
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

 Experimenting with Programming Languages

 Alessandro Warth

VPRI Technical Report TR-2008-003

squeak
Typewritten Text
This material is based upon work supported in part
by the National Science Foundation under
Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

squeak
Typewritten Text

U  C
Los Angeles

Experimenting with Programming Languages

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Alessandro Warth

2009

VPRI Technical Report TR-2008-003 1

c© Copyright by

Alessandro Warth

2009

VPRI Technical Report TR-2008-003 2

The dissertation of Alessandro Warth is approved.

Rebecca Allen

Junghoo “John” Cho

Alan Kay

Jens Palsberg

Todd Millstein, Committee Chair

University of California, Los Angeles

2009

ii

VPRI Technical Report TR-2008-003 3

To Carolyn, who had no

idea what she was getting into when

she married a Ph.D. student, but

by now has completed the

requirements for the

degree of

>>
– Doctor of Philosophy in

Unwavering Support–>
>

iii

VPRI Technical Report TR-2008-003 4

T  C

1 Introduction . 1

1.1 OMeta: Experimenting with Language Design 2

1.2 Worlds: Experimenting with Possibilities 5

1.3 Statement of the Thesis and Organization of the Dissertation 7

2 OMeta: An Object-Oriented Language for Pattern-Matching 9

2.1 Introduction . 9

2.2 OMeta: an extended PEG . 11

2.2.1 PEGs, OMeta Style . 12

2.2.2 PEG Extensions . 15

2.2.3 A Note on Memoization . 22

2.3 O is for Object-Oriented . 22

2.3.1 Quick and Easy Language Extensions 23

2.3.2 Extensible Pattern Matching 23

2.3.3 Stateful Pattern Matching 25

2.3.4 Foreign Rule Invocation . 27

2.4 Core-OMeta: an Operational Semantics for OMeta-Style Pattern

Matching . 28

2.4.1 Definitions . 28

2.4.2 Semantics . 30

2.4.3 List (Tree) Matching . 35

iv

VPRI Technical Report TR-2008-003 5

2.5 Related Work . 36

2.6 Conclusions and Future Work . 40

3 Left Recursion Support for Packrat Parsers 41

3.1 Introduction . 41

3.2 An Overview of Packrat Parsing . 44

3.3 Adding Support for Left Recursion 46

3.3.1 Avoiding Infinite Recursion in Left-Recursive Rules 47

3.3.2 Supporting Direct Left Recursion 48

3.3.3 Getting Ready For Indirect Left Recursion 51

3.3.4 Adding Support for Indirect Left Recursion 53

3.4 Case Study: Parsing Java’s Primary Expressions 59

3.5 Performance . 60

3.6 Related Work . 64

3.7 Conclusions and Future Work . 66

4 Worlds: Controlling the Scope of Side Effects 68

4.1 Introduction . 68

4.2 Approach . 70

4.2.1 Worlds . 71

4.2.2 Worlds/JS . 71

4.3 Property (or Field) Lookup in Worlds/JS 74

4.3.1 Property Lookup in JavaScript 74

4.3.2 Property Lookup in Worlds/JS 75

v

VPRI Technical Report TR-2008-003 6

4.4 Examples . 78

4.4.1 Better Support for Exceptions 78

4.4.2 Undo for Applications . 80

4.4.3 Extension Methods in JavaScript 82

4.4.4 Scoping Methods, not Side Effects 84

4.5 Case Study: Using Worlds to Improve OMeta 86

4.6 Related Work . 90

4.7 Future Work . 92

5 Conclusions . 94

References . 97

vi

VPRI Technical Report TR-2008-003 7

L  F

1.1 An early version of Sun’s Lively Kernel running on a JavaScript im-

plementation written in OMeta/COLA 5

1.2 Toylog, a natural language interface to Prolog 6

2.1 A PEG that recognizes simple arithmetic expressions 12

2.2 A parser for simple arithmetic expressions 14

2.3 Evaluating expressions . 16

2.4 “Compiling” expressions to JavaScript 16

2.5 Combining scannerless and “scannerful” parsing with parameterized

rules . 19

2.6 Extending a JavaScript parser with the say statement (say ’hello’;

is equivalent to alert(’hello’);) 23

2.7 Extensible pattern matching in OMeta 25

2.8 A calculator . 26

2.9 The language of parsing expressions for Core-OMeta 29

2.10 The language of values, used as input and output in Core-OMeta . . . 29

2.11 The language of terms, used for writing semantic actions 30

3.1 The original A-R procedure 46

3.2 Avoiding non-termination by making left-recursive applications fail

(lines marked with * are either new or have changed since the previous

version) . 48

3.3 G-LR: support for direct left recursion 50

vii

VPRI Technical Report TR-2008-003 8

3.4 Detecting left recursion and growing the seed with G-LR (lines

marked with * are either new or have changed since the previous version) 50

3.5 The rule invocation stack, shown at various stages during a left-

recursive application . 53

3.6 The final version of A-R (lines marked with * are either new or

have changed since the previous version) 56

3.7 The S-LR procedure . 57

3.8 The LR-A procedure . 57

3.9 The R procedure . 58

3.10 Java’s Primary expressions . 61

3.11 RR-ORIG shows the performance characteristics of rr in a traditional

packrat parser implementation; RR-MOD and LR-MOD show the per-

formance characteristics of rr and lr, respectively, in an implemen-

tation that was modified as described in Section 3.3 63

3.12 The effect of indirect left recursion on parse times 64

4.1 “Tabs” 1 and 2 show the state of the world initially, and when the robot

discovers that key A does not unlock the safe, respectively. 69

4.2 Two ways to represent program state. In (A), an object is uniquely

identified by the address of the block of memory in which its state is

stored. In (B), objects are just tags and their state is stored externally

in a single lookup table. 70

4.3 Projections/views of the same object in three different worlds 73

4.4 The state of the “universe” shown in Figure 4.3 after a commit on

world C . 73

viii

VPRI Technical Report TR-2008-003 9

4.5 The property lookup order used when evaluating x′′.p in world w′′ (the

notation ∆x,w represents the properties of x that were modified in w) . 77

4.6 A framework for building applications that support multi-level undo . 81

4.7 A better way to deal with side effects in modules 87

4.8 Implementations of two different semantics for OMeta’s ordered

choice operator . 89

ix

VPRI Technical Report TR-2008-003 10

L  T

2.1 Inductive definition of the language of parsing expressions (e, e1, and

e2 are parsing expressions, and r is a non-terminal) 12

3.1 Some Java Primary expressions and their corresponding parse trees, as

generated by a packrat parser modified as proposed in Section 3.3 (the

head of an s-expression denotes the type of the AST node) 60

x

VPRI Technical Report TR-2008-003 11

A

I am forever indebted to my advisors Todd Millstein and Alan Kay for the tremendous

opportunities, support, inspiration, insight, and—you guessed it—advice they have

given me over the past few years.

Todd is, in more ways than one, the reason why I ended up at UCLA. Sure, he has

taught me lots of really interesting “technical stuff”, but more importantly, he taught

me how to be a researcher. I am also thankful for all the freedom and encouragement

he has given me to explore the ideas that excite me the most, no matter how risky they

may be, publication-wise. As an advisor and as a research colleague, he could not have

been more helpful.

I owe just as much thanks to Alan, who is not only a bottomless well of great ideas

and inspiration—a veritable “epiphany generator”—but also couldn’t have been more

supportive. Nearly every time we talked about what I was working on over lunch,

I ended up scrapping all of my source code and starting over from scratch... and I

couldn’t be happier.

I also owe a big “thanks” to the other members of my Ph.D. committee: Rebecca

Allen and Junghoo Cho made me think about interesting applications of my work, and

Jens Palsberg went above and beyond his duties when he not only suggested that I

should add an operational semantics of OMeta to this dissertation, but also spent an

entire afternoon with me, writing inference rules on a dry-erase board.

I would also like to thank Kim Rose and my colleagues at VPRI for the countless

discussions that not only broadened my horizons, but also inspired my research. The

same goes for Ben Titzer and my colleagues at the TERTL lab at UCLA.

My work on OMeta, presented in Chapter 2, started as a collaboration with Ian

Piumarta. (Ian also introduced me to dynamic languages, and I can’t think of anyone

xi

VPRI Technical Report TR-2008-003 12

who could have done that better!) I would like to thank Alan Kay for inspiring this

project, Yoshiki Ohshima for helping me port OMeta to Squeak, Takashi Yamamiya

for suggesting the JavaScript port and for inspiring me with his JavaScript Workspace,

and Dan Amelang, Tom Bergan, Jamie Douglass, Paul Eggert, Bert Freudenberg, Mike

Mammarella, Todd Millstein, Stephen Murrell, Ben Titzer, and Scott Wallace for their

valuable feedback. I would also like to thank Chris Double, Ted Kaehler, Jeff Moser,

Amarin Phaosawasdi, Allen Short, Chris Smoak, and the rest of OMeta’s excellent user

community. And a big thanks to Dan Ingalls for suggesting me as a keynote speaker

to the organizers of Smalltalk Solutions 2008 (my talk was about OMeta).

Thanks to Jamie Douglass and Todd Millstein, who collaborated with me on the left

recursion algorithm presented in Chapter 3, and also to Tom Bergan, Richard Cobbe,

Dave Herman, Stephen Murrell, Yoshiki Ohshima, and the anonymous reviewers of

PEPM ’08 for their useful feedback on this work.

My work on worlds, presented in Chapter 4, has benefited greatly from discussions

with Gilad Bracha, Jeff Fischer, Josh Gargus, Mark Miller and other members of the

Caja group at Google, Eliot Miranda, Andreas Raab, David Reed, Hesam Samimi, and

David Smith.

My time at UCLA would have been much less productive (and infinitely more

stressful!) without the help of Verra Morgan, Korina Pacyniak, and Rachelle Reamk-

itkarn, who time and time again made cutting through massive amounts of red tape

look easy.

A huge thanks to my wife Carolyn and the rest of my family for always being

supportive and for understanding that the nervous, irritable, nasty guy that I turn into

when a paper deadline approaches is not the real me. I love you guys.

Last but certainly not least, I would like to thank my wonderful friend and mentor

Stephen Murrell for always inspiring me to be a better programmer thinker, for spark-

xii

VPRI Technical Report TR-2008-003 13

ing my interests in programming languages as well as graduate school, and for being

the best “secret weapon” ever.

During my time as a graduate student at UCLA, I was lucky enough to receive funding from a

GAANN Fellowship (2004–2005), a Teaching Assistantship (2005–2006), a Research Assis-

tantship (Fall 2006), and most recently, the Viewpoints Research Institute (2007–present).

xiii

VPRI Technical Report TR-2008-003 14

V

1978 Born, Porto Alegre, Rio Grande do Sul, Brazil.

1988 Got an Expert (a Brazilian MSX-based home computer).

1998 Summer Intern, AT&T RAPID Development Group, Atlanta, GA.

1998—2000 Tutor / Grader, Electrical and Computer Engineering Department,

University of Miami. Under the direction of Dr. Stephen Murrell.

1999 Participated in the Summer Undergraduate Program in Engineering

Research at Berkeley (SUPERB).

2000 Dual B.S. in Computer Engineering and Computer Science, Uni-

versity of Miami.

2000—2003 Senior Software Engineer, Verid, Inc. (formerly iShopSecure).

2004—2005 Graduate Student Researcher, Computer Science Department,

UCLA.

2005—2006 Teaching Assistant, Computer Science Department, UCLA. Taught

sections of CS 131 (Programming Languages) under the direction

of Dr. Todd Millstein and Dr. Paul Eggert.

2006 M.S. in Computer Science, UCLA.

2007—present Research Associate, Viewpoints Research Institute.

xiv

VPRI Technical Report TR-2008-003 15

P  P

Alessandro Warth, Milan Stanojevı́c, and Todd Millstein. Statically Scoped Object

Adaptation with Expanders. In OOPSLA ’06: Proceedings of the 21st ACM SIG-

PLAN International Conference on Object-Oriented Programming Languages and Ap-

plications. Portland, OR. October 2006.

Alessandro Warth. LazyJ: Seamless Lazy Evaluation in Java. In FOOL/WOOD ’07:

the International Workshop on Foundations and Developments of Object-Oriented

Languages. Nice, France. January 2007.

Alessandro Warth and Ian Piumarta. OMeta: an Object-Oriented Language for Pattern

Matching. In DLS ’07: the Dynamic Languages Symposium. Montreal, Canada.

October 2007.

Alessandro Warth, James R. Douglass, and Todd Millstein. Packrat Parsers Can Sup-

port Left Recursion. In PEPM ’08: the Workshop on Partial Evaluation and Program

Manipulation. San Francisco, CA. January 2008.

Alessandro Warth, Takashi Yamamiya, Yoshiki Ohshima, and Scott Wallace. Toward

a More Scalable End-User Scripting Language. In C5 ’08: Proceedings of the Sixth

International Conference on Creating, Connecting, and Collaborating through Com-

puting. Poitiers, France. January 2008.

Ian Piumarta and Alessandro Warth. Open, Reusable Object Models. In S3 ’08: the

xv

VPRI Technical Report TR-2008-003 16

Workshop on Self-Sustaining Systems. Potsdam, Germany. May 2008.

Alessandro Warth. Implementing Programming Languages for Fun and Profit with

OMeta. Keynote, Smalltalk Solutions ’08. Reno, NV. June 2008.

Takashi Yamamiya, Alessandro Warth, and Ted Kaehler. Active Essays on the Web. In

C5 ’09: Proceedings of the Seventh International Conference on Creating, Connecting,

and Collaborating through Computing. Kyoto, Japan. January 2009. (to appear)

Todd Millstein, Christopher Frost, Jason Ryder, and Alessandro Warth. Open, Ex-

pressive and Modular Predicate Dispatch for Java. In Transactions on Programming

Languages and Systems. (to appear)

xvi

VPRI Technical Report TR-2008-003 17

A   D

Experimenting with Programming Languages

by

Alessandro Warth
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2009

Professor Todd Millstein, Chair

Researchers are in the business of having good ideas. Of course, not every idea we

ever have is a good idea, so we rely on experiments to find out how good an idea really

is. Unfortunately, because experiments are expensive—they usually take considerable

time and effort—we can only afford to experiment with our “more promising” ideas.

This is a problem, because the only way to really know if an idea is promising or not

is to experiment with it in the first place! It follows that new ideas and technologies

that enable researchers to experiment more quickly and easily can have a huge impact

on the rate of progress of any given scientific discipline.

This dissertation focuses on experimentation in computer science. In particular,

I will show that new programming languages and constructs designed specifically to

support experimentation can substantially simplify the jobs of researchers and pro-

grammers alike.

I present work that addresses two very different kinds of experimentation. The first

aims to help programming language researchers experiment with their ideas, by mak-

xvii

VPRI Technical Report TR-2008-003 18

ing it easier for them to prototype new programming languages and extensions to exist-

ing languages. The other investigates experimentation as a programming paradigm, by

enabling programs themselves to experiment with different actions and possibilities—

in other words, it is an attempt to provide language support for what if...? or possible

worlds reasoning.

xviii

VPRI Technical Report TR-2008-003 19

CHAPTER 1

Introduction

“Every great idea is on the verge of being stupid.”

— Michel Gondry, Filmmaker

Researchers are in the business of having good ideas. Of course, not every idea we

ever have is a good idea, so we rely on experiments to find out how good an idea really

is. Unfortunately, because experiments are expensive—they usually take considerable

time and effort—we can only afford to experiment with our “more promising” ideas.

