Etoys for One Laptop Per Child

Bert Freudenberg, Yoshiki Ohshima, Scott Wallace

Published in the Proceedings of the

Seventh Annual International Conference
on Creating, Computing, Connecting and
Collaborating through Computing, Kyoto
University, Kyoto, Japan, January 2009

VPRI Technical Report TR-2009-001

Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

squeak
Typewritten Text
Published in the Proceedings of the
Seventh Annual International Conference
on Creating, Computing, Connecting and
Collaborating through Computing, Kyoto
University, Kyoto, Japan, January 2009

Etoys for One Laptop Per Child

Bert Freudenberg Yoshiki Ohshima Scott Wallace
bert@freudenbergs.de yoshiki@vpri.org scott.wallace@vpri.org
Viewpoints Research Institute
1209 Grand Central Ave.

Glendale, CA 91201
Abstract

We present an overview of the “OLPC Etoys” system,
describe the intensive two-year development effort that pro-
duced the system, and discuss lessons learned. OLPC Etoys
is an end-user authoring system for children, which was
chosen to be distributed with the OLPC XO laptops at an
early stage of the OLPC project.

Since we planned to derive OLPC Etoys by evolving an
existing, mature system (“Squeakland”), it was expected to
be a relatively straightforward undertaking. However, the
OLPC XO platform’s special hardware characteristics, the
evolution of the Sugar software stack, and the fundamen-
tally international and multilingual nature of the project,
all conspired to make the development effort challenging.

Over the two-year course of the project, we successfully
kept up with the challenges, and delivered usable Etoys sys-
tems for every OLPC release. We steadily improved the Ul,
added a few high-leverage features, and fixed bugs, with a
small and widely-distributed team and with help from the
community.

1. Introduction

In this paper, the short but intensive history of Etoys
in the One Laptop Per Child (OLPC) project is described.
From the early days of the OLPC project, when it was still
only an idea being discussed at the MIT Media Lab in 2004,
the Viewpoints Research Institute (VPRI) was involved be-
cause our group, led by Alan Kay, had a long history of
researching and developing the concept of the portable edu-
cational computer, and, more generally, of educational soft-
ware, dating back as far as the seminal 1968 “Dynabook”
design [1].

At that time, in summer 2004, VPRI had a well-

VPRI Technical Report TR-2009-001

Figure 1. Etoys Activity’s start up screen.

recognized educational software package called “Squeak
Etoys” which had been freely available for some years [2]
[3]. However, VPRI defines itself as a research organiza-
tion, and since the development work was already “done”
from a research point of view, VPRI was looking forward to
new design and architecture ideas for the “next generation”
Etoys-like system at around the time the OLPC project was
being formulated.

As the saying goes, “the timing is always bad.” On one
hand, we felt a strong impulse to apply our ideas from years
of experience with Squeak Etoys into a brand new system,
built from the ground up from first principles — something
better and cleaner and purer. On the other hand, the time
window available for producing an XO-ready version of
Etoys was very short; the announced launch date was less
than two years out, and we realized that it would be a high
risk prospect to try to deliver a brand-new, comparatively
untested piece of software in such a short time-frame for a
platform (itself brand new) that would be produced in mas-
sive quantity.

There was some internal discussion as to which way we

should go. The key decider was the ongoing presence of
numerous uncertainties around the OLPC project; we con-
cluded that it was best for us not to be adding more uncer-
tainties from our end by trying to create a whole new sys-
tem; thus, by the time software effort got started in earnest,
VPRI had decided to take the existing Etoys and adjust it to
the OLPC platform.

With this conservative approach, the task seemed
straightforward. However, of course, the effort took many
more person-hours than anybody had imagined. OLPC was
inventing new hardware (later named the “XO Laptop”,)
and performance requirements kept changing. OLPC was
also inventing a new graphical user interface called “Sugar”
that itself kept undergoing considerable change. Since buy-
ers of XO’s would be primarily third world countries’ gov-
ernments, localizing software became more important, and
localization efforts consumed a great deal of our efforts. As
the team made progress, it turned out that the task was not
straightforward at all.

However, the team managed to release a continuous se-
ries of robust and usable systems, with constant improve-
ment along the way. A big factor was help from the open-
source community, and another was the malleability of the
Squeak system on which Etoys is built [4].

