, more and more the right language design is critical. Even to-
day, a programming language is a kind of black magic. A compiler
tends to be a large mystical chunk of code, and language designers

VPRI Technical Report TR-2010-002

and compiler creators need to be familiar with special programming
tools.

What if designing a programming language were more like
playing Etoys or Scratch? We could try and taste a language as if
it were a work of handicraft or cooking. This idea may appear too
radical considering that programming in an existing language is al-
ready magical enough, but a programming language can be thought
of not only as instructions to a machine but also a communication
tool among people in the first place. What if you could design a pro-
gramming language using nothing more than a Web-browser ,and
share your ideas using some simple mechanism? We believe that
Tamacola is a tiny but significant step toward this goal.

Acknowledgments

The authors would like to thank Ian Piumarta for providing the
basis of our work, Alex Warth for showing various implementation
languages in OMeta. Scott Wallace, Alan Kay and all colleagues
for feedback and support. We also would like to thank the program
committee members for useful reviews.

References
[1] Adobe Systems Inc. ActionScript virtual machine 2 (AVM2)
overview, . http://www.adobe.com/devnet/actionscript/

articles/avm2overview.pdf.

[2] Adobe Systems Inc. The Tamarin Project, . http://www.mozilla.
org/projects/tamarin/.
[3] P. Bothner. Kawa: compiling dynamic languages to the java VM. In

ATEC ’98: Proceedings of the annual conference on USENIX Annual
Technical Conference. USENIX Association, 1998.

[4] N. Cannasse. haxe. http://haxe.org/.

[5] A. Cannon. Las3r. http://github.com/aemoncannon/las3r.

[6] B. Ford. Parsing expression grammars: a recognition-based syntactic
foundation. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
111-122, New York, NY, USA, 2004. ACM. ISBN 1-58113-729-X.

[7] R. Hickey. Clojure. http://clojure.org/.

[8] M. Hurlant. As3eval. http://eval.hurlant.com/.

[9] S. Kawai. Gauche - a scheme interpreter. http://practical-
scheme.net/gauche/.

[10] A. Kay, I. Piumarta, K. Rose, D. Ingalls, D. Amelang, T. Kaehler,
Y. Ohshima, C. Thacker, S. Wallace, A. Warth, and T. Yamamiya.
Steps toward the reinvention of programming (first year progress re-
port). Technical report, Viewpoints Research Institute, 2007.

[11] H. Mizuno. Happy abc. http://github.com/mzp/scheme-abc.

[12] 1. Piumarta. COLA Kkernel abstraction. Memo M-2009-007, View-
points Research Institute, 8 2009.

[13] 1. Piumarta. Chains of Meanings in the STEPS system. Memo M-
2009-011, Viewpoints Research Institute, 10 2009.

[14] 1. Piumarta. PEG-based tree rewriter provides front-, middle- and
back-end stages in a simple compiler. In 2nd ACM SIGPLAN Work-
shop on Self-Sustaining Systems (S3 2010), New York, NY, USA, 9
2010. ACM.

[15] C. Reas and B. Fry. Getting Started with Processing. Make, 2010.
ISBN 144937980X.

[16] D. V. Schorre. META-II: a syntax-oriented compiler writing language.
In Proceedings of the 1964 19th ACM National Conference, pages
41.301-41.3011, New York, NY, USA, 1964. ACM Press.

[17] A. Warth and I. Piumarta. OMeta: an object-oriented language for
pattern matching. In DLS ’07: Proceedings of the 2007 Dynamic
Languages Symposium, pages 11-19, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-868-8.

[18] T. Yamamiya. An assembler for AVM2 using S-expression. Technical
Memo M-2009-010, Viewpoints Research Institute, 2009.

2010/10/14