This is a problem, because the only way to really know if an idea is promising or not

is to experiment with it in the first place! It follows that new ideas and technologies

that enable researchers to experiment more quickly and easily can have a huge impact

on the rate of progress of any given scientific discipline.

This dissertation focuses on experimentation in computer science. In particular,

I will show that new programming languages and constructs designed specifically to

support experimentation can substantially simplify the jobs of researchers and pro-

grammers alike.

The work presented here addresses two very different kinds of experimentation.

The first aims to help programming language researchers experiment with their ideas,

by making it easier for them to prototype new programming languages and exten-

sions to existing languages. The other investigates experimentation as a programming

1

VPRI Technical Report TR-2008-003 20

paradigm, by enabling programs themselves to experiment with different actions and

possibilities—in other words, it is an attempt to provide language support for what

if...? or possible worlds reasoning.

In the remainder of this chapter, I describe the goals of each of these projects in

more detail (Sections 1.1 and 1.2), and outline the rest of the dissertation (Section 1.3).

1.1 OMeta: Experimenting with Language Design

All languages are equally powerful in the sense of being Turing equivalent,

but that’s not the sense of the word programmers care about. (No one

wants to program a Turing machine.) The kind of power programmers

care about may not be formally definable, but one way to explain it would

be to say that it refers to features you could only get in the less powerful

language by writing an interpreter for the more powerful language in it. If

language A has an operator for removing spaces from strings and language

B doesn’t, that probably doesn’t make A more powerful, because you can

probably write a subroutine to do it in B. But if A supports, say, recursion,

and B doesn’t, that’s not likely to be something you can fix by writing

library functions.

— Paul Graham, in “Beating the Averages” [Gra03]

Programming language researchers are always looking for ways to put more ex-

pressive power in the hands of programmers. They do this by inventing new forms

of abstraction, e.g., encapsulation and extensibility mechanisms, control structures,

and type systems. While, computationally speaking, none of these constructs actu-

ally makes a programming language more powerful, they allow programmers to ab-

stract away from uninteresting details and concentrate on the problem at hand. This in

2

VPRI Technical Report TR-2008-003 21

turn makes programmers themselves more powerful, i.e., more productive and able to

tackle more complex problems.

These abstractions, each with its own syntax and semantics, make up the user in-

terface that a programmer uses to control the computer. Note that a good semantics

is seldom effective on its own; in order to be truly helpful to programmers, it must be

provided in a graceful form that is convenient to use. For example, consider a library

that provides the semantics of classes and messaging to C programs. Using this ab-

straction to build object-oriented applications would be burdensome and error-prone,

since its implementation details would be exposed (much like all the knobs and but-

tons of an over-complicated user interface). Also, as Paul Graham notes, there are

times when it is not possible for the programmer to implement the desired seman-

tics as a library. Programming language researchers usually avoid these problems by

implementing new abstractions as extensions to existing programming languages.

But building language extensions is not an easy task. Traditionally, a program-

ming language is implemented using a number of different tools, like lex [LS90],

yacc [Joh79], and the visitor design pattern [GHJ95]. While each of these tools simpli-

fies a single part of the implementation, their combination makes the task of extending

the implementation as a whole difficult because each part must be extended in a dif-

ferent way. To make matters worse, some of these tools—e.g., lex and yacc—do not

even provide extensibility mechanisms, which forces the implementor of a language

extension to duplicate code from the base implementation and modify it in-place. This

in turn results in code bloat and a versioning problem, since subsequent changes/im-

provements to the base language will not carry over to the extension. All of these

complications make it difficult for researchers to experiment with new ideas, which

slows down the rate of innovation in programming languages.

An equally serious problem is the inflexibility of traditional programming lan-

3

VPRI Technical Report TR-2008-003 22

guages, which force programmers to cope with a fixed set of abstractions. Many

applications would be substantially easier to write and to maintain if only program-

mers were able to extend a programming language with their own application-specific

constructs.

My language OMeta was designed to make it easier for researchers and program-

mers alike to provide useful abstractions in forms that are convenient to use. OMeta’s

key insight is the realization that all of the passes in a traditional compiler are essen-

tially pattern matching operations:

• a lexical analyzer finds patterns in a stream of characters to produce a stream of

tokens;

• a parser matches a stream of tokens against a grammar (which itself is a collec-

tion of productions, or patterns) to produce abstract syntax trees (ASTs);

• a typechecker pattern-matches on ASTs to produce ASTs annotated with types;

• more generally, visitors pattern-match on ASTs to produce other ASTs;

• finally, a (naive) code generator pattern-matches on ASTs to produce code.

By extending Parsing Expression Grammars (PEGs) [For04] with support for pattern

matching on arbitrary datatypes, left recursion, and parameterized and higher-order

rules, OMeta gives programmers a natural and convenient way to implement parsers,

visitors, and tree transformers, all of which can be extended in interesting ways using

familiar object-oriented mechanisms. This makes OMeta particularly well-suited as a

tool for building language implementations and extensions.

As an example, in just a few hundred lines of OMeta I was able to implement a

JavaScript compiler for the COLA platform [Piu06a]. Figure 1.1 shows a screenshot of

Sun Microsystems’ Lively Kernel [Ing08] running on my JavaScript implementation.

4

VPRI Technical Report TR-2008-003 23

Figure 1.1: An early version of Sun’s Lively Kernel running on a JavaScript imple-
mentation written in OMeta/COLA

Having a JavaScript compiler written in OMeta made it easy for me to experiment with

a number of interesting language extensions, including the macro system that was used

to implement TileScript, an end-user scripting language [WYO08].

Another example of OMeta’s suitability as a rapid prototyping tool is Toylog, a

natural language front-end to Prolog designed to get children and teenagers interested

in programming, shown in Figure 1.2. I wrote the Toylog parser in less than one

hundred lines of OMeta, as an afternoon project. Toylog was recently used to teach a

group of approximately one hundred high school students in Australia—hands-on, in

a laboratory setting—where I am told it generated a lot of enthusiasm.

1.2 Worlds: Experimenting with Possibilities

We can think of a program as an agency set up to accomplish or reach one or more

goals. For some goals—such as adding up numbers—there is a simple straight road

in most programming languages. Other goals—such as finding the square root of a

5

VPRI Technical Report TR-2008-003 24

Figure 1.2: Toylog, a natural language interface to Prolog

number—will require some search, but can still be homed in on very effectively. For

more complex goals—such as certain kinds of parsing, problem solving, and editing

in a user interface—it may not be possible for the program to simply home in on the

desired result; instead, it may need to experiment with multiple alternatives, sometimes

making mistakes that require retraction in order to make fresh starts.

For some goals of this latter kind, it might be a good idea to use backtracking,

as in Prolog (it would also be a good idea to automatically undo asserts that are

backtracked over, which does not happen in Prolog). For problem solving on a larger

scale, it might be a better ploy to use “possible worlds”, perhaps even parallel pos-

sible worlds that can report progress to a coordination agent that is trying to make

choices about best paths. If the problem terrain is really rough and tricky—a verita-

ble “elephant to blind men”—then we might want to use the metaphor of dispatching

“scouts” (or “scientists”) with walkie-talkies who can simultaneously explore different

6

VPRI Technical Report TR-2008-003 25

parts and intercommunicate to gradually build up a better model of the obstacles and

the possible routes around them.

Unfortunately, the nature of state in traditional programming languages makes this

“experimental” style of programming impractical. For example, because the state of a

program is scattered around the computer’s memory in several kinds of data structures

(e.g., arrays, objects, and activation records), it is both messy and difficult to undo the

side effects of an action that has been performed by the program. Also, because there is

only one “program state”, a program cannot explore multiple alternatives concurrently.

My approach to solving this problem was to introduce a new language construct

that reifies the notion of program state as a first-class object. I call this construct a

world. All computation takes place inside a world, which captures all of the side

effects—changes to global, local, and instance variables, arrays, etc.—that happen

inside it. Worlds provide multiple views on the state of a program, and mechanisms

for interacting among these views. They subsume the mechanisms of backtracking,

tentative evaluation, possible worlds, undo, and many similar control and state regimes.

We shall see that while it is often convenient for programmers to use worlds directly,

there are also cases where worlds are better suited as a kind of “semantic building

block” for higher-level language constructs.

1.3 Statement of the Thesis and Organization of the Dissertation

The thesis of this dissertation is as follows:

Programming languages and constructs designed specifically to support

experimentation can substantially simplify the jobs of researchers and pro-

grammers alike.

7

VPRI Technical Report TR-2008-003 26

I support this thesis by developing programming language support for the two kinds of

experimentation discussed earlier in this chapter.

The remainder of this dissertation is organized as follows:

• Chapter 2 describes OMeta, its general-purpose pattern matching facilities and

extensibility mechanisms, and shows how these can be used by researchers and

programmers to experiment with language design ideas,

• Chapter 3 focuses on the mechanism I devised in order to support left recusion

in my OMeta implementations,

• Chapter 4 introduces worlds and identifies a number of interesting idioms that

are made possible by this new construct, and

• Chapter 5 concludes.

8

VPRI Technical Report TR-2008-003 27

CHAPTER 2

OMeta: An Object-Oriented Language for

Pattern-Matching

This chapter introduces a notion of general-purpose pattern matching and its instantia-

tion in OMeta, an object-oriented language designed to make it easier for programming

language researchers to experiment with their ideas. OMeta is based on a variant of

Parsing Expression Grammars (PEGs) [For04]—a recognition-based foundation for

describing syntax—which I have extended to support pattern matching on arbitrary

datatypes. I show that OMeta’s general-purpose pattern matching facilities provide a

natural and convenient way for programmers to implement tokenizers, parsers, vis-

itors, and tree transformers, all of which can be extended in interesting ways using

familiar object-oriented mechanisms. This makes OMeta particularly well-suited as a

medium for experimenting with new designs for programming languages and exten-

sions to existing languages.

2.1 Introduction

Many problems in computer science, especially in programming language implemen-

tation, involve some form of pattern matching. Lexical analysis, for example, consists

of finding patterns in a stream of characters to produce a stream of tokens. Similarly,

a parser matches a stream of tokens against a grammar—which itself is a collection of

9

VPRI Technical Report TR-2008-003 28

rules, or patterns—to produce parse trees. Several other tasks, such as constant folding

and naive code generation, can be implemented by pattern matching on parse trees.

Despite the fact that these are all instances of the same problem, most compiler

writers use a different tool or technique (e.g., lex, yacc, and the visitor design pat-

tern [GHJ95]) to implement each compilation phase. As a result, the skill of program-

ming language implementation has a steep learning curve (because one must learn how

to use a number of different tools) and is not widely understood.

Several popular programming languages—ML [MTM97], for instance—include

support for pattern matching. But while ML-style pattern matching is suitable for

processing structured data, it is not expressive enough on its own to support more

complex pattern matching tasks such as lexical analysis and parsing.

Perhaps by providing programming language support for a more general form of

pattern matching, many useful techniques such as parsing—a skill more or less ex-

clusive to “programming languages people”—might become part of the skill-set of a

much wider audience of programmers. (Consider how many Unix applications could

be improved if suddenly their implementers had the ability to process more interest-

ing configuration files!) This is not to say that general-purpose pattern matching is

likely to subsume specialized tools such as parser generators; that would be difficult

to do, especially in terms of performance. But as I will show with various examples,

general-purpose pattern matching provides a natural and convenient way to implement

tokenizers, parsers, visitors, and tree transformers, which makes it an unrivaled tool

for rapid prototyping.

This work builds on Parsing Expression Grammars (PEGs) [For04], a recognition-

based foundation for describing syntax, as a basis for general-purpose pattern match-

ing, and makes the following technical contributions:

1. a generalization of PEGs that can operate on arbitrary datatypes—not just

10

VPRI Technical Report TR-2008-003 29

streams of characters—and supports parameterized and higher-order rules (Sec-

tion 2.2),

2. a simple yet powerful extensibility mechanism for PEGs (Section 2.3),

3. the design and implementation of OMeta, a programming language with conve-

nient BNF-like syntax that embodies (1) and (2),

4. a series of examples that demonstrate how my general-purpose pattern matching

facilities may be used in the domain of programming language implementation,

and finally,

5. a formalism that describes the operational semantics of Core-OMeta, an exten-

sion to PEGs that supports OMeta-style pattern matching on arbitrary datatypes

(Section 2.4).

The rest of this chapter explores my notion of general-purpose pattern matching in the

context of OMeta.

2.2 OMeta: an extended PEG

An OMeta program is a Parsing Expression Grammar (PEG) [For04] that can make

use of a number of extensions in order to operate on arbitrary datatypes. (PEGs are

limited to processing streams of characters.) This section begins by introducing the

features that OMeta and PEGs have in common, and then describes some of OMeta’s

extensions to PEGs.

11

VPRI Technical Report TR-2008-003 30

expression meaning
e1 e2 sequencing

e1 | e2 prioritized choice
e* zero or more repetitions
e+ one or more repetitions (not essential)
(e) grouping
˜e negation
&e look-ahead (not essential)
r rule application
’x’ matches the character x

Table 2.1: Inductive definition of the language of parsing expressions (e, e1, and e2 are
parsing expressions, and r is a non-terminal)

ometa ExpRecognizer {
dig = ’0’ | ... | ’9’,
num = dig+,
fac = fac ’*’ num

| fac ’/’ num
| num,

exp = exp ’+’ fac
| exp ’-’ fac
| fac

}

Figure 2.1: A PEG that recognizes simple arithmetic expressions

2.2.1 PEGs, OMeta Style

PEGs are a recognition-based foundation for describing syntax. A PEG is a collec-

tion of rules of the form non-terminal → parsing-expression; the language of parsing

expressions is shown in Table 2.1.

Figure 2.1 shows a PEG, written in OMeta syntax, that recognizes simple arith-

metic expressions. In order to go beyond simply accepting or rejecting input—e.g., to

turn our recognizer into a parser—the programmer must write semantic actions. These

are specified using the -> operator and written in OMeta’s host language, which is

usually the language in which the OMeta implementation was written. Most of the ex-

12

VPRI Technical Report TR-2008-003 31

amples in this chapter are written in OMeta/JS, my JavaScript-based implementation.1

Using semantic actions, we can modify the definition of our recognizer’s exp rule

to create parse tree nodes:

exp = exp:x ’+’ fac:y -> [’add’, x, y]
| exp:x ’-’ fac:y -> [’sub’, x, y]
| fac

In this example, we represent parse tree nodes as JavaScript arrays whose first element

is a string that identifies a kind of node, e.g., ’add’, and whose other elements are

sub-trees, e.g., the two operands of an add expression. Note that the results of exp

and fac are bound to identifiers using the : operator so that they can be referenced in

the semantic actions. Also note that the last choice in this rule, fac, does not specify a

semantic action. In the absence of a semantic action, the value returned by a rule upon

a successful match is the result of the last expression evaluated. Hence

fac

is equivalent to

fac:x -> x

A complete parser for our language of arithmetic expressions, in which the fac

and num rules are also modified with semantic actions, is shown in Figure 2.2. In

the num rule, the identifier ds is bound to an array of digits, which is converted to a

string using Array’s join method, which in turn is converted to a number using the

parseInt function. (join and parseInt are part of JavaScript’s standard library.)

OMeta has a single built-in rule from which every other rule is derived. The name

of this rule is anything, and it consumes exactly one object from the input stream.
1I have two other implementations: OMeta/Squeak, written in Squeak Smalltalk [IKM97], and

OMeta/COLA, written in COLA [Piu06b]. All three of my OMeta implementations are available at
http://www.tinlizzie.org/ometa/. There are also several third-party implementations available,
based on a number of other languages including C#, Python, Scheme, Lisp, and Factor.