The rest of this paper is organized as follows. Section 2
summarizes the Sugar environment. Section 3 describes the
XO laptop hardware and the challenges it poses. In section
4, the participation of the international community is de-
scribed. Section 5 and section 6 discuss some of the actual
improvements and changes made to the Etoys system, and
the accompanying materials created. Section 7 discusses
the efforts in the matter of licensing. Section 8 summarizes
the contributions and activities in the extended community
of Etoys users and developers.

2. Sugar integration

In August 2005, there was a meeting between engineers
from RedHat, who were going to work on the system soft-
ware side of the OLPC project, and the Etoys team. At that
time, the laptop was designed to have 128MB of memory,
of which, we were told, 70MB would be reserved for the
base system (later, the system code itself grew larger than
128MB, and the hardware was redesigned to have 256MB.)
Over the following 12 months, the OLPC team produced an
early prototype of a software stack, and external developers
such as the Etoys team got various prototype hardware, in-
cluding the AMD Geode GX developer’s board and a board
called “Rumba” that was closer in form factor to the final
product. (The GX processor was later replaced with the
faster AMD Geode LX processor.) The team experimented
on each revision of prototype hardware using the existing
Squeak Etoys to understand the system.

VPRI Technical Report TR-2009-001

In September 2006 the Etoys team gathered for two
weeks in Cambridge, Massachusetts, to visit the One Lap-
top Per Child headquarters. This marked the official begin-
ning of a two-year programming effort that resulted in the
release of a new, much-improved Etoys version in Septem-
ber 2008.

In 2006, the available hardware consisted only of proto-
type boards, running Linux with a software stack similar to
a regular Linux desktop, including an X11 display server.
Etoys worked the first time we tried it on the brand-new
screen prototype, which had just arrived from the factory in
China.

But there was also much to do. Software development
on Sugar, the graphical user-interface for the laptop, had
just begun, and it would present many challenges over the
following months to integrate Etoys well with this ever-
moving target.

But getting a first proof-of-concept implementation run-
ning inside Sugar was accomplished in only a day. It used a
wrapper implemented in Python like the rest of Sugar. This
wrapper launched Etoys and redirected its window into a
Sugar window, re-using the window-embedding technique
originally developed for the Squeak web-browser plugin.
Commands were passed from that wrapper into Etoys us-
ing a “pipe”, but there was no back channel to access Sugar
functions.

In June 2007 we retired the Python wrapper and made
Etoys integrate with Sugar natively. Applications commu-
nicate with Sugar using the D-Bus message bus system [5].
Thanks to a new DBusPlugin we could now directly inte-
grate Etoys with Sugar. This eliminated the overhead of
running a Python interpreter that took about 10MB of mem-
ory, and also reduced launching time of Etoys from tens of
seconds to mere seconds. More importantly, the change
gave us direct access to the Sugar APIs from within the
Etoys system.

Providing proper access to the “Journal” and the “Data-
Store” were big challenges. Sugar does not present the
user with a traditional file system, but instead automati-
cally records user actions in a database. Children do not
have to load and save files manually; instead activities (i.e.,
Sugar applications) are required to store their state with-
out user interaction into the storage abstraction called Data-
Store. Later an activity can be “resumed” from the Journal,
which presents a chronological, searchable view of all pre-
vious activities.

Therefore, under Sugar Etoys needed to use the API for
accessing the Journal and the DataStore to save and load
projects. Since that API kept changing rapidly and often
in incompatible ways, we had to track the system changes
more or less continuously, and often had to adjust Etoys to
conform to API changes, sometimes at extremely short no-
tice. Etoys was the first major non-Python activity on the

T IR a0
Figure 2. The Navigation Bar.

The navigation bar has Help, Title, Back, Paint, Supplies,

Undo, Language, Share, Scale, Find, Keep, and Stop buttons.

XO, and as such was the first to use the low-level D-Bus
API (whereas all the other prominent activities were imple-
mented in Python using high-level wrappers). At times we
even had to reverse-engineer the API, but we documented
our findings, thus paving the way for other non-Python ac-
tivity developers [6].