13

VPRI Technical Report TR-2008-003 32

ometa ExpParser {
dig = ’0’ | ... | ’9’,
num = dig+:ds -> [’num’, parseInt(ds.join(’’))],
fac = fac:x ’*’ num:y -> [’mul’, x, y]

| fac:x ’/’ num:y -> [’div’, x, y]
| num,

exp = exp:x ’+’ fac:y -> [’add’, x, y]
| exp:x ’-’ fac:y -> [’sub’, x, y]
| fac

}

Figure 2.2: A parser for simple arithmetic expressions

Even the end rule, which detects the end of the input stream, is implemented in terms

of anything:

end = ˜anything

In other words, the parser has reached the end of the input stream if it is not able

to consume another object. As noted by Ford, the negation operator (˜) can also be

used to provide unlimited look-ahead capability [For04]. For example, ˜˜exp ensures

that an exp follows, but does not consume any input. This is in fact how OMeta’s

look-ahead operator (&) is implemented.

Like several other PEG implementations (e.g., Pappy [For02c]), OMeta also sup-

ports semantic predicates [PQ94], i.e., host language (boolean) expressions that are

evaluated while pattern matching. In OMeta, semantic predicates are written using the

? operator. For example, the following rule matches a digit:

digit = char:d ?(d >= ’0’ && d <= ’9’) -> d

14

VPRI Technical Report TR-2008-003 33

2.2.2 PEG Extensions

2.2.2.1 Matching Objects

PEGs operate on streams of characters. OMeta, on the other hand, operates on streams

of arbitrary host-language objects (e.g., JavaScript objects). For this reason, it provides

special syntax for matching common kinds of objects:

• strings, e.g., ’hello’

• numbers, e.g., 42

• lists, e.g., [’hello’ 42 []]

Note that the patterns ’x’ ’y’ ’z’ and ’xyz’ are not equivalent: the former matches

three string objects, whereas the latter matches a single string object.2 On the other

hand, the patterns [’x’ ’y’ ’z’] and ’xyz’ will both match the string ’xyz’, be-

cause a string can always be viewed as a list of characters.

List patterns enable OMeta grammars to pattern-match on arbitrarily-structured

data. A list pattern may contain a nested pattern, which itself may be any valid parsing

expression (e.g., a sequence of patterns, another list pattern, etc.). In order for a list

pattern p to match a value v, two conditions must be met:

1. v must be a list, or list-like entity (e.g., a string), and

2. p’s nested pattern must match all of the contents of v.

The pattern [anything*], for example, matches any list, whereas [] only matches

empty lists.
2In JavaScript, there is no such thing as a character datatype: the nth element of a string is simply a

string of length 1.

15

VPRI Technical Report TR-2008-003 34

ometa ExpEvaluator {
eval = [’num’ anything:x] -> x

| [’add’ eval:x eval:y] -> (x + y)
| [’sub’ eval:x eval:y] -> (x - y)
| [’mul’ eval:x eval:y] -> (x * y)
| [’div’ eval:x eval:y] -> (x / y)

}

Figure 2.3: Evaluating expressions

ometa ExpTranslator {
trans = [’num’ anything:x] -> x.toString()

| [’add’ eval:x eval:y] -> (’(’ + x + ’+’ + y + ’)’)
| [’sub’ eval:x eval:y] -> (’(’ + x + ’-’ + y + ’)’)
| [’mul’ eval:x eval:y] -> (’(’ + x + ’*’ + y + ’)’)
| [’div’ eval:x eval:y] -> (’(’ + x + ’/’ + y + ’)’)

}

Figure 2.4: “Compiling” expressions to JavaScript

Figure 2.3 shows a simple OMeta grammar that uses list patterns to evaluate the

parse trees generated by the ExpParser (shown in Figure 2.2). Feeding the parse tree

[’mul’, [’num’, 6],
[’add’, [’num’, 4], [’num’, 3]]]

to our grammar’s eval rule produces the result 42.

Similarly, we can write an OMeta grammar that translates our parse trees to

JavaScript code that, when evaluated, will yield the desired result (see Figure 2.4).

This technique, known as source-to-source compilation, is used in most OMeta-based

language implementations.

This extension to PEGs, which enables OMeta grammars to operate on structured

as well as unstructured data, is formalized in Section 2.4.

16

VPRI Technical Report TR-2008-003 35

2.2.2.2 Left Recursion

To avoid ambiguities that arise from using a non-deterministic choice operator (the

kind of choice found in context-free grammars), PEGs only support prioritized choice.

In other words, choices are always evaluated in order. As a result, there is no such

thing as an ambiguous PEG, and their behavior is easy to understand.

Unfortunately, this semantics precludes the use of left recursion in PEGs. As an

example, consider the following rule, taken from the expression parser shown in Fig-

ure 2.2:

fac = fac:x ’*’ num:y -> [’mul’, x, y]
| fac:x ’/’ num:y -> [’div’, x, y]
| num,

Note that the first choice in fac begins with an application of fac itself. Because

the choice operator in PEGs tries each alternative in order, this recursion will never

terminate: an application of fac will result in another application of fac without con-

suming any input, which in turn will result in yet another application of fac, and so

on. The base case (num) will never be used.

We could re-order the alternatives so that num comes first, but to no avail. Since all

valid factors begin with a number, the left-recursive alternatives would never be used,

and fac would only parse a single number.

A slightly better alternative would be to rewrite fac to be right-recursive. How-

ever, this would result in right-associative parse trees, which is a problem because the

multiplication operator is supposed to be left-associative.

Our last resort is to rewrite fac using the repetition operator (*) instead of left re-

cursion. But in order to generate properly left-associative parse trees, we need some-

what complicated semantic actions,

17

VPRI Technical Report TR-2008-003 36

mulOp = ’*’ -> ’mul’
| ’/’ -> ’div’,

fac = num:x (mulOp:op num:y -> (x = [op, x, y]))* -> x

which makes this significantly less readable than the original left-recursive version.

(The “decidedly imperative” version of the fac rule shown above uses OMeta’s iter-

ation operator (*) as a kind of loop construct, and a semantic action to update the x

variable, which holds the parse tree, each time a new part of the expression is recog-

nized.)

OMeta avoids these issues by extending PEGs with support for left recursion.

While this does not make OMeta more powerful than PEGs, it does make it easier

for programmers to express certain rules. This in turn increases OMeta’s usefulness

as a rapid prototyping tool. Details on how left recursion is supported in my OMeta

implementations can be found in Chapter 3.

2.2.2.3 Parameterized Rules

OMeta’s rules, unlike those in PEGs, may take any number of arguments. This feature

can be used to implement a lot of functionality that would otherwise have to be built

into the language. As an example, consider regular-expression-style character classes,

which traditional PEG implementations support in order to spare programmers from

the tedious and error-prone job of writing rules such as

lowerCase = ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’
| ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’ | ’q’ | ’r
| ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’

and instead allow them to write the more convenient

lowerCase = [a-z]

Using parameterized rules, i.e., rules with arguments, OMeta programmers can

18

VPRI Technical Report TR-2008-003 37

eq = ’=’ -> {kind: ’=’, value: ’=’},
num = digit+:ds -> {kind: ’num’, value: parseInt(ds.join(’’))},
id = letter+:ls -> {kind: ’id’, value: ls.join(’’)},

scanner = space* (eq | num | id),
token :k = scanner:t ?(t.kind == k) -> t.value,

assign = token(’id’) token(’=’) token(’num’)

Figure 2.5: Combining scannerless and “scannerful” parsing with parameterized rules

write

charRange :x :y = char:c ?(x <= c && c <= y) -> c

which is almost as convenient to use as character classes, e.g.,

lowerCase = charRange(’a’, ’z’)

but much more flexible because it is defined by the programmer.

Hybrid “Scannerful” and Scannerless Parsing

The combination of parameterized rules and semantic predicates can be used to support

a hybrid of (traditional) “scannerful” and scannerless parsing [SC89, Vis97], as shown

in Figure 2.5:

• The scanner rule is essentially a lexical analyzer, i.e., it consumes the next

token from the input stream. It represents a token as an object that contains two

properties: its kind (e.g., ’num’, if it is a number), and its value (e.g., 123).

• The token rule, which takes a kind of token as an argument, retrieves the next

token (using the scanner rule), and, if it is the right kind of token, returns its

associated value.

• The assign rule defines the syntax of an assignment as an identifier token fol-

lowed by an equal sign token and a number token.

19

VPRI Technical Report TR-2008-003 38

I have found this idiom to be less error-prone than scannerless parsing (the only kind

supported by PEGs), and yet just as expressive since each rule may access the character

stream directly if desired.

To make this idiom more convenient to use, OMeta supports a syntactic sugar

for invoking a user-defined rule called token, i.e., token(’=’) can be written as

"=". This is effectively a kind of Meta-Object Protocol (MOP) [KRB91] that enables

programmers to define the semantics of ". . .". Using this syntactic sugar can result in

remarkably readable rules. For example, with an implementation of token similar to

the one in Figure 2.5, we could write:

condStmt = "if" "(" expr:c ")" stmt:tb "else" stmt:fb -> ...

The Parser grammar, which is part OMeta’s “standard library”, provides a default

implementation of token that skips any number of spaces and then tries to match the

characters that make up the string that it receives as an argument.

Pattern Matching on Rule Arguments

OMeta’s parameterized rules can also pattern-match on their arguments. In fact,

charRange :x :y = ...

is actually shorthand for

charRange anything:x anything:y = ...

which means that x and y can be any kind of object.

This mechanism can be used to validate the arguments that are passed to a rule.

For example, the following version of charRange ensures that both of its arguments

are characters:

charRange char:x char:y = ...

20

VPRI Technical Report TR-2008-003 39

Also, because any pattern (not just rule applications) can be used on the left-hand

side of a rule, OMeta naturally supports the inductive style used to define functions in

languages like Haskell and ML:

fact 0 = -> 1,
fact :n = fact(n - 1):m -> (n * m)

(When a rule has multiple definitions, as in the example above, each definition is tried

in order until the first one succeeds.)

2.2.2.4 Higher-Order Rules

OMeta also provides a mechanism for implementing higher-order rules, i.e., rules that

take other rules as arguments. This is supported by the apply rule, which takes as

an argument the name of a rule, and invokes it. In other words, apply(’expr’) is

equivalent to expr.

As an example, the rule

listOf :p = apply(p) ("," apply(p))*

can be used to recognize both comma-delimited lists of expressions

listOf(’expr’)

and lists of names

listOf(’name’)

OMeta’s Parameterized and higher-order rules bring the expressive power of parser

combinator libraries [HM98, LM01] to the world of PEGs.

21

VPRI Technical Report TR-2008-003 40

2.2.3 A Note on Memoization

Packrat parsers are parsers for PEGs that are able to guarantee linear parse times while

supporting backtracking and unlimited look-ahead “by saving all intermediate pars-

ing results as they are computed and ensuring that no result is evaluated more than

once.” [For02a] While OMeta is based on PEGs, it does not necessarily have to be

implemented using packrat-style memoization.

My implementations do in fact memoize the results of rules without arguments,

but in order to keep their memory footprints small, I chose not to memoize the results

of rules with arguments.

While the linear time guarantee that comes with memoization is certainly desir-

able, some of my experiments with PEGs indicate that the overhead of memoization

may outweigh its benefits for the common case, where backtracking is limited. These

trade-offs are discussed in detail in a paper by Becket and Somogyi [BS08], and are

orthogonal to the ideas discussed in this chapter.

2.3 O is for Object-Oriented

Programming in OMeta would be very frustrating if all rules were defined in the same

namespace: two grammars might unknowingly use the same name for two rules that

have different purposes, and one of them would certainly stop working! (Picture one

sword-wielding grammar decapitating another, Highlander-style: “There can be only

one!”)

A class is a special kind of namespace that comes with a huge bonus: a familiar

and well-understood extensibility mechanism. By making OMeta an object-oriented

language (i.e., making grammars analogous to classes and rules analogous to methods),

several interesting things become possible.

22

VPRI Technical Report TR-2008-003 41

ometa EJSParser <: JSParser {
isKeyword :x = ?(x == ’say’)

| ˆisKeyword(x),
stmt = "say" expr:x sc -> [’call’, [’get’, ’alert’], x]

| ˆstmt
}

Figure 2.6: Extending a JavaScript parser with the say statement (say ’hello’; is
equivalent to alert(’hello’);)

2.3.1 Quick and Easy Language Extensions

Programming language researchers often implement extensions to existing languages

in order to experiment with new ideas in a real-world setting. Consider the task of

adding a new kind of statement to JavaScript, for example; Figure 2.6 shows how

this might be done in OMeta by creating a new parser that inherits from an existing

JavaScript parser and overrides the rules for parsing statements, and detecting key-

words. Note that the rule application ˆstmt behaves exactly like a super-send in tradi-

tional OO languages.

2.3.2 Extensible Pattern Matching

The OMeta parser (the front-end of my implementation) is written in OMeta itself. It

translates the code for a rule, which is a stream of characters, into a parse tree in which

sequences are represented as And nodes, choices as Or nodes, rule applications as App

nodes, and so on. As an example, the parse tree generated for the body of the rule

foo = bar baz

is

[’Or’, [’And’, [’App’, ’foo’], [’App’, ’bar’]]]

which is later transformed by the OMeta compiler into the code that implements that

23

VPRI Technical Report TR-2008-003 42

rule.

My simple-minded parser always produces an Or node for the body of a rule, even

when there is only one alternative (as in the example above). This is wasteful, and can

degrade the performance of OMeta programs. After all, the ordered choice operation

must store the current position of the parser’s input stream so that when a choice fails,

it can backtrack before trying the next choice.

Expressions like

[’Or’, [’Or’, [’App’, ’x’], [’App’, ’y’]], [’App’, ’z’]]

are also needlessly inefficient. Because Ors are associative, the expression above can

be flattened to the more efficient

[’Or’, [’App’, ’x’], [’App’, ’y’], [’App’, ’z’]]

My implementation makes use of several such transformations in order to im-

prove the performance of OMeta programs. Each of these is implemented in OMeta

itself, using an idiom similar to the visitor design pattern. Figure 2.7 shows (i)

the NullOptimization grammar, which visits each node in the parse tree of a

rule, and (ii) the OROptimization grammar, which inherits the traversal code from

NullOptimization and overrides the opt rule in order to implement the two op-

timizations for Or nodes discussed in this section. (In JavaScript, Array’s concat

method concatenates two or more arrays.)

I have implemented several other transformations, including left factoring and a

jumptable-based optimization that allows choices such as

[’Or’, [’App’, ’char’, 97],
[’App’, ’char’, 98],
[’App’, ’char’, 99]]

24

VPRI Technical Report TR-2008-003 43

ometa NullOptimization {
opt = [’And’ opt*:xs] -> [’And’].concat(xs)

| [’Or’ opt*:xs] -> [’Or’].concat(xs)
| [’Form’ opt*:xs] -> [’Form’].concat(xs)
| [’Not’ opt:x] -> [’Not’, x]
| [’Many’ opt:x] -> [’Many’, x]
| [’Many1’ opt:x] -> [’Many1’, x]
| [’Set’ anything:n opt:v] -> [’Set’, n, v]
| anything

}

ometa OROptimization <: NullOptimization {
opt = [’Or’ opt:x] -> x

| [’Or’ inside:xs] -> [’Or’].concat(xs)
| ˆopt,

inside = [’Or’ inside:xs] inside:ys -> xs.concat(ys)
| opt:x inside:xs -> [x].concat(xs)
| empty -> []

}

Figure 2.7: Extensible pattern matching in OMeta

to be evaluated in constant time.3

2.3.3 Stateful Pattern Matching

OMeta’s grammars may have any number of instance variables. These variables are

initialized by the initialize method, which is invoked automatically when a new

instance of the grammar is created. (A grammar object must be instantiated before it

can be used to match a value with a start symbol, i.e., a rule. This is done by sending

the grammar the match message, e.g., G.match([1, 2, 3], ’myList’).)