Consequently, Etoys can now follow Sugar’s persistence
conventions completely. Etoys automatically saves the cur-
rent project when exiting. There also is a “keep” button that
keeps a copy of the project. The “find” button does not open
a file dialog but instead allows the user to choose and insert
graphics, sounds, and other content from the Journal. An-
other way to exchange data with other activities is via drag-
and-drop, and yet another is using the clipboard, which has
been extended to handle pictures, formatted text, and other
data.

Another important feature conceived of by the Sugar de-
signers was the notion of pervasive and integrated collab-
oration support. XO machines are designed to announce
their presence on the network automatically, so it is much
simpler than on a traditional machine to connect to some-
one else. Etoys already had its own screen sharing and data
sharing mechanisms, but they worked in ways that required
users to provide a prospective peer’s IP address manually,
so that, in practice, it was not conveniently usable by chil-
dren.

Leveraging off automatic presence announcements sent
by Sugar, Etoys quickly gained the ability to establish shar-
ing with simple steps. This was done during a visit to the
OLPC headquarter in May 2007. Later, as Sugar got more
sophisticated, it became possible for an Etoys session to be
shared publicly by simply clicking the Share button in the
navigator bar, or privately by inviting someone from Sugar’s
neighborhood view. In either case, the remote parties can
join the activity by clicking the Etoys icon that appears on
their machines. For each joining “buddy” a badge is created
in a flap. Etoys objects (even scripted ones) can be dropped
onto a buddy’s badge and then get copied over to the remote
machine. This allows a project to be collaboratively assem-
bled. Such collaboration works equally well whether or not
a server is involved, thanks to the Telepathy framework [7]
that Etoys uses to create “tubes” for remote communication.

Sugar activities are normally packaged as self-contained
“bundles,” which are zipped directories bearing a “.x0” file
extension. But to facilitate writing Squeak-based activities
that do not have to include a full Squeak Virtual Machine

VPRI Technical Report TR-2009-001

and object image, OLPC decided to include those in the
base system. The Etoys bundle only contains meta-data and
a tiny start script that runs the pre-installed VM and image.
In fact, we provide a function to create an XO bundle from
an Etoys project file. This creates a skeleton bundle that
can be edited to make a Sugar activity, even on non-OLPC
machines.

To match the look of other Sugar activities, there is a new
iconic navigator bar (See Figure 2). It contains a field to edit
the project name and buttons to access the most frequently
used functions. Advanced functions can be accessed using
the XO’s “view-source” key which brings up a menu to ac-
cess many Squeak features (available as “Cmd-,” on other
machines, t0o.)

3. XO hardware support

Designed as a dedicated learning machine, the XO-1 lap-
top has some unique hardware features that demand special
attention in the software, too.

The most conspicuous feature is the high-resolution
1200x900 pixel display at a density of 200 pixels per inch.
This is twice the resolution of a regular laptop, meaning that
things will appear at only half the physical size if they oc-
cupy the same number of pixels. It also employs a special
color-scheme that does not rely on sub-pixel color compo-
nents; this feature makes casual use of single-pixel-width
lines unadvisable. Thus, for example, the sizes of the nibs
available in the Etoys painting system needed to be ad-
justed.

While the pixel-resolution is high, the processor it uses is
a modest Geode LX running at 433MHz. Software needed
to take the discrepancy into account.

Another unique feature is the XO’s microphone jack.
It allows not only microphones but also sensors such as a
photo resistor to be plugged in. The analog-digital conver-
tor has to be switched to a DC mode for this sensor support
(normal microphone input filters out the DC component,)
which has been added as a primitive.

The built-in camera is supported by a new plugin; using
it, users can record both still-frames and image sequences
directly in Etoys.

For video playback, the Geode LX processor has special-
purpose scaling and color-conversion hardware, which can
be accessed using the new “GStreamer” plugin.

The XO’s mesh network is anticipated to use IPv6 ad-
dressing, so Squeak’s network support was extended to al-
low other socket types than IPv4.

One important design characteristic of the XO is low
power consumption, so we added a feature to suspend Etoys
while it is not running in the foreground.