Using an earlier version of OMeta, I implemented a parser for a significant subset

of Python [Ros95] that used an instance variable to hold a stack of indentation levels.

This stack was used for implementing Python’s offside rule, which enables programs
3These transformations are part of my OMeta/COLA implementation.

25

VPRI Technical Report TR-2008-003 44

ometa Calc <: Parser {
var = letter:x -> x,
num = num:n digit:d -> (n * 10 + d.digitValue())

| digit:d -> d.digitValue(),
priExpr = spaces var:x -> self.vars[x]

| spaces num:n -> n
| "(" expr:r ")" -> r,

mulExpr = mulExpr:x "*" priExpr:y -> (x * y)
| mulExpr:x "/" priExpr:y -> (x / y)
| priExpr,

addExpr = addExpr:x "+" mulExpr:y -> (x + y)
| addExpr:x "-" mulExpr:y -> (x - y)
| mulExpr,

expr = var:x "=" expr:r -> (self.vars[x] = r)
| addExpr,

doit = (expr:r)* spaces end -> r
}

Calc.initialize = function() { this.vars = {}; }

Figure 2.8: A calculator

to use indentation instead of brackets for delimiting lexical scopes.

Another example of OMeta’s stateful grammars is Calc, the calculator grammar

shown in Figure 2.8. This grammar is not just a parser; it is a complete interpreter

for arithmetic expressions with variables (the interpreting is done by the rules’ seman-

tic actions). Calc’s instance variable vars holds a symbol table that maps variable

names to their current values, and is modified by the semantic action of the expr rule

(self.vars[x] = r). The following transcript shows my calculator in action:

26

VPRI Technical Report TR-2008-003 45

> 3+4*5
23
> x = y = 2
2
> x = x * 7
14
> y
2

Note that OMeta does not attempt to undo the side effects of semantic actions

while backtracking; for some semantic actions, like printing characters to the console,

this would be impossible. Programmers implementing stateful pattern matchers must

therefore write their semantic actions carefully. (The case study of Chapter 4 of this

dissertation provides a solution to this problem.)

2.3.4 Foreign Rule Invocation

Consider the task of implementing OMetaJSParser, a parser for a language that is the

union of OMeta and JavaScript. Suppose that we already have parsers for both of these

languages; they are called OMetaParser and JSParser, respectively.

Using OMeta’s single inheritance mechanism, we could either

1. declare OMetaJSParser as a sub-grammar of OMetaParser and duplicate (i.e.,

re-implement) the rules of JSParser, or

2. declare OMetaJSParser as a sub-grammar of JSParser and duplicate the rules

of OMetaParser,

but neither of these choices is satisfactory, since it results in code bloat and cre-

ates a versioning problem, e.g., subsequent changes to JSParser will not auto-

matically carry over to the the OMetaJSParser parser resulting from (1). Making

27

VPRI Technical Report TR-2008-003 46

OMetaJSParser inherit from both OMetaParser and JSParser would also be a bad

idea, since name clashes would most likely result in incorrect behavior.4

A much better solution to this problem is OMeta’s foreign rule invocation mecha-

nism, which allows a grammar to “lend” its input stream to another grammar in order

to make use of a foreign rule. This mechanism is accessed via the foreign rule, which

takes as arguments the foreign parser and rule name, as shown below:

ometa OMetaJSParser {
topLevel = foreign(OMetaParser, ’grammar’)

| foreign(JSParser, ’srcElem’)
}

Foreign rule invocation enables programmers to combine grammars in interesting

ways without having to worry about name clashes.

2.4 Core-OMeta: an Operational Semantics for OMeta-Style Pat-

tern Matching

This section provides an operational semantics for Core-OMeta, an extension to PEGs

that supports OMeta-style pattern matching on arbitrary datatypes.

2.4.1 Definitions

A Core-OMeta grammar G is a finite set of rules; each rule r ∈G has the form A← e,

i.e., it is a pair consisting of a nonterminal (the name of the rule) and its associated

parsing expression.

Core-OMeta’s language of parsing expressions, shown in Figure 2.9, extends

Bryan Ford’s original formalism for PEGs [For04] with support for:
4OMeta does not support multiple inheritance.

28

VPRI Technical Report TR-2008-003 47

e ::= ε (empty)
| a (an atom)
| A (a non-terminal)
| e1 e2 (sequencing)
| e1 / e2 (alternation)
| e∗ (iteration)
| !e (negation)
| e:x (binding)
| → t (semantic action)
| [e] (list pattern)

Figure 2.9: The language of parsing expressions for Core-OMeta

v ::= a (an atomic value, e.g., a character)
| [v∗] (a list of values)
| none (no value)

Figure 2.10: The language of values, used as input and output in Core-OMeta

• bindings and semantic actions, and

• pattern matching on structured data (i.e., lists).

Together, these extensions make Core-OMeta a suitable language for implementing

transformations on unstructured data (e.g., parsers) as well as structured data (e.g.,

visitors).

It is important to note that Core-OMeta’s bindings, like those in OMeta, are rule-

local (i.e., their scope is the entire rule in which they are defined), and mutable (e.g.,

binding x twice results in changing the value of x).

Figures 2.10 and 2.11 define the language of values (used as input and output to

Core-OMeta grammars) and the language of terms (used for writing semantic actions),

respectively.

29

VPRI Technical Report TR-2008-003 48

t ::= a
| [t∗]
| none
| x (a variable)

Figure 2.11: The language of terms, used for writing semantic actions

2.4.2 Semantics

2.4.2.1 Notation

• Let x,y,z ∈ v∗ (i.e., sequences of zero or more values).

• Let |x| be the length of a sequence x.

• Let a and b be atomic values (e.g., characters).

• Let µ be a finite set of bindings from variables to values (a store); each binding

has the form x→ v.

• [x → v]µ means “the store that maps x to v and all other variables to the same

values as µ”.

• (e, xy,µ)⇒ (v,y,µ′) means that the parsing expression e successfully matches

(consumes) the sequence of values x, leaving y on the input stream, and produc-

ing the value v as a result. µ and µ′ represent the store (i.e., the values of the

bound variables) before and after the pattern is applied to the input, respectively.

• (e, x,µ)⇒ (FAIL,µ′) means that the parsing expression e does not match the

input. (Note that the bindings may have changed as a result of the failed match.)

30

VPRI Technical Report TR-2008-003 49

2.4.2.2 Basic PEG Functionality

The following evaluation rules describe the semantics of PEGs. They are equivalent

to Ford’s original formalism.

Empty

The empty pattern ε always succeeds without consuming any input (i.e., it leaves the

input stream untouched), and yields the value none.

(ε, x,µ)⇒ (none, x,µ)
(Empty)

Atomic Values (e.g., characters, numbers, booleans)

The atomic value pattern a succeeds only if the input stream is not empty and its first

element is equal to the atomic value in the pattern. A successful match yields the value

that was consumed.

(a,ax,µ)⇒ (a, x,µ)
(Atom-Success)

a ! b

(a,bx,µ)⇒ (FAIL,µ)
(Atom-Failure-1)

(a,[x]y,µ)⇒ (FAIL,µ)
(Atom-Failure-2)

(a,nonex,µ)⇒ (FAIL,µ)
(Atom-Failure-3)

|x| = 0

(a, x,µ)⇒ (FAIL,µ)
(Atom-Failure-4)

31

VPRI Technical Report TR-2008-003 50

Note that the only kind of atomic value supported by PEGs is the character. Since this

formalism models OMeta’s pattern matching (not just PEGs), it makes sense to have a

broader notion of atomic value that includes numbers, booleans, etc.

Nonterminal

The nonterminal (or rule application) A succeeds if its associated pattern succeeds

when applied to the input. Note that the “body of the rule” is applied to the input with

a fresh store (∅) to ensure that bindings are (statically) scoped to the rules in which

they appear.

A← e ∈G

(e, xy,∅)⇒ (v,y,µ′2)

(A, xy,µ1)⇒ (v,y,µ1)
(Nonterminal-Success)

A← e ∈G

(e, xy,∅)⇒ (FAIL,µ′2)

(A, xy,µ1)⇒ (FAIL,µ1)
(Nonterminal-Failure)

Sequence

The sequence pattern e1 e2 succeeds only if e1 matches a prefix of the input, and e2

matches a prefix of whatever is left on the input stream after e1 is applied. A successful

match yields the same value as e2.

(e1, xy,µ)⇒ (v1,y,µ′)

(e2,y,µ′)⇒ ans

(e1 e2, xy,µ)⇒ ans
(Sequence-Next)

(e1, x,µ)⇒ (FAIL,µ′)

(e1 e2, x,µ)⇒ (FAIL,µ′)
(Sequence-Failure)

32

VPRI Technical Report TR-2008-003 51

Alternation

The alternation pattern e1 / e2 succeeds if e1 matches the input (in which case e2 is

skipped); otherwise (i.e., if e1 fails), the result of the alternation pattern is the same as

the result of e2.

(e1, xy,µ)⇒ (v1,y,µ′)

(e1 / e2, xy,µ)⇒ (v1,y,µ′)
(Alternation-Success)

(e1, x,µ)⇒ (FAIL,µ′)

(e2, x,µ′)⇒ ans

(e1 / e2, x,µ)⇒ ans
(Alternation-Next)

Note that e1’s side effects—i.e., whatever changes it may have made to the store—are

not rolled back before e2 is evaluated.

Iteration

The iteration pattern e∗ successively applies e to the input, only stopping when that

results in a match failure. It yields a (possibly empty) list containing the results of

each successful application.

(e, xyz,µ)⇒ (v,yz,µ′)

(e∗,yz,µ′)⇒ (v,z,µ′′)

vans = append([v],v)

(e∗, xyz,µ)⇒ (vans,z,µ′′)
(Iteration-Repetition)

(e, x,µ)⇒ (FAIL,µ′)

(e∗, x,µ)⇒ ([], x,µ′)
(Iteration-Termination)

33

VPRI Technical Report TR-2008-003 52

Negation (Syntactic Predicate)

The negation pattern !e succeeds if the application of e to the input results in a match

failure, in which case it consumes no input and yields the value none. It fails if the

application of e succeeds.

(e, x,µ)⇒ (FAIL,µ′)

(!e, x,µ)⇒ (none, x,µ′)
(Negation-Success)

(e, xy,µ)⇒ (v,y,µ′)

(!e, xy,µ)⇒ (FAIL,µ′)
(Negation-Failure)

2.4.2.3 Bindings and Semantic Actions

Next, I extend this formalism with support for bindings to variables and semantic

actions, which were not included in Ford’s original formalism.

Binding

The binding pattern e:x succeeds only if e succeeds when applied to the input. It

yields the same value as e, but also modifies the store in order to bind the variable x to

that value.

(e, xy,µ)⇒ (v,y,µ′)

(e:x, xy,µ)⇒ (v,y, [x→ v]µ′)
(Binding-Success)

(e, x,µ)⇒ (FAIL,µ′)

(e:x, x,µ)⇒ (FAIL,µ′)
(Binding-Failure)

Semantic Action

The semantic action→ t always succeeds without consuming any input. It yields the

34

VPRI Technical Report TR-2008-003 53

value obtained from evaluating the term t in the context of the current store. The

semantics of term evaluation is given by the relation eval(t,µ) = v, shown below:

eval(a,µ) = a
(Eval-Atom)

eval(none,µ) = none
(Eval-None)

x→ v ∈ µ

eval(x,µ) = v
(Eval-Var)

eval(t1,µ,v1)
...

eval(tn,µ,vn)

eval([t1 . . . tn],µ) = [v1 . . .vn]

(Eval-List)

And now the evaluation rule for semantic actions is straightforward:

eval(t,µ) = v

(→ t, x,µ)⇒ (v, x,µ)
(Semantic-Action)

2.4.3 List (Tree) Matching

Last but not least, I extend my formalism with support for pattern matching on lists

(trees). A list pattern succeeds only if the input stream is not empty and its first element

is a list all of whose elements are matched by e.

(e, xy,µ)⇒ (v,y,µ′)

|y| = 0

([e],[xy]z,µ)⇒ ([x],z,µ′)
(List-Success)

35

VPRI Technical Report TR-2008-003 54

(e, xy,µ)⇒ (v,y,µ′)

|y| > 0

([e],[xy]z,µ)⇒ (FAIL,µ′)
(List-Failure-1)

(e, x,µ)⇒ (FAIL,µ′)

([e],[x]y,µ)⇒ (FAIL,µ′)
(List-Failure-2)

([e],ax,µ)⇒ (FAIL,µ)
(List-Failure-3)

([e],nonex,µ)⇒ (FAIL,µ)
(List-Failure-4)

|x| = 0

([e], x,µ)⇒ (FAIL,µ)
(List-Failure-5)

Note that the result of a successful match on a list object (given by List-Success, above)

is not the result of the pattern that matched its contents, but rather the list object itself.

2.5 Related Work

The kind of pattern matching found in functional languages [Jon87]—“ML-style pat-

tern matching”—can be used to define functions in an inductive style and also to de-

construct values of algebraic/structured types, both of which are useful for writing

programs that manipulate tree-structured data (e.g., AST transformations). Regular

expression pattern matching [HP01] extends ML-sytle pattern matching with support

for regular expression operators such as repetition and alternation, which makes it an

even more expressive mechanism for manipulating tree-structured data (XML, in par-

ticular). Both of these forms of pattern matching interact nicely with static typing,

36

VPRI Technical Report TR-2008-003 55

and support static checks for exhaustiveness and redundancy. OMeta’s ability to ma-

nipulate unstructured data and its support for semantic predicates make it even more

expressive than regular expression pattern matching, but also preclude these useful

static checks.

There are also many orthogonal research directions in pattern matching, some of

which may interact with OMeta in useful ways. Wadler’s views [Wad87], for exam-

ple, enable programmers to provide a “virtual representation” of their data that can be

pattern-matched against without exposing any implementation details. This idea could

be used to make OMeta’s list patterns even more general, since they might match

objects that are not actually lists, but instead expose a list-like representation of them-

selves (perhaps by implementing a small number of basic list operations). Another

example is Chase’s technique for improving the performance of bottom-up tree pattern

matching [Cha87], which may be useful for implementing OMeta more efficiently

(although, because OMeta supports top-down pattern matching, this may not be the

case).

Some existing programming language implementation frameworks are based in

part on pattern matching. Stratego/XT [Vis01, BKV08], for example, has as its cen-

tral component a language (Stratego) that supports a form of metaprogramming with

a combination of rewrite rules, which are specified using pattern matching, and strate-

gies that are used to control the application of those rules. Because Stratego’s rewrite

rules can only manipulate ASTs, the framework includes an additional language, SDF,

for implementing parsers. Another related language implementation framework is

the ANTLR parser generator [PQ95], which comes bundled with a tree parser gen-

erator [Par94] that can be used to implement simple transformations on ANTLR-

generated ASTs. OMeta’s notion of general-purpose pattern matching was designed

to make it possible for the same language to be used to implement all of the phases

37

VPRI Technical Report TR-2008-003 56

of a compiler, thus avoiding the complexities and steep learning curve that result from

using multiple tools in language implementation.