@ [Nepali] [Etoys] etoys.po Search
34174467 transiated (3594 blank, 132 fuzzy)
Start | Previous 10| | Next 10 | End

Original Translation

cursor

first element -
afget a5

graphic at cursor
player at cursor

The first object in my contents
The index of the chosen element

the graphic worn by the object at the
cursor FEACHT WA TEAT T

the object currently at the cursor

Flash Player T

Figure 3. Pootle, the web-based translation
system.

4. Internationalization

In October 2006, an effort was started to improve Etoys
translations. The tiles, system messages, dialogs, and other
Ul elements were originally coded to show English phrases,
and the translation mechanism uses a dictionary lookup to
provide the Ul in different natural languages. We replaced
the old translation system with a new one provided by a
community member based on “gettext” [8], which is the
pervasive standard for localization in the open source com-
munity. Translatable strings are marked in the image using
#translated sends; these are extracted to a “pot”-file, which
serves as template for the “po” files containing translated
phrases.

A world-wide community of translators uses the “Poo-
tle” web-based translation system, which allows simple on-
line or off-line editing of translations (see Figure 3). There
are more than 4000 phrases to be translated in Etoys alone.
As of September 2008 translation has been started to Ara-
bic, Bengali, Bulgarian, Chinese, Dari, Dutch, French, Ger-
man, Greek, Italian, Japanese, Korean, Kreyol, Marathi,
Mongolian, Nepali, Pashto, Portuguese, Romanian, Rus-
sian, Sinhala, Spanish, Swedish, Telugu, Turkish, and Urdu.

Table 1 shows the coverage of translated phrases in these
languages, sorted by completeness of coverage as of late
2008. There are some interesting facts:

e Turkish went all the way, and Mongolian was almost
there. Both countries are participating in small pilot
programs and their members continue to give close at-
tention to the Pootle server, noticing and translating
new phrases quickly. Kreyol is in a similar situation.

e The “old” group. Portuguese, French, German, Span-
ish, and Japanese, all already had good coverage from

VPRI Technical Report TR-2009-001

Table 1. Coverage of Translation.

Language | Coverage | Language | Coverage
Turkish 100% || Italian 4%
German 99% || Nepali 2%
Mongolian 94% || Russian 2%
French 90% || Pashto 1%
Spanish 80% || Bulgarian 1%
Kreyol 65% || Marathi 1%
Japanese 60% || Dutch 1%
Portuguese 43% || Telugu 0%
Dari 41% || Arabic 0%
Sinhala 40% || Chinese 0%
Greek 35% || Romanian 0%
Swedish 9% || Bengali 0%
Urdu 6% || Korean 0%

the old Squeakland era. The German community was
very active in proceeding to translate the whole system,
but the effort to extend translations in the other lan-
guages in this group to full coverage has not yet gotten
full traction. Nevertheless, community members from
these regions are active and helping with coding, test-
ing, and other work.

e While no pilot test is going in Greece yet, some active
participants are trying to make it happen. The trans-
lation coverage seems to confirm that, as exemplified
by the Dari and Sinhala translations targeted at pilot
countries.

e Some languages have very small coverage. Typically,
one or two people might start a translation effort, but
perhaps due to the hard-to-use interface of Pootle, and
perhaps due to the overwhelming number of phrases,
small groups tend to stall.

When starting up, Etoys switches to the system locale,
which it infers using the LocalePlugin. All the toolbars,
menus etc. get translated.

Many languages use scripts that cannot be displayed cor-
rectly using traditional Squeak bitmapped fonts, nor even
using Squeak’s TrueType font renderer. For those languages
we now use a text renderer based on the open-source Pango
library [9] which can properly show nearly every script in
use. Figure 4 shows a screenshot with a watcher in Nepali
and rest of UI in Mongolian. An unfortunate side effect is
that now the display depends on the fonts installed in the
system, whereas previously projects worked bit-identically
across all platforms and all client machines. We do not
know how to solve that issue yet. Also, work remains to
be done to support right-to-left languages.