The separation of rewrite rules and strategies in Stratego is an interesting design

decision; it enables a single set of rewrite rules to be used in multiple transformations.

In OMeta, rules are responsible for rewriting terms as well as driving traversals through

ASTs (the latter is achieved with rules that recursively invoke other rules, which is

not supported in Stratego). This design results in a more minimalist foundation for

metaprogramming and supports a style that is more familiar to programmers, albeit at

the cost of some reusability.

Polyglot [NCM03] and JastAdd [EH07] are extensible compiler frameworks that

have been used by programming language researchers to build a large number of Java

extensions. (I myself have used Polyglot to implement compilers for LazyJ [War07]

and eJava [WSM06]). Unfortunately, the large size and complexity of these frame-

works makes them uninviting to potential users who are not programming language

experts (e.g., an expert in another area who wishes to implement a domain-specific

language), and too “heavy-handed” for rapidly prototyping small extensions. More-

over, Polyglot is written in Java using various conventions for extensibility; these are

easy to violate accidentally, since the implementer of an extension is required to adhere

to them manually, i.e., without any support from the language.

JastAdd, which is based on Rewritable Reference Attributed Grammars [EH04],

provides conditional rewrite rules as a means to transform ASTs. In this model, the

application of a rewrite rule may cause the conditions of one or more other rules to

be satisfied, thereby triggering those rules. This enables programmers to implement a

complex transformation as a series of simpler transformations, although special care

must be taken in order to ensure termination. While programmers may also express

this kind of sequential composition in OMeta, it is impossible to do without making

38

VPRI Technical Report TR-2008-003 57

the order of the constituent rules explicit.

My work on OMeta began when I implemented my own version of Val Schorre’s

META-II [Sch64]: a simple yet practical recognition-based compiler-writing language

that could be implemented in itself in roughly a page of code. META-II was a won-

derful tool, but it had significant limitations:

• it did not support backtracking, which made it necessary for the programmer to

do a large amount of left-factoring in rules, and

• its analog of semantic actions were PRINT commands, which meant that com-

pilers had to generate code while recognizing programs. The resulting programs

were usually interpreted by a special-purpose virtual machine which had been

implemented specially for the language being compiled.

Once I added backtracking and semantic actions to my language, it became equivalent

in power to Bryan Ford’s Parsing Expression Grammars (PEGs) [For04].

OMeta’s PEG foundation makes it a close relative of packrat parser genera-

tors [For02a]. Rats! [Gri06] in particular, supports a notion of “modular syntax” with

a form of inheritance, which (like in OMeta) can be used to create “subgrammars” that

may override the rules of their “supergrammars”. But OMeta is not a parser gener-

ator; it is a programming language whose control structure is based on PEGs. And

unlike previous PEG-based tools, which operate only on streams of characters, OMeta

extends PEGs with support for arbitrary datatypes.

OMeta’s ability to pattern match over arbitrary datatypes and the notion of param-

eterized rules were both inspired by LISP70 [TES73], which used pattern matching

for pattern-directed computation (as in ML) as well as extending its own syntax. But

unlike OMeta, LISP70 relied on an external lexical analyzer that could not be modified

by user programs, did not support object-oriented extensibility mechanisms, and was

39

VPRI Technical Report TR-2008-003 58

never fully implemented.

Parameterized and higher-order rules can also be found in parser combinator li-

braries [HM98, LM01]. But OMeta is a language, not a library, and its specialized

syntax and object-oriented features make OMeta grammars more readable and more

extensible than those written using parser combinator libraries.

2.6 Conclusions and Future Work

I have shown that OMeta’s general-purpose pattern matching enables programmers to

easily implement lexical analyzers, parsers, visitors, etc. This makes OMeta particu-

larly well-suited as a medium for experimenting with new designs for programming

languages and extensions to existing languages.

In future work, I would like to improve the performance of my OMeta implemen-

tations; it should be possible for them to be competitive with state-of-the-art packrat

parser implementations such as Robert Grimm’s Rats! [Gri06].

40

VPRI Technical Report TR-2008-003 59

CHAPTER 3

Left Recursion Support for Packrat Parsers

Packrat parsing [For02a] offers several advantages over other parsing techniques, such

as the guarantee of linear parse times while supporting backtracking and unlimited

look-ahead. Unfortunately, the limited support for left recursion in packrat parser im-

plementations makes them difficult to use for a large class of grammars (Java’s, for

example). This chapter presents a modification to the memoization mechanism used

by packrat parser implementations that makes it possible for them to support (even in-

directly or mutually) left-recursive rules. While it is possible for a packrat parser with

my modification to yield super-linear parse times for some left-recursive grammars,

my experiments show that this is not the case for typical uses of left recursion.

3.1 Introduction

Packrat parsers [For02a] are an attractive choice for programming language imple-

menters because:

• They provide “the power and flexibility of backtracking and unlimited look-

ahead, but nevertheless [guarantee] linear parse times.” [For02a]

• They support syntactic and semantic predicates.

• They are easy to understand: because packrat parsers only support ordered

choice—as opposed to unordered choice, as found in Context-Free Grammars

41

VPRI Technical Report TR-2008-003 60

(CFGs)—there are no ambiguities and no shift-reduce/reduce-reduce conflicts,

which can be difficult to resolve.

• They impose no separation between lexical analysis and parsing. This feature,

sometimes referred to as scannerless parsing [SC89, Vis97], eliminates the need

for moded lexers [VS07] when combining grammars (e.g., in Domain-Specific

Embedded Language (DSEL) implementations).

Unfortunately, “like other recursive descent parsers, packrat parsers cannot support

left-recursion” [Gri06], which is typically used to express the syntax of left-associative

operators. To better understand this limitation, consider the following rule for parsing

expressions:

expr = expr "-" num | num

Note that the first alternative in expr begins with expr itself. Because the choice

operator in packrat parsers (denoted here by “|”) tries each alternative in order, this

recursion will never terminate: an application of expr will result in another applica-

tion of expr without consuming any input, which in turn will result in yet another

application of expr, and so on. The second choice—the non-left-recursive case—will

never be used.

We could change the order of the choices in expr,

expr = num | expr "-" num

but to no avail. Since all valid expressions begin with a number, the second choice—

the left-recursive case—would never be used. For example, applying the expr rule to

the input “1-2” would succeed after consuming only the “1”, and leave the rest of the

input, “-2”, unprocessed.

42

VPRI Technical Report TR-2008-003 61

Some packrat parser implementations, including Pappy [For02b] and

Rats! [Gri06], circumvent this limitation by automatically transforming directly

left-recursive rules into equivalent non-left-recursive rules. This technique is called

left recursion elimination. As an example, the left-recursive rule above can be

transformed to

expr = num ("-" num)*

which is not left-recursive and therefore can be handled correctly by a packrat parser.

Note that the transformation shown here is overly simplistic; a suitable transformation

must preserve the left-associativity of the parse trees generated by the resulting

non-left-recursive rule, as well as the meaning of the original rule’s semantic actions.

Now consider the following minor modification to the original grammar, which has

no effect on the language accepted by expr:

x = expr
expr = x "-" num | num

When given this grammar, the Pappy packrat parser generator reports the following

error message:

Illegal left recursion: x -> expr -> x

This happens because expr is now indirectly left-recursive, and Pappy does not sup-

port indirect left recursion (also referred to as mutual left recursion). In fact, to the

best of my knowledge, none of the currently-available packrat parser implementations

supports indirectly left-recursive rules.

Although this example is certainly contrived, indirect left recursion does in fact

arise in real-world grammars. For instance, Roman Redziejowski discusses the dif-

ficulty of implementing a packrat parser for Java [Gos05], whose Primary rule (for

expressions) is indirectly left-recursive with five other rules [Red08]. While program-

43

VPRI Technical Report TR-2008-003 62

mers can always refactor grammars manually in order to eliminate indirect left recur-

sion, doing so is tedious and error-prone, and in the end it is generally difficult to be

convinced that the resulting grammar is equivalent to the original.

This chapter presents a modification to the memoization mechanism used by pack-

rat parser implementations that enables them to support both direct and indirect left

recursion directly (i.e., without first having to transform rules). While it is possible

for a packrat parser with my modification to yield super-linear parse times for some

left-recursive grammars, my experiments (Section 3.5) show that this is not the case

for typical uses of left recursion.

The rest of this chapter is structured as follows. Section 3.2 gives a brief overview

of packrat parsing. Section 3.3 describes my modification to the memoization mecha-

nism, first showing how direct left recursion can be supported, and then extending the

approach to support indirect left recursion. Section 3.4 validates this work by showing

that it enables packrat parsers to support a grammar that closely mirrors Java’s heavily

left-recursive Primary rule. Section 3.5 discusses the effects of my modification on

parse times. Section 3.6 discusses related work, and Section 3.7 concludes.

3.2 An Overview of Packrat Parsing

Packrat parsers are able to guarantee linear parse times while supporting backtracking

and unlimited look-ahead “by saving all intermediate parsing results as they are com-

puted and ensuring that no result is evaluated more than once” [For02a]. For example,

consider what happens when the rule

expr = num "+" num
| num "-" num

(where num matches a sequence of digits) is applied to the input “1234-5”.

44

VPRI Technical Report TR-2008-003 63

Since choices are always evaluated in order, the parser begins by trying to match

the input with the pattern

num "+" num

The first term in this pattern, num, successfully matches the first four characters of the

input stream (“1234”). Next, the parser attempts to match the next character on the

input stream, “-”, with the next term in the pattern, "+". This match fails, and thus we

backtrack to the position at which the previous choice started (0) and try the second

alternative:

num "-" num

At this point, a conventional top-down backtracking parser would have to apply num

to the input, just like we did while evaluating the first alternative. However, because

packrat parsers memoize all intermediate results, no work is required this time around:

the parser already knows that num succeeds at position 0, consuming the first four

characters. It suffices to update the current position to 4 and carry on evaluating the

remaining terms. The next pattern, "-", successfully matches the next character, and

thus the current position is incremented to 5. Finally, num matches and consumes the

“5”, and the parse succeeds.

Intermediate parsing results are stored in the parser’s memo table, which we shall

model as a function

M : (R,P)→ME

where

ME : (ans : AST, pos : P)

In other words, M maps a rule-position pair (R,P) to a tuple consisting of

• the AST (or the special value 1) resulting from applying R at position P, and
1Failures are also memoized in order to avoid doing unnecessary work when backtracking occurs.

45

VPRI Technical Report TR-2008-003 64

A-R(R,P)
let m =M(R,P)
if m = 

then let ans = E(R.body)
m← new ME(ans,Pos)
M(R,P)← m
return ans

else Pos← m.pos
return m.ans

Figure 3.1: The original A-R procedure

• the position of the next character on the input stream.

or , if there is no entry in the memo table for the given rule-position pair.

The A-R procedure (see Figure 3.1), used in every rule application, ensures

that no rule is ever evaluated more than once at a given position. When rule R is applied

at position P, A-R consults the memo table. If the memo table indicates that

R was previously applied at P, the appropriate parse tree node is returned, and the

parser’s current position is updated accordingly. Otherwise, A-R evaluates the

rule, stores the result in the memo table, and returns the corresponding parse tree node.

By using the memo table as shown in this section, packrat parsers are able to sup-

port backtracking and unlimited look-ahead while guaranteeing linear parse times. In

the next section, I present modifications to the memo table and the A-R proce-

dure that make it possible for packrat parsers to support left recursion.

3.3 Adding Support for Left Recursion

In Section 3.1, I showed informally that the original version of the expr rule,

46

VPRI Technical Report TR-2008-003 65

expr = expr "-" num | num

causes packrat parsers to go into infinite recursion. We now revisit the same example,

this time from Section 3.2’s more detailed point of view.

Consider what happens when expr is applied to the input “1-2-3”. Since the

parser’s current position is initially 0, this application is encoded as A-R(expr,

0). A-R, shown in Figure 3.1, begins by searching the parser’s memo table

for the result of expr at position 0. The memo table is initially empty, and thus

M(expr,0) evaluates to , indicating that expr has not yet been used at posi-

tion 0. This leads A-R to evaluate the body of the expr rule, which is made up

of two choices. The first choice begins with expr, which, since the parser’s current

position is still 0, is encoded as the familiar A-R(expr, 0). At this point, the

memo table remains unchanged and thus we are back exactly where we started! The

parser is doomed to repeat the same steps forever, or more precisely, until the computer

eventually runs out of stack space.

The rest of this section presents a solution to this problem. First, I modify the

algorithm to make left-recursive applications fail, in order to avoid infinite loops. I

then build on this extension to properly support direct left recursion. Extending this

idea to support indirect left recursion is conceptually straightforward; I present the

intuition for this in Section 3.3. Finally, Section 3.4 focuses on the operational details

of this extension.

3.3.1 Avoiding Infinite Recursion in Left-Recursive Rules

A simple way to avoid infinite recursion is for A-R to store a result of  in

the memo table before it evaluates the body of a rule, as shown in Figure 3.2. This has

the effect of making all left-recursive applications (both direct and indirect) fail.

47

VPRI Technical Report TR-2008-003 66

A-R(R,P)
let m =M(R,P)
if m = 

then m← new ME(F,P) *
M(R,P)← m *
let ans = E(R.body)
m.ans← ans *
m.pos← Pos *
return ans

else Pos← m.pos
return m.ans

Figure 3.2: Avoiding non-termination by making left-recursive applications fail (lines
marked with * are either new or have changed since the previous version)

Consider what happens when expr is applied to the input “1-2-3” using the new

version of A-R. Once again this application is encoded as A-R(expr,

0). A-R first updates the memo table with a result of  for expr at position

0, then goes on to evaluate the rule’s body, starting with its first choice. The first

choice begins with an application of expr, which, because the current position is still

0, is also encoded as A-R(expr, 0). This time, however, A-R will find a

result in the memo table, and thus will not evaluate the body of the rule. And because

that result is , the current choice will be aborted. The parser will then move on to

the second choice, num, which will succeed after consuming the “1”, and leave the rest

of the input, “-2-3”, unprocessed.

3.3.2 Supporting Direct Left Recursion

While this is clearly not expr’s intended behavior, the modified A-R procedure

shown in Figure 3.2 was a step in the right direction. Consider the side-effects of the

application of expr at position 0:

48

VPRI Technical Report TR-2008-003 67

1. The parser’s current position was updated to 1, and

2. The parser’s memo table was updated with a mapping from (expr, 0) to (expr→
num→ 1, 1).

The parse shown above avoided all left-recursive terms; I call it the seed parse.

Now, suppose we backtrack to position 0 and evaluate expr’s body one more time.

Note that unlike evaluating A-R(expr, 0), which would simply retrieve the pre-

vious result stored in the memo table, evaluating the body of this rule (which we denote

in pseudo-code as E(expr.body)) will sidestep one level of memoization and begin

to evaluate each of its choices. The first choice,

expr "-" num

begins with a left-recursive application, just like before. This time, however, that ap-

plication succeeds because the memo table now contains the seed parse. Next, the

terms "-" and num successfully match and consume the “-” and “2” on the input, re-

spectively. If we update the memo table with the new answer and repeat these steps

one more time, we will have parsed “1-2-3”, the entire input stream!