Another area we have not really tackled yet is transla-
tions of project content and help guides. When a project

Y33r4mir Byxnssp He
O3nrsu3sac apuira. Oy 4 anra

Bonoxryi caHaa 30BONTIYA. e O
- ¥ YHOC3H
\ ‘\" | snmwnc bi)
R . Y
e geic fife = © 29 ! snmnc..e
! 30MNC .. 2

O

INAWNCC YArN3N, TIPryynax = -25

B snnunce x
] snmmnccy

B snmuncc wi

Figure 4. Screen shot of Pango rendered text.

is loaded, it is partially changed to conform to the current
locale, so that for example the tiles and controls in scrip-
tors and viewers are translated. But only very rudimentary
supports exist for translating user-added text.

A user can mark a piece of text “translatable” using an
item in its halo menu; basic text objects obtained from the
supplies bin are already marked as translatable,” and others
can be so marked at user discretion. Text marked as “trans-
latable” can be edited as usual, and when the language is
switched (using the flag icon in the navigator bar) the con-
tents will automatically be changed to the version that item
had in that locale previously. The problem with this sim-
plistic approach is that the layout in a different language
might not work as well as it did in the original. Also, this
is not yet integrated with the gettext translation engine, so
projects cannot yet be edited from Pootle.

5. Etoys improvements

We added new features, improved expressiveness, made
adaptions for unique features of the XO hardware, and fixed
numerous bugs over the course of development of the Etoys
system. The Squeakland Squeak system, which Etoys is
based on, had been used widely around the world for quite
a few years, over the course of which much useful and inter-
esting feedback had been received. Since we realized that
the new Etoys system would be even more widely used, we
made several significant enhancements and adjustments. In
this section, we discuss some of the new features and other
changes.

5.1. Expressiveness
The original Squeakland system was intended for
younger children whose computational needs would be sat-

isfied by the basic arithmetical operators. Since users of the
new Etoys version on the XO would include older children,

VPRI Technical Report TR-2009-001

e —— /N

generate 3 4

expand
at tail

3ja«dald a5y /\+
generate 3 /\
4 5

Figure 5. The widget tree representation of an
expression.

and indeed users of all ages, we decided to add a “function”
tile and to add visible parentheses to make plain precisely
what the arguments to a given function call are; around 25
built-in functions are provided, such as square root, exp,
sin, log, etc., which the user can select from a pop-up menu,
and the same mechanism also provides a useful general-
ization of the pre-existing but much less flexible random
tile, whose argument can now be an arbitrary expression
whereas formerly it had had to be a constant. Also added,
using the same mechanism, is a plain “parentheses” func-
tion, allowing the user explicitly to specify an order of eval-
uation.

Furthermore, and more significantly, we were able to
remedy a major shortcoming of earlier Etoys versions, hav-
ing to do with operator precedence and order of evaluation
of arithmetical tile expressions.

In previous versions of Squeakland Etoys, operator
precedence in scripts was always right-to-left, without re-
gard to traditional “strength” of operators; e.g., a group of
tiles that reads: “3 * 4 + 5” was interpreted as “3 x (4 + 5)”
and resulted in 27, instead of 17 that a fourth grade child, or
indeed anyone, would expect.

This was due to the internal representation of tiles. A
group of tiles is a tree of graphical widgets. Expression ex-
pansion, only permitted at the tail, is done by replacing the
last element of the expression with a sub-tree. For example,
in Figure 5, the widget that represents “4” is replaced with
a tree of widgets that represents “4 4+ 5”. When the code
generator generated executable code from the widget tree,
the nested structure was directly converted to nested expres-
sions, thus resulting in the unconventional precedence.

Regardless of the internal structures involved, we wanted
the actual operator precedence used in evaluating arithmeti-
cal expressions in scripts to conform to conventional expec-

tations, e.g. * and / must be stronger than + and —. To
make this happen, the code generator now makes an extra
pass to convert the parse tree to another parse tree in a man-
ner of operator-precedence parsing with a stack.

Another addition to improve the expressiveness is the
repeat tile. A repeat tile takes the repetition count and
a block. When executed, the tile repeatedly evaluates the
block the number of times specified by the count, which
may itself be a tile expression.

5.2. Design Changes

The primary target platform of the Etoys system is the
OLPC XO, which has a peculiar combination of high pixel
count, yet small display (i.e., high dot-per-inch number
around 200), and a relatively slow processor (see Section 3).

To adapt to the characteristics of the XO platform, we
settled on a few UI design principles:

Larger Ul elements Because of the high DPI and younger
audience, basic UI elements such as text labels and but-
tons should be larger on screen.

Cleaner look has performance benefit Rounding the cor-
ners on widgets and tools, and using gradient back-
grounds, both of which were common practice in ear-
lier versions of Etoys, both came with performance
penalties. Flat color and right angle corners also gives
a crispy feel.

Simpler Menus Over the many years of development of
the Squeakland Etoys system, feature creep tempta-
tions were often given in to, by many different hands.
Many features, some of them arguably unimportant or
confusing, were buried in a range of obscure menus.
Even the icons to pop up menus were different in dif-
ferent parts of the user-interface. Menus should be
simple and consistent.

Following these principles, larger font sizes were used,
halo handles were enlarged, and the Ul layout was gener-
ally adapted to suit the increased resolution. But simply
making everything proportionately larger was not always a
perfect strategy because of the need for screen real estate
to be adequately apportioned out among user-interface ele-
ments. One particularly satisfactory innovation was to make
it such that when the mouse cursor hovers over the arrows
in a value tile, enlarged versions of the arrows pop up under
the mouse pointer, to allow more accurate clicking. A new
primitive was added to support larger, anti-aliased mouse
pointers (which formerly were limited to 16x16 pixels in
black-and-white.) The looks of viewers and scriptors were
flattened so that they do not use gradient and rounded cor-
ners.

VPRI Technical Report TR-2009-001

A notable feature we added to overcome the screen res-
olution issue was a screen-scaling feature that can resize
the Etoys display. This is especially useful on non-XO ma-
chines. With scaling enabled, project authors can create
projects in 1200x900 resolution regardless of the actual dis-
play size. Furthermore, if a user on a non-XO machine re-
sizes the Etoys window to about 6x4.5 inches, the viewing
angle of the XO display can be simulated.

5.3. New Objects

We added several new widgets, and also improved exist-
ing ones.

New widgets include a significantly improved particle
system (called “Kedama”) [10]. The particle system in
Etoys lets the user program thousands of objects using the
same tile-scripting interface that is used for normal script-
ing. The new particle system in the Etoys system utilizes
homogeneous array arithmetic primitives with mask bits;
e.g., primitives that can perform operations on selected el-
ements. With such a primitive, a vector computation can
be carried out in the primitive even when it is in a test tile.
However, the data representation, which heavily relies on
the floating point numbers, has a performance penalty on
the XO’s Geode LX processor.

“WorldStethoscope” [11] is an interface connecting
Etoys to various physical sensors. It consists of a hardware
part that converts digital or analog sensor output to an au-
dio signal, and a software part that provides Etoys tiles for
observing and manipulating the signal. An earlier version
of WorldStethoscope only took input as an audio signal, but
the version in the new Etoys system is enhanced so that it
can utilize the direct analog input mode of the XO (see Sec-
tion 3). And the XO’s on-board camera input can be used
in the Etoys system via the “VideoForLinux” library and
Squeak bindings to it.

Other widgets were modified to take advantage of the
XO hardware and the Linux platform. The SoundRecorder
was completely rewritten, simplified, and can now com-
press the recorded sound with the Ogg codec. A VM inter-
face to the “GStreamer” media framework [12] was added.
The clipboard mechanism can copy and paste rich text, as
well as other types of objects such as bitmaps, to and from
Sugar. The Book widget is now equipped with the ability to
revert pages. The EventRecorder mechanism is enhanced to
be able to control the flow of events and edit them. Vertices
of a polygon now can be manipulated via tiles.

6. Learning materials

Educational software can seldom have any meaningful
impact unless accompanying teaching materials or other
forms of guidance are available for users. Most previous use

of Etoys had been done in classrooms, with knowledgeable
teachers providing instruction and support. But many users
of XO machines around the world, if they are to learn to use
Etoys, will have to do so without the benefit of a teacher
who already knows the system. So we undertook to provide
a range of introductory materials, including tutorials, a help
system, and a suite of examples, all of which are included,
and readily navigated to, in the basic Etoys installation on
every XO machine.