I refer to this iterative process as growing the seed ; Figure 3.3 shows G-LR,

which implements the seed-growing algorithm. G-LR tries to grow the parse of

rule R at position P, given the seed parse in the ME M.2 Note that each time

the rule’s body is evaluated, the parser must backtrack to P ; this is accomplished with

the statement “Pos← P”. At the start of each iteration, M contains the last successful

result of the left recursion. The loop’s terminating condition, “ans =  or Pos ≤
M.pos”, detects that no progress was made as a result of evaluating the rule’s body.

Once this condition is satisfied, the parser’s current position is updated to the one

associated with the last successful result.
2Lines A, B, and C, and the argument H can be ignored at this point.

49

VPRI Technical Report TR-2008-003 68

G-LR(R,P,M,H)
... ! line A
while 

do
Pos← P
... ! line B
let ans = E(R.body)
if ans =  or Pos ≤ M.pos

then break
M.ans← ans
M.pos← Pos

... ! line C
Pos← M.pos
return M.ans

Figure 3.3: G-LR: support for direct left recursion

A-R(R,P)
let m =M(R,P)
if m = 

then let lr = new LR() *
m← new ME(lr,P) *
M(R,P)← m
let ans = E(R.body)
m.ans← ans
m.pos← Pos
if lr.detected and ans !  *

then return G-LR(R,P,m,) *
else return ans *

else Pos← m.pos
if m.ans is LR *

then m.ans.detected←  *
return  *

else return m.ans *

Figure 3.4: Detecting left recursion and growing the seed with G-LR (lines marked
with * are either new or have changed since the previous version)

50

VPRI Technical Report TR-2008-003 69

G-LR can be used to compute the result of a left-recursive application. Before

we can use it, however, we must be able to detect when a left recursion has occurred.

I do this by introducing a new datatype, LR, and modifying ME so that LRs

may be stored in ans,

LR : (detected : B)

ME : (ans : AST or LR, pos : P)

and modifying A-R as shown in Figure 3.4.

To detect left-recursive applications, A-R memoizes an LR with detected =

 before evaluating the body of the rule. A left-recursive application of the same

rule will cause its associated LR’s detected field to be set to , and yield a result

of . When an application is found to be left-recursive and it has a successful seed

parse, G-LR is invoked in order to grow the seed into the rule’s final result.

The modifications shown in Figures 3.3 and 3.4 enable packrat parsers to support

direct left recursion without the need for left recursion elimination transformations.

This includes nested direct left recursion, such as

term = term "+" fact
| term "-" fact
| fact

fact = fact "*" num
| fact "/" num
| num

In the remainder of this section, I will present additional modifications that will enable

the parser to also support indirect left recursion.

3.3.3 Getting Ready For Indirect Left Recursion

Recall the following grammar, taken from the introduction,

51

VPRI Technical Report TR-2008-003 70

x = expr
expr = x "-" num | num

and consider what happens when x is applied to the input “4-3” using the new version

of A-R given in the previous section. First, the x rule is detected to be left-

recursive with a seed parse of x→expr→num→4. G-LR then evaluates x’s body

once again to try to grow the seed. At this point, the memo table already has an answer

for expr, namely expr→num→4; this causes the second evaluation of x to yield a

parse identical to the seed parse. Because the last evaluation of x consumed no more

input than the seed parse, the loop in G-LR terminates and the seed parse becomes

the final result. This is clearly not the behavior we wanted.

The example above shows that the modifications for supporting left recursion de-

scribed in the previous section are overly simplistic. G-LR repeatedly evaluates a

single rule in order to grow the seed parse, which is not sufficient when more than one

rule is involved in a left recursion.

I shall now introduce a few concepts that will play a key role in the next and final

set of modifications to the parser. The first of these concepts is that of a rule invocation

stack. Before a rule is evaluated, it is pushed onto the parser’s rule invocation stack,

only to be popped off the stack once it has finished computing a result. In Figure 3.5,

(A) depicts the rule invocation stack just after the x rule invokes expr.

An invocation of rule R is left-recursive if R is already on the rule invocation stack,

and the parser’s position has not changed since that first invocation. In the example

above, the invocation of x by expr, shown in (B), is left-recursive. Left-recursive

invocations form a loop in the rule invocation stack. I refer to the rule that started that

loop as the head rule of the left recursion, and to the other rules in the loop as being

involved in that left recursion. In (C), x’s thicker border denotes that it is the head of

a left recursion, and {expr}, inside the x node, represents the set of rules involved in

52

VPRI Technical Report TR-2008-003 71

(A) (B) (C) (D)

x

expr expr

x

expr @ x

x, {expr}

expr @ x

x, {expr}

Figure 3.5: The rule invocation stack, shown at various stages during a left-recursive
application

that left recursion. The expr node, now labeled “expr @ x”, indicates that expr is

involved in a left recursion whose head rule is x.

We can use this information to handle the invocation of expr specially while grow-

ing x’s seed parse. More specifically, we can force expr’s body to be re-evaluated,

ignoring the rule’s previously memoized result. In general, when growing a left re-

cursion result, we should bypass the memo table and re-evaluate the body of any rule

involved in the left recursion. This is the intuition for the final set of modifications,

which are presented in the next section.

3.3.4 Adding Support for Indirect Left Recursion

The final version of the A-R procedure is shown in Figure 3.6. It has been

modified in order to maintain a rule invocation stack as described above. The stack is

represented by the LR datatype, which I have modified as follows:

LR : (seed : AST,rule : R,head : H,next : LR)

The rule invocation stack is kept in the global variable LRS tack, of type LR, and is

represented as a linked list, using LR’s next field.

53

VPRI Technical Report TR-2008-003 72

LR’s seed field holds the initial parse found for the associated rule, which is stored

in the rule field. In place of LR’s old detected field, we now have the head field which,

for a left-recursive invocation, holds information pertinent to the left recursion (head

is set to  for non-left-recursive invocations). The  datatype,

H : (rule : R, involvedS et,evalS et : S of R)

contains the head rule of the left recursion (rule), and the following two sets of rules:

• involvedS et, for the rules involved in the left recursion, and

• evalS et, which holds the subset of the involved rules that may still be eval-

uated during the current growth cycle.

These data structures are used to represent the information depicted in Figure 3.5.

The parser must be able to determine whether left recursion growth is in progress,

and if so, which head rule is being grown. Because only one left recursion can be

grown at a time for any given position, a global variable, H, is used to map a

position to the H of the left recursion which is currently being grown:

H : P→ H

H is  at any position where left recursion growth is not underway.

The task of examining the rule invocation stack to find the head rule and its in-

volved rule set is performed by the S-LR procedure, shown in Figure 3.7.3 In our

example, S-LR is invoked when the stack is at stage (B), in Figure 5, and leaves

the stack as shown in stage (C).

G-LR, shown in Figure 3.3, must be modified to use the head rule and its

involved rule set. Left recursion growth starts by changing Line A to
3There are more efficient ways to implement S-LR which avoid walking the stack; I chose to

include this one because it is easier to understand.

54

VPRI Technical Report TR-2008-003 73

H(P)← H

which indicates that left recursion growth is in progress. For each cycle of growth, the

involved rules are given a fresh opportunity for evaluation. This is implemented by

changing Line B to

H.evalS et← C(H.involvedS et)

In our example, this will cause expr to be included in the set of rules which will be

re-evaluated if reached. Finally, when left recursion growth is completed, the head at

the left recursion position must be removed. To accomplish this, Line C is changed to

H(P)← 

When a rule is applied, A-R now invokes the R procedure, shown in

Figure 3.9, in order to retrieve previous parse results. In addition to fetching memoized

results from the memo table, R ensures that involved rules are evaluated during

the growth phase. R also prevents rules that were not previously evaluated as

part of the left recursion seed construction from being parsed during the growth phase.

This preserves the behavior that is expected of a Parsing Expression Grammar (PEG),

namely that the first successful parse becomes the result of a rule.

Note that A-R now invokes LR-A (see Figure 3.8), not G-LR,

when it detects left recursion. If the current rule is the head of the left recursion, LR-

A invokes G-LR just as A-R did before. Otherwise, the current rule is

involved in the left recursion and must defer to the head rule to grow any left-recursive

parse, and pass its current parse to participate in the construction of a seed parse.

With these modifications, the parser supports both direct and indirect left recursion.

55

VPRI Technical Report TR-2008-003 74

A-R(R,P)
let m = R(R,P) *
if m = 

then! Create a new LR and push it onto the rule
! invocation stack.
let lr = new LR(,R,,LRS tack) *
LRS tack← lr *
!Memoize lr, then evaluate R.
m← new ME(lr,P)
M(R,P)← m
let ans = E(R.body)
! Pop lr off the rule invocation stack.
LRS tack← LRS tack.next *
m.pos← Pos
if lr.head !  *

then lr.seed← ans *
return LR-A(R,P,m) *

else m.ans← ans *
return ans

else Pos← m.pos
if m.ans is LR

then S-LR(R,m.ans) *
return m.ans.seed *

else return m.ans

Figure 3.6: The final version of A-R (lines marked with * are either new or
have changed since the previous version)

56

VPRI Technical Report TR-2008-003 75

S-LR(R,L)
if L.head = 

then L.head← new H(R, {}, {})
let s = LRS tack
while s.head ! L.head

do s.head← L.head
L.head.involvedS et← L.head.involvedS et∪{s.rule}
s← s.next

Figure 3.7: The S-LR procedure

LR-A(R,P,M)
let h = M.ans.head
if h.rule ! R

then return M.ans.seed
else M.ans← M.ans.seed

if M.ans = 
then return 
else return G-LR(R,P,M,h)

Figure 3.8: The LR-A procedure

57

VPRI Technical Report TR-2008-003 76

R(R,P)
let m =M(R,P)
let h = H(P)
! If not growing a seed parse, just return what is stored
! in the memo table.
if h = 

then return m
! Do not evaluate any rule that is not involved in this
! left recursion.
if m =  and R " {h.head}∪h.involvedS et

then return new ME(,P)
! Allow involved rules to be evaluated, but only once,
! during a seed-growing iteration.
if R ∈ h.evalS et

then h.evalS et← h.evalS et \ {R}
let ans = E(R.body)
m.ans← ans
m.pos← Pos

return m

Figure 3.9: The R procedure

58

VPRI Technical Report TR-2008-003 77

3.4 Case Study: Parsing Java’s Primary Expressions

To validate this mechanism for supporting left recursion, I modified the back-end of

OMeta, the parsing and pattern matching language presented in Chapter 2, to use the

new A-R procedure described in the previous section. My colleague Jamie

Douglass also modified the implementation of his Context-Free Attributed Transfor-

mations (CAT) parser generator accordingly.

I also constructed a grammar that closely mirrors Java’s Primary rule, as found

in chapter 15 of the Java Language Specification [Gos05]. Because of its heavily

mutually left-recursive nature, Primary cannot be supported directly by conventional

packrat parsers [Red08].

My process for composing this grammar, shown in Figure 3.10, started with a

careful examination of the grammar of Java expressions. I then identified all other

rules that are mutually left-recursive with Primary. All such rules, namely

• Primary,

• PrimaryNoNewArray,

• ClassInstanceCreationExpression,

• MethodInvocation,

• FieldAccess, and

• ArrayAccess

are included in my grammar, as are “stubs” for the other rules they reference (Class-

Name, InterfaceTypeName, Identifier, MethodName, ExpressionName, and Expres-

sion).

59

VPRI Technical Report TR-2008-003 78

Input String Parse Tree (in s-expression form)
“this” this
“this.x” (field-access this x)
“this.x.y” (field-access (field-access this x) y)
“this.x.m()” (method-invocation (field-access this x) m)
“x[i][j].y” (field-access (array-access (array-access x i) j) y)

Table 3.1: Some Java Primary expressions and their corresponding parse trees, as
generated by a packrat parser modified as proposed in Section 3.3 (the head of an
s-expression denotes the type of the AST node)

Next, I removed some of the uninteresting (i.e., non-left-recursive) choices from

these rules, and ordered the remaining choices so that the rules would behave correctly

when used in a packrat parser. For example, since the method invocation expression

“this.m()” has a prefix of “this.m”, which is also a valid field access expression,

the PrimaryNoNewArray rule must try MethodInvocation before trying FieldAccess.

I then encoded the resulting grammar in the syntax accepted by the Pappy packrat

parser generator [For02b]. Just as I expected, Pappy was unable to compile this gram-

mar and displayed the error message “Illegal left recursion: Primary ->

PrimaryNoNewArray -> ClassInstanceCreationExpression -> Primary”.

Lastly, I encoded the same grammar in the syntax accepted by CAT and OMeta.

The resulting parsers exhibit the correct behavior, as shown in Table 3.1.

3.5 Performance

A packrat parser’s guarantee of linear parse times is based on its ability to compute the

result of any single rule application in constant time. My iterative process for growing

the seed parse of a left-recursive application violates this assumption, thus making it

possible for some left-recursive grammars to yield super-linear parse times. As an ex-

ample, the grammar

60

VPRI Technical Report TR-2008-003 79

Primary = <PrimaryNoNewArray>
PrimaryNoNewArray = <ClassInstanceCreationExpression>

| <MethodInvocation>
| <FieldAccess>
| <ArrayAccess>
| this

ClassInstanceCreationExpression = new <ClassOrInterfaceType> ()
| <Primary> . new <Identifier> ()

MethodInvocation = <Primary> . <Identifier> ()
| <MethodName> ()

FieldAccess = <Primary> . <Identifier>
| super . <Identifier>

ArrayAccess = <Primary> [<Expression>]
| <ExpressionName> [<Expression>]

ClassOrInterfaceType = <ClassName> | <InterfaceTypeName>

ClassName = C | D
InterfaceTypeName = I | J
Identifier = x | y | <ClassOrInterfaceType>

MethodName = m | n
ExpressionName = <Identifier>

Expression = i | j

Figure 3.10: Java’s Primary expressions

61

VPRI Technical Report TR-2008-003 80

start = ones "2" | "1" start | ε
ones = ones "1" | "1"

accepts strings of zero or more “1”s in O(n2) time. The same inefficiency will arise

for any grammar that causes the parser to backtrack to the middle of a previously com-

puted left-recursive parse and then re-apply the same left-recursive rule. Fortunately,

this problem—which is analogous to that of Ford’s iterative combinators—does not

manifest itself in practical grammars [For02b].

In order to gauge the expected performance of packrat parsers modified as de-

scribed in this chapter, I constructed the following two rules:

rr = "1" rr | "1"
lr = lr "1" | "1"

The first rule, rr, is right-recursive, and the second, lr, is left-recursive. Both recog-

nize the same language, i.e., a string of one or more “1”s, and while the parse trees

generated by these rules have different associativities, they have the same size.

I used these rules to recognize strings with lengths ranging from 1,000 to 10,000,

in increments of 1,000. The results of this experiment are shown in Figure 3.11. The

rr rule was first timed using a “vanilla” packrat parser implementation (RR-ORIG),

and then using a version of the same implementation that was modified by one of my

colleagues as described in Section 3.3 (RR-MOD). The lr rule was only timed using

the modified implementation (LR-MOD), since left recursion is not supported in our

“vanilla” implementation.

The following conclusions can be drawn from this experiment:

• My modifications to support left recursion do not introduce significant over-

head for non-left-recursive rules. Although the recognizing times for RR-

MOD were consistently slower than those for RR-ORIG, the difference was

62

VPRI Technical Report TR-2008-003 81

Figure 3.11: RR-ORIG shows the performance characteristics of rr in a traditional
packrat parser implementation; RR-MOD and LR-MOD show the performance char-
acteristics of rr and lr, respectively, in an implementation that was modified as de-
scribed in Section 3.3

rather small. Furthermore, RR-MOD and RR-ORIG appear to have the same

slope.