The Squeakland system used to open into a blank white
screen when launched. The intention of the blank screen
was that users should be encouraged to do “whatever they
want” and start from scratch. It turned out, however, that
many users had difficulty getting started; at a minimum,
users needed to know to click on the paint brush button in
the pop-up navigator bar to paint a new object, or to drag
from an icon in the supplies flap to instantiate a new object.
And there were no good examples readily available to play
with. In reconfiguring the system for the XO, we addressed
such shortcomings.

Also, we wanted users and learners to engage in deep,
powerful ideas, especially in science and mathematics.
Since children are not often going to discover profound
ideas on their own, we felt that good guidance, both for chil-
dren and for teachers, was necessary. Also, the Etoys user
interface does require some explanation if the user would
like to do more than just painting. A large variety of kinds
of objects, and a large number of features, are available,
but users are not likely to discover much of the advanced
functionality until they develop a basic level of proficiency
with the halos, menus, navigator bar, supplies bin, and a few
other basic tools in the Etoys environment.

In the Etoys system, we decided to provide an appeal-
ing initial screen, a suite of examples, and a built-in library
of “Quick Guides” for reference. When Etoys is launched,
the initial screen looks like Figure 1. There is a car object
moving around, its script is visible, and there are three but-
tons to open example Etoys projects, to open tutorials and a
self-repeating demo, and most importantly, to create a new
blank project.

There are about two dozen example projects provided,
organized roughly in order of progressive complexity. Ten
of them are taken from an actual curriculum used in class-
rooms [3], and others illustrate math and science ideas.

The tutorials are presented in the manner of “puzzle-
solving” games, to engage children. We received much very
favorable feedback on these tutorials from users.

The Quick Guides, always immediately available via a
single click on the “?” icon at the left edge of the naviga-
tor bar, provide concise reference information for dozens of
features of the system.

These on-computer materials are fun and engaging for
the users, but they do not explain the really powerful ideas

VPRI Technical Report TR-2009-001

behind them. A draft of a paper discussing some of these
ideas is available [13].

7. Licensing

Before Alan Kay’s team left Apple Computer in 1996,
they released Squeak to the general public. The license (the
Squeak License [14]) was intended to keep Squeak free and
open while at the same time allowing it to be used for pro-
prietary work. The license attracted a world-wide commu-
nity of developers who collaborated to improve and extend
Squeak in a truly open-source fashion.

After the release of Squeak, open source licensing was
formalized by various organizations in the late 90’s, and
some new standard definitions of Open-Source emerged.
Unfortunately, the Squeak License had two clauses that
made it incompatible with the new standards, which are ex-
actly what the OLPC project is based on. So in 2006, VPRI
approached Apple to re-license Squeak. Apple agreed and
relicensed Squeak to the “Apple Public Source License” but
before long that license was found to be flawed. Ultimately,
Apple relicensed Squeak again under the “Apache Public
License 2.0” which is an officially recognized free license.

However, that relicensing only covered the original 1996
release and by then 10 years of subsequent development
had gone into Squeak. So VPRI decided to contact every
contributor in the worldwide Squeak community for their
permission to relicense their code. They were asked to re-
license under the “MIT” license which is one of the sim-
plest free software licenses and compatible with nearly ev-
ery other license.

Over the two years of this effort, we collected relicensing
agreements from more than 200 contributors, which cov-
ers over 99.4% of code in the system. Not every contribu-
tor could be reached however, and ultimately the remaining
code that was not relicensed was removed or rewritten. As
a result, a version of the system that contains only code un-
der the Apache and MIT licenses is now available as “Etoys
4.0” from the VPRI website.

8 Community

One of the most rewarding experiences in this project has
been — and continues to be — the interaction among a world-
wide community of developers, users, translators, educa-
tors, and other interested parties. There have been literally
hundreds of bug reports and suggestions for improvements
filed on the bug tracking system, and the OLPC mailing list
has been a lively and useful forum. There were even some
developers contributing unsolicited bug fixes and enhance-
ments.

The work is distributed and connected over the Internet,
but at a few occasions, the developers and users have a time

to meet up at some locations in the world. Notably one of
the authors was invited by OLE Nepal and spent a fruit-
ful two weeks with the developers of the Etoys-based “E-
Paath” learning activity.