• The modified packrat parser implementation supports typical uses of left

recursion in linear time, as shown by LR-MOD.

• Using left recursion can actually improve parse times. The results of LR-

MOD were consistently better than those of RR-MOD and RR-ORIG. More

importantly, LR-MOD’s gentler slope tells us that it will scale much better than

the others on larger input strings. This difference in performance is likely due

to the fact that left recursion uses only a constant amount of stack space, while

right recursion causes the stack to grow linearly with the size of the input.

In order to measure the effect of indirect left recursion on parse times, I constructed

three more versions of the lr rule. The first,

63

VPRI Technical Report TR-2008-003 82

Figure 3.12: The effect of indirect left recursion on parse times

lr1 = x "1" | "1"
x = lr1

is indirectly left-recursive “one rule deep” (lr, which is directly left-recursive, may be

considered to be indirectly left-recursive zero rules deep). The two other rules, lr2 and

lr3 (not shown), are indirectly left-recursive two and three rules deep, respectively.

Figure 3.12 shows the timing results for the new rules, in addition to the original

lr rule. These results indicate that adding simple indirection to left-recursive rules

does not have a significant effect on parse times.

3.6 Related Work

As discussed in Section 3.1, a number of packrat parser implementations, including

Pappy [For02b] and Rats! [Gri06], support directly left-recursive rules by transform-

ing them into equivalent non-left-recursive rules. Unfortunately, because neither of

these implementations supports mutually left-recursive rules, implementing parsers

for grammars containing such rules (such as Java’s) using these systems is not trivial.

64

VPRI Technical Report TR-2008-003 83

The programmer must carefully analyze the grammar and rewrite certain rules, which

can be tricky. And because the resulting parser is no longer obviously equivalent to the

grammar for which it was written, it is difficult to be certain that it does indeed parse

the language for which it was intended.

While it may be possible to adapt the “transformational approach” of Pappy and

Rats! to support mutual left recursion by performing a global analysis on the grammar,

• the presence of syntactic and semantic predicate terms may complicate this task

significantly, and

• such a global analysis does not mix well with modular parsing frameworks such

as Rats!, in which rules may be overridden in “sub-parsers”.

The approach described here works seamlessly with syntactic and semantic predicates,

as well as modular parsing, which makes it a good fit for OMeta.

Frost and Hafiz have proposed a technique for supporting left recursion in top-

down parsers that involves limiting the depth of the (otherwise) infinite recursion that

arises from left-recursive rules to the length of the remaining input plus 1 [FH06].

While this technique is applicable to any kind of top-down parser (including packrat

parsers), it cannot be used when the length of the input stream is unknown, as is the

case with interactive input (e.g., read-eval-print loops and network sockets). The ap-

proach presented here does not have this limitation and is significantly more efficient,

although its need to interact with the memo table makes it applicable only to packrat

parsers.

Johnson has proposed a technique based on memoization and Continuation-Passing

Style (CPS) for implementing top-down parsers that support left recursion and polyno-

mial parse times [Joh95]. This technique was developed for CFGs and relies heavily

on the non-determinism of the CFG choice operator; for this reason, I believe that it

65

VPRI Technical Report TR-2008-003 84

would be difficult (if at all possible) to adapt it for use in packrat parser implementa-

tions, where the ordering of the choices is significant.

Jamie Douglass, who—along with Todd Millstein—collaborated with me on this

project, had previously developed a memoization-based technique for supporting left

recursion in an earlier version of CAT which only supported CFG rules. That tech-

nique’s memoization mechanism was restricted to only the head and involved rules,

and used only while growing a seed parse.

3.7 Conclusions and Future Work

I have described a modification to the memoization mechanism used by packrat parser

implementations that enables them to support both direct and indirect (or mutual) left

recursion. This modification obviates the need for left recursion elimination trans-

formations, and supports typical uses of left recursion without sacrificing linear parse

times.

Applying this modification to the packrat parser implementations of OMeta and

CAT enabled both of these systems to support the heavily left-recursive portion of the

Java grammar discussed in Section 3.4.

One of the anonymous reviewers of PEPM 2008 (the workshop in which this work

was published) noted that the compelling simplicity of packrat parsing is “to a large

extent lost in the effort to support indirect left recursion.” I, like this reviewer, believe

that the final version of the algorithm presented in Section 3.3 can be simplified, and

hope to do so in future work.

Packrat parsing was originally developed by Bryan Ford to support PEGs [For04].

By extending packrat parsers with support for left recursion, we have also extended the

class of grammars they are able to parse (which is now a superset of PEGs). Therefore,

66

VPRI Technical Report TR-2008-003 85

it may be interesting to develop a formalism for this new class of grammars that can

serve as the theoretical foundation for this new style of packrat parsing.

67

VPRI Technical Report TR-2008-003 86

CHAPTER 4

Worlds: Controlling the Scope of Side Effects

The state of an imperative program—e.g., the values stored in global and local vari-

ables, objects’ instance variables, and arrays—changes as its statements are executed.

These changes, or side effects, are visible globally: when one part of the program

modifies an object, every other part that holds a reference to the same object (either

directly or indirectly) is also affected. This chapter introduces worlds, a language con-

struct that reifies the notion of program state, and enables programmers to control the

scope of side effects. I investigate this idea as an extension of JavaScript, and provide

examples that illustrate some of the interesting idioms that it makes possible.

4.1 Introduction

Suppose that, while browsing the web, you get to a page that has multiple links and it

is not clear which one (if any) will lead to the information you’re looking for. Maybe

the desired information is just one or two clicks away, in which case it makes sense to

click on a link, and if you don’t find what you’re looking for, click the back button and

try the next link. If the information is more than a few clicks away, it might be better

to open the link in a new tab in which you can explore it to arbitrary depths. That way,

if you eventually decide that wasn’t the way to go, you can close the tab, and easily try

a different path. Another option is to open each link in its own tab, and explore all of

them “concurrently”.

68

VPRI Technical Report TR-2008-003 87

Figure 4.1: “Tabs” 1 and 2 show the state of the world initially, and when the robot
discovers that key A does not unlock the safe, respectively.

Something like the tabs of a web browser would be even more useful in a program-

ming language, where undoing actions is a lot trickier than clicking a back button. As

an example, consider the task of programming a robot to open a locked safe, as shown

in Figure 4.1. There are two keys, A and B (each in its own room), but only one of

them unlocks the safe. Using a conventional programming language, we might tell the

robot to grab key A from room A, then go to the safe and try to unlock it. At this point,

if we find that key A does not open the safe, we probably want to have the robot clean

up after himself before trying the next alternative (nobody likes a messy robot). So we

must tell the robot to take key A back to room A, and then return to its initial position.

In a programming language that supports “tabs”, these clean-up actions would not

be required: we could simply open a new tab, and inside it try to open the safe with

key A. If A turns out to be the wrong key, we can simply close this new tab to return

to the initial conditions.

This chapter explores the idea of “tabs for programming languages”, which I call

worlds.

69

VPRI Technical Report TR-2008-003 88

Figure 4.2: Two ways to represent program state. In (A), an object is uniquely identi-
fied by the address of the block of memory in which its state is stored. In (B), objects
are just tags and their state is stored externally in a single lookup table.

4.2 Approach

The state of a program is scattered around the computer’s memory in several kinds of

data structures: arrays, objects, activation records, etc. We normally think of these data

structures as little “bundles of state”, and they are often implemented as such (see Fig-

ure 4.2 (A)). Alternatively, we can think of program state itself as a data structure—a

kind of lookup table or associative array—that is used to represent all other data struc-

tures in the system. In this model, each object or data structure is uniquely identified

by a tag, and the program state maps (tag, property name) pairs to their values (see

Figure 4.2 (B)).

Reifying the notion of program state raises some interesting questions:

• Is it useful for the program state to be a first-class value/object?

• Does it make sense for multiple “program states” to co-exist in the same pro-

gram?

• If so, should a program state be able to inherit from (or delegate to) another

program state?

70

VPRI Technical Report TR-2008-003 89

I answer all of these questions with a resounding “yes”.

4.2.1 Worlds

The world is a new language construct that reifies the notion of program state. All

computation takes place inside a world, which captures all of the side effects—changes

to global, local, and instance variables, arrays, etc.—that happen inside it.

A new world can be “sprouted” from an existing world at will. The state of a child

world is derived from the state of its parent, but the side effects that happen inside

the child do not affect the parent. (This is analogous to the semantics of delegation

in prototype-based languages with copy-on-write slots.) At any time, the side effects

captured in the child world can be propagated to its parent via a commit operation.

4.2.2 Worlds/JS

A programming language that supports worlds must provide some way for program-

mers to:

• refer to the current world,

• sprout a new world from an existing world,

• commit a world’s changes to its parent world, and

• execute code in a particular world.

I now describe the particular way in which these operations are supported in Worlds/JS,

an extension of JavaScript [ECM99] I have prototyped in order to experiment with the

ideas discussed in this chapter.1

1My prototype implementation of Worlds/JS is available at http://www.tinlizzie.org/
ometa-js/#Worlds_Paper. No installation is necessary; you can experiment with the language di-

71

VPRI Technical Report TR-2008-003 90

Worlds/JS extends JavaScript with the following additional syntax:

• thisWorld is an expression that evaluates to the current world, and

• in expr block is a statement that executes block inside the world obtained by

evaluating expr.

Worlds are first-class values: they can be stored in variables, passed as arguments to

functions, etc. They can even be garbage-collected just like any other object. All

worlds delegate to the world prototype, whose sprout and commit methods can be

used to create a new world that is a child of the receiver, and propagate the side effects

captured in the receiver to its parent, respectively.

In the following example, we modify the height of the same instance of Rectangle

in two different ways, each in its own world, and then commit one of them to the

original world. This serves the dual purpose of illustrating the syntax of Worlds/JS as

well as the semantics of sprout and commit.

A = thisWorld;
r = new Rectangle(4, 6);

B = A.sprout();
in B { r.h = 3; }

C = A.sprout();
in C { r.h = 7; }

C.commit();

Figures 4.3 and 4.4 show the state of all worlds involved before and after the commit

operation, respectively.

rectly in your web browser.

72

VPRI Technical Report TR-2008-003 91

Figure 4.3: Projections/views of the same object in three different worlds

Figure 4.4: The state of the “universe” shown in Figure 4.3 after a commit on world C

73

VPRI Technical Report TR-2008-003 92

4.3 Property (or Field) Lookup in Worlds/JS

This section formally describes the semantics of property (or field) lookup in

Worlds/JS, which is a natural generalization of property lookup in JavaScript.

4.3.1 Property Lookup in JavaScript

JavaScript’s object model is based on single delegation, which means that every ob-

ject inherits (and may override) the properties of another object. The only exception

to this rule is Object.prototype (the ancestor of all objects), which is the root of

JavaScript’s delegation hierarchy and therefore does not delegate to any other object.

The semantics of property lookup in JavaScript can be formalized using the fol-

lowing two primitive operations:

(i) getOwnProperty(x, p), which looks up property p in object x without looking

up the delegation chain. More specifically, the value of getOwnProperty(x, p) is

• v, if x has property p that is not inherited from another object, and whose

value is v, and

• the special value none, otherwise;

(ii) parent(x), which evaluates to

• y, the object to which x delegates, or

• the special value none, if x does not delegate to any other object.

and the following set of inference rules:

getOwnProperty(x, p) = v

v ! none

lookup(x, p) = v
(JS-Lookup-Own)

74

VPRI Technical Report TR-2008-003 93

getOwnProperty(x, p) = none

parent(x) = none

lookup(x, p) = none
(JS-Lookup-Root)

getOwnProperty(x, p) = none

parent(x) = y

y ! none

lookup(y, p) = v

lookup(x, p) = v
(JS-Lookup-Child)

4.3.2 Property Lookup in Worlds/JS

In Worlds/JS, property lookup is always done in the context of a world. And since it

may be that an object x has a property p in some world w but not in another, the prim-

itive operation getOwnProperty(x, p) must be replaced by a new primitive operation,

getOwnPropertyInWorld(x, p,w).

Another primitive operation we will need in order to formalize the semantics of

property lookup in Worlds/JS is parentWorld(w), which yields w’s parent, or the spe-

cial value none, if w is the top-level world.

Using these two new primitive operations, we can define a new operation,

getOwnProperty(x, p,w), which yields the value of x’s p property in world w, or (if

x.p is not defined in w) in w’s closest ancestor:

getOwnPropertyInWorld(x, p,w) = v

v ! none

getOwnProperty(x, p,w) = v
(WJS-GetOwnProperty-Own)

75

VPRI Technical Report TR-2008-003 94

getOwnPropertyInWorld(x, p,w) = none

parentWorld(w) = none

getOwnProperty(x, p,w) = none
(WJS-GetOwnProperty-Root)

getOwnPropertyInWorld(x, p,w1) = none

parentWorld(w1) = w2

w2 ! none

getOwnProperty(x, p,w2) = v

getOwnProperty(x, p,w1) = v
(WJS-GetOwnProperty-Child)

And finally, using the worlds-friendly variant of getOwnProperty defined above,

the inference rules that formalize the semantics of lookup in Worlds/JS can be written

as follows:

getOwnProperty(x, p,w) = v

v ! none

lookup(x, p,w) = v
(WJS-Lookup-Own)

getOwnProperty(x, p,w) = none

parent(x) = none

lookup(x, p,w) = none
(WJS-Lookup-Root)

getOwnProperty(x, p,w) = none

parent(x) = y

y ! none

lookup(y, p,w) = v

lookup(x, p,w) = v
(WJS-Lookup-Child)

Note that these rules closely mirror those that describe the semantics of lookup in

76

VPRI Technical Report TR-2008-003 95

Figure 4.5: The property lookup order used when evaluating x′′.p in world w′′ (the
notation ∆x,w represents the properties of x that were modified in w)

JavaScript—the only difference is that getOwnProperty and lookup now both take a

world as an additional argument.

Figure 4.5 illustrates the property lookup order that results from the algorithm de-

scribed above. The solid vertical lines in the diagram indicate delegates-to relation-

ships (e.g., object x′ delegates to x), whereas the solid horizontal lines indicate is-

child-of relationships (e.g., world w′ is a child of w). Note that the chain of worlds

gets precedence over the object delegation chain; in other words, any relevant “ver-

sion” of an object may override the properties of the object to which it delegates. This

lookup order preserves JavaScript’s copy-on-write delegation semantics, i.e., if a dele-

gates to b, and then we assign into a’s p property, subsequent changes to b’s p property

will not affect a. So no matter what world a statement is executed in—whether it is the

top-level world, or a world that sprouted from another world—it will behave in exactly

the same way as it would in “vanilla” JavaScript.

In programming languages that do not support delegation (e.g., Java), the semantics

77

VPRI Technical Report TR-2008-003 96

of property lookup in the presence of worlds can be considered as a special case of the

semantics described in this section in which all prototype chains have length 1, i.e., no

object delegates to any other object.

4.4 Examples

The following examples illustrate some of the applications of worlds. Other obvious

applications (not discussed here) include heuristic search and sand-boxing.

4.4.1 Better Support for Exceptions

In languages that support exception-handling mechanisms (e.g., the try/catch state-

ment), a piece of code is said to be exception-safe if it guarantees not to leave the

program in an inconsistent state when an exception is thrown. Writing exception-safe

code is a tall order, as I illustrate with the following example:

try {
for (var idx = 0; idx < xs.length; idx++)
xs[idx].update();

} catch (e) {
// ...