From the larger squeak . org community, many mem-
bers were supportive and provide proactive help. There is
even a developer who only reveals his pseudonym but who
contributed a large part of the new translation framework.

9. Conclusions and Future Directions

This paper narrated the history of Etoys development for
the OLPC platform. Adapting the system to the Sugar en-
vironment was an interesting challenge, since Sugar was a
moving target, but we stayed in close communication with
the Sugar developers, and managed to keep in sync with the
changes. The hardware posed some interesting challenges,
too, so we adapted Etoys to the special hardware features
of the XO such as the high resolution display, direct analog
input, and camera.

One of the biggest insights we had was to realize that
a software product with the extent of Etoys cannot ever be
“done”. There are always some bugs, and there are always
request for more features. Everybody shares an aspiration
for cleaner code, but often this is not achievable. Also, some
of the new requirements were hard to bring in after-the-fact;
for example, the casual use of “camelCase” in the Ul is ar-
guably not good for children, but it was hard to remove; the
user interface was not designed to accommodate languages
written from right to left; and some attempts to optimize
the project saving mechanism did not produce the expected
outcomes. And we still have not yet been able to provide an
efficient mechanism to support other Sugar activities writ-
ten in Etoys such as “DrGeo II” and “Bots Inc.”

The Etoys project continues, but there is some organiza-
tional change ahead. VPRI is creating a new organization,
provisionally named the “Etoys Foundation,” that will be
spun off to assume responsibility for development and sup-
port of the Etoys system. The new foundation will look to
get more educators as well as developers to participate in
the world-wide Etoys effort. Meanwhile, VPRI will focus
its research efforts on creating a worthy, and much more
powerful, successor to Etoys.

Acknowledgments

We would like to thank the colleagues at VPRI and all the
squeak . org community, especially Dan Ingalls and John
Maloney, for making Squeak the malleable system allowing
us to have fun while coding.

Also, for help with the OLPC XO hardware and Sugar
software, we would like to thank Walter Bender, Jim Get-
tys, Samuel Klein, Michael Stone, C. Scott Ananian, Chris

VPRI Technical Report TR-2009-001

Ball, Marco Pesenti Gritti, Tomeu Vizoso, and Sayamindu
Dasgupta.

References

[1] A. Kay and A. Goldberg, “Personal dynamic media,”
IEEE Computer, vol. 10, no. 3, pp. 3141, 1977.

[2] A. Kay, K. Rose, D. Ingalls, T. Kaehler, J. Maloney,
and S. Wallace, “Etoys & SimStories,” February 1997,
Imagil.earning Internal Document.

[3] B.J. Allen-Conn and K. Rose, Powerful Ideas in the
Classroom. Viewpoints Research Institute, 2003.

[4] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay, “Back to the Future — The Story of Squeak,
A Practical Smalltalk Written in Itself,” in Object-
Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), 1997, pp. 318-326.

[5] “D-Bus message bus system,” http://dbus.
freedesktop.org/.

[6] “Sugar APL,” http://wiki.laptop.org/go
/Low—level Activity API.

[7] “Telepathy: Flexible Communications Framework,”
http://telepathy.freedesktop.org/.

[8] “GNU gettext utilities,” http://www.gnu.org
/software/gettext/.

[9] “Pango,” http://www.pango.org/.

[10] Y. Ohshima, “Kedama: A GUI-based Interactive
Massively Parallel Particle Programming System,” in
Visual Languages and Human Centric Computing,
2005, pp. 91-98.

[11] K. Abe and T. Hayashi, “Squeak Trek - Adven-
tures with World-Stethoscope,” http://www.
ipa.go. Jjp/SPC/report/03fy—-pro/mito
/15-897d.pdf (excerpt from the IPA
report in Japanese).

[12] “Gstreamer - open source multimedia framework,”
http://gstreamer.freedesktop.org/.

[13] A. Kay, “Children Learning by Doing: Squeak
Etoys on the OLPC XO,” Viewpoints Research In-
stitute, Research Note RN-2007-006-a, 2007, http:
//vpri.org/pdf/rn2007006a_olpc.pdf.

[14] “The Squeak License,” http://squeak.org/
SqueakLicense/.