}

Our intent is to update every element of xs, an array. The problem is that if one of

the calls to update throws an exception, some (but not all) of xs’ elements will have

been updated. So in the catch block, the program should restore xs to its previous

consistent state, in which none of its elements was updated.

One way to do this might be to make a copy of every element of the array before

entering the loop, and in the catch block, restore the successfully-updated elements to

their previous state. In general, however, this is not sufficient since update may also

78

VPRI Technical Report TR-2008-003 97

have modified global variables and other objects on the heap. Writing truly exception-

safe code is difficult and error-prone.

Versioning exceptions [NJ06] offer a solution to this problem by giving try/catch

statements a transaction-like semantics: if an exception is thrown, all of the side effects

resulting from the incomplete execution of the try block are automatically rolled back

before the catch block is executed . In a programming language that supports worlds

and a traditional (non-versioning) try/catch statement, the semantics of versioning

exceptions can be implemented as a design pattern. I illustrate this pattern with a

rewrite of the previous example:

w = thisWorld.sprout();
try {
in w {
for (var idx = 0; idx < xs.length; idx++)
xs[idx].update();

}
} catch (e) {
w = null;
// ...

} finally {
if (w != null)
w.commit();

}

First, we create a new world w in which to capture the side effects of the try block. If

an exception is thrown, we simply discard w. Otherwise—if the try block completes

successfully—we propagate (commit) the side effects to the “real world”. This is done

inside a finally block to ensure that the side effects will be propagated even if the

try block returns.

79

VPRI Technical Report TR-2008-003 98

4.4.2 Undo for Applications

We can think of the “automatic clean-up” supported by versioning exceptions as a

kind of one-level undo. In the last example, we implemented this by capturing the side

effects of the try block—the operation we may need to undo—in a new world. The

same idea can be used as the basis of a framework that makes it easy for programmers

to implement applications that support multi-level undo.

Applications built using this framework are objects that support two operations:

perform and undo. Clients use the perform operation to issue commands to the ap-

plication, and the undo operation to restore the application to its previous state (i.e.,

the state it was in before the last command was performed). The example below il-

lustrates how a client might interact with a counter application that supports the com-

mands inc, dec, and getCount, for incrementing, decrementing, and retrieving the

counter’s value, respectively. (The counter’s value is initially zero.)

counter.perform(’inc’);
counter.perform(’inc’);
counter.perform(’dec’);
counter.undo(); // undo the ’dec’ command
print(counter.perform(’getCount’)); // outputs the no. ’2’

The interesting thing about our framework is that it allows programmers to im-

plement applications that support multi-level undo for free, i.e., without having to do

anything special such as using the command design pattern [GHJ95]. The implemen-

tation of the counter application—or rather, a factory of counters—is shown below:

80

VPRI Technical Report TR-2008-003 99

Application = function() { };
Application.prototype = {
worlds: [thisWorld],
perform: function(command) {
var w = this.worlds.last().sprout();
this.worlds.push(w);
in w { return this[command](); }

},
undo: function() {
if (this.worlds.length > 0)
this.worlds.pop();

},
flattenHistory: function() {
while (this.worlds.length > 1) {
var w = this.worlds.pop();
w.commit();

}
}

};

Figure 4.6: A framework for building applications that support multi-level undo

makeCounter = function() {
var app = new Application();
var count = 0;
app.inc = function() { count++; };
app.dec = function() { count--; };
app.getCount = function() { return count; };
return app;

};

Note that the counter application is an instance of the Application class.

Application is our framework; in other words, it is where all of the undo func-

tionality is implemented. Its source code is shown in Figure 4.6.

The state of the application is always accessed in a world that “belongs” to the

application. When the application is instantiated, it has only one world. Each time

a client issues a command to the application via its perform operation, the method

81

VPRI Technical Report TR-2008-003 100

that corresponds to that command (the one with the same name as the command) is

invoked in a new world. This new world is sprouted from the world that holds the

previous version of the application’s state (i.e., the one in which the last command was

executed). The undo operation simply discards the world in which the last command

was executed, effectively returning the application to its previous state. Lastly, the (op-

tional) flattenHistory operation coalesces the state of the application into a single

world, which prevents clients from undoing past the current state of the application.

Note that the application’s public interface (the perform and undo methods) es-

sentially models the way in which web browsers interact with online applications, so

this technique could be used in a web application framework like Seaside [DLR07].

4.4.3 Extension Methods in JavaScript

In JavaScript, functions and methods are “declared” by assigning into properties. For

example,

Number.prototype.fact = function() {
if (this == 0)
return 1;

else
return this * (this - 1).fact();

};

adds the factorial method to the Number prototype. Similarly,

inc = function(x) { return x + 1 };

declares a function called inc. (The left-hand side of the assignment above is actually

shorthand for window.inc, where window is bound to JavaScript’s global object.)

JavaScript does not support modules, which makes it difficult, sometimes even

impossible for programmers to control the scope of declarations. But JavaScript’s

82

VPRI Technical Report TR-2008-003 101

declarations are really side effects, and worlds enable programmers to control the scope

of side effects. I believe that worlds could serve as the basis of a powerful module

system for JavaScript, and have already begun experimenting with this idea.

Take extension methods, for example. In dynamic languages such as JavaScript,

Smalltalk, and Ruby, it is common for programmers to extend existing objects/classes

(e.g., the Number prototype) with new methods that support the needs of their particu-

lar application. This practice is informally known as monkey-patching [Bra08].

Monkey-patching is generally frowned upon because, in addition to polluting the

interfaces of the objects involved, it makes programs vulnerable to name clashes that

are impossible to avoid. Certain module systems, including those of MultiJava [Cli06]

and eJava [WSM06], eliminate these problems by allowing programmers to declare

lexically-scoped extension methods. These must be explicitly imported by the parts of

an application that wish to use them, and are invisible to the rest of the application.

The following example shows that worlds can be used to support this form of mod-

ularity:

ourModule = thisWorld.sprout();
in ourModule {
Number.prototype.fact = function() { ... };

}

The factorial method defined above can only be used inside ourModule,

in ourModule {
print((5).fact());

}

and therefore does not interfere with other parts of the program.

This idiom can also be used to support local rebinding, a feature found in some

module systems [BDW03, BDN05, DGL07] that enables programmers to locally re-

place the definitions of existing methods. As an example, we can change the behavior

83

VPRI Technical Report TR-2008-003 102

of Number’s toString method only when used inside ourModule:

in ourModule {
numberToEnglish = function(n) { ... };
Number.prototype.toString = function() {
return numberToEnglish(this);

};
}

and now the output generated by

arr = [1, 2, 3];
print(arr.toString());
in ourModule {
print(arr.toString());

}

is

[1, 2, 3]
[one, two, three]

4.4.4 Scoping Methods, not Side Effects

Although the previous set of examples suggests that worlds can be used to implement a

module system for JavaScript, it elided an important problem. Consider the following

“module”, which extends the Person prototype (not shown) with a new method:

ourOtherModule = thisWorld.sprout();
in ourOtherModule {
Person.prototype.makeOlder = function() {
this.age = this.age + 1;

};
}

Note that, unlike the methods in the other examples, makeOlder has side effects—

namely, it updates the age property of the receiver. This is problematic because

84

VPRI Technical Report TR-2008-003 103

makeOlder can only be invoked from ourOtherModule, and since a world captures

all of the side effects that happen inside it, the updated age will not be visible in the

top-level world.

Invoking the commit method on ourOtherModule might seem like a good idea,

since it would propagate the updated age to the top-level world. Unfortunately, it

would also propagate the makeOlder method, which would make the module useless.

A more viable solution to this problem is to add another method to Person—a

setter for the age property—that is somehow statically bound to the top-level world.

In other words, invocations of setAge should always be evaluated in the top-level

world, unlike other methods which are evaluated in whatever world from which they

are invoked. We can do this by capturing the top-level world in the method’s closure:

Person.prototype.setAge = (function() {
var w = thisWorld;
return function(age) {
in w { this.age = age; }

};
})();

And now we can rewrite makeOlder in ourOtherModule to use the setter method:

in ourOtherModule {
Person.prototype.makeOlder = function() {
this.setAge(this.age + 1);

};
}

While using “world-bound” setter methods like setAge is somewhat clunky, it

does enable modules to contain functions with side effects. One problem remains,

however: these side-effectful functions do not interact well with worlds. For example,

the side effects of an invocation of makeOlder will not be rolled back as expected

if it is used with the versioning exceptions idiom presented in Section 4.4.1. This

85

VPRI Technical Report TR-2008-003 104

is because the assignments performed by our setter method always take place in the

top-level world, rather than in the world from which the module is being used.

A better idiom for dealing with module-local functions that have side effects is

shown in Figure 4.7. This new idiom uses a pair of generic getter and setter methods

that can be used to access and update the properties of any object, and are always eval-

uated in the world from which the module is being used (the “calling world”). The

module’s functionality is no longer accessed directly, using an in statement, but rather

through the useForEvaluating method, which is defined on worlds (modules), i.e.,

betterModule.useForEvaluating(function() {
joe.makeOlder();

});

means “execute the statement joe.makeOlder(); inside betterModule”. The

useForEvaluating method saves the calling world in a global variable (in-

side the module that is its receiver) so that it can be accessed by the generic

getter and setter methods. (This global variable is declared implicitly in the

useForEvaluating method by the assignment callingWorld = cw.) Since

the invocation joe.makeOlder() takes place inside betterModule, where

callingWorld is set to the world from which useForEvaluating was called,

makeOlder’s calls to get and set will access/update the receiver (joe) in the calling

world. As a result, makeOlder now interacts nicely with worlds, e.g., makeOlder’s

side effects will be properly rolled back if it is used in a program that uses the version-

ing exceptions idiom.

4.5 Case Study: Using Worlds to Improve OMeta

Consider the semantics of OMeta’s ordered choice operator (|). If a match fails while

its first operand is being evaluated, it causes the parser, or more generally, the matcher

86

VPRI Technical Report TR-2008-003 105

Object.prototype.get = function(p) {
in callingWorld { return this[p]; }

};
Object.prototype.set = function(p, v) {
in callingWorld { this[p] = v; }

};

World.prototype.useForEvaluating = function(f) {
var cw = thisWorld;
in this {
callingWorld = cw;
return f();

}
};

betterModule = thisWorld.sprout();
in betterModule {
Person.prototype.makeOlder = function() {
this.set("age", this.get("age") + 1);

};
}

Figure 4.7: A better way to deal with side effects in modules

87

VPRI Technical Report TR-2008-003 106

to automatically backtrack to the appropriate position on the input stream before trying

the second operand. We can think of this backtracking as a limited kind of undo that is

only concerned with changes to the matcher’s position on the input stream. Other kinds

of side effects that can be performed by semantic actions—e.g., destructive updates

such as assigning into one of the fields of the matcher object or a global variable—are

not undone automatically, which means that the programmer must be specially careful

when writing rules with side effects.

To show that worlds can greatly simplify the management of state in backtrack-

ing programming languages like OMeta and Prolog, I have implemented a variant of

OMeta/JS in which the choice operator automatically discards the side effects of failed

alternatives, and similarly, the repetition operator (*) automatically discards the side

effects of the last (unsuccessful) iteration. This was surprisingly straightforward: since

Worlds/JS is a superset of JavaScript (the language in which OMeta/JS was originally

implemented), all I had to do was redefine the methods that implement the semantics

of these two operators.

Figures 4.8 (A) and (B) show the original and modified implementations of the

ordered choice operator, respectively. Note that the modified implementation sprouts

a new world in which to evaluate each alternative, so that the side effects of failed

alternatives can easily be discarded. These side effects include the changes to the

matcher’s input stream position, and therefore the code that implemented backtracking

in the original version (this.input = origInput) is no longer required. Finally, the

side effects of the first successful alternative are committed to the parent world (in the

finally block).

Similarly, the alternative implementation of the repetition operator (omitted for

brevity) sprouts a new world in which to try each iteration, so that the effects of the

last (unsuccessful) iteration can be discarded.

88

VPRI Technical Report TR-2008-003 107

// (A) Original implementation of the ordered choice operator
OMeta._or = function() {
var origInput = this.input;
for (var idx = 0; idx < arguments.length; idx++)
try {
this.input = origInput;
return arguments[idx]();

}
catch (f) {
if (f != fail)
throw f;

}
throw fail;

};

// (B) Modified implementation of the ordered choice operator
OMeta._or = function() {
for (var idx = 0; idx < arguments.length; idx++) {
var ok = true;
in thisWorld.sprout() {
try { return arguments[idx](); }
catch (f) {
ok = false;
if (f != fail)
throw f;

}
finally {
if (ok)
thisWorld.commit();

}
}

}
throw fail;

};

Figure 4.8: Implementations of two different semantics for OMeta’s ordered choice
operator

89

VPRI Technical Report TR-2008-003 108

4.6 Related Work

The idea of treating the program store as a first-class value and more importantly,

enabling programmers to take snapshots of the store which could be restored at a later

time, first appeared in Johnson and Duggan’s GL programming language [JD88]. This

model was later extended by Morrisett to allow the store to be partitioned into a number

of disjoint “sub-stores” (each with its own set of variables) that could be saved and

restored separately [Mor93].

The main difference between previous formulations of first-class stores and worlds

lies in the programming model: whereas first-class stores have until now been pre-

sented as a mechanism for manipulating a single store through a save-and-restore in-

terface, worlds enable multiple versions of the store—several “parallel universes”—to

co-exist in a single program. This makes worlds a better fit for the experimental pro-

gramming style that is the topic of this dissertation, and also makes it possible for

multiple “experiments” to be carried out in parallel, which I intend to investigate in

future work.

In languages that support Software Transactional Memory (STM) [ST95, HMP05],

every transaction that is being executed at a given time has access to its own view of the

program store that can be modified in isolation, without affecting other transactions.

Therefore, like worlds, STM enables multiple versions of the store to co-exist. But

while the primary motivation of STM is to provide a simple model for writing mul-

tithreaded programs, the goal of my work on worlds is to provide language support

experimental programming. This is the source of a number of differences between the

two approaches. Transactions are meant to be short-lived, are implicitly committed

to the “real world” (i.e., the persistent store), and look like atomic operations when

viewed from the outside. Worlds, on the other hand, are not tied to any particular con-

trol structure. A world may exist indefinitely, if it is never committed to its parent,

90

VPRI Technical Report TR-2008-003 109

and can be examined from the outside using the in statement (this is useful for imple-

menting heuristic searches). Furthermore, the commit operation for worlds currently

does not detect conflicts: when multiple sibling worlds propagate their changes with

the commit operation, it is possible that the parent world will be left in an inconsistent

state.

Tanter has shown that (implicitly) contextual values, i.e., values that vary depend-

ing on the context in which they are accessed or modified, can be used to implement

a scoped assignment construct that enables programmers to control the scope of side

effects [Tan08]. Although Tanter’s construct does not support the equivalent of the

commit operation on worlds, it is more general than worlds in the sense that it allows

any value to be used as a context. However, it is not clear whether this additional gen-

erality justifies the complexity that it brings to the programming model. For example,

while it is straightforward to modify a group of variables in the context of the current

thread (e.g., thread id 382), or the current user (e.g., awarth), it is difficult to reason

about the state of the program when both contexts are active, since they need not be

mutually exclusive. (This is similar to the semantic ambiguities that are caused by

multiple inheritance in object-oriented languages.)

Lastly, a number of mechanisms for synchronizing distributed and decentralized

systems (e.g., TeaTime [Ree78, Ree05] and Virtual Time / Time Warp [Jef85]) and op-

timistic methods for concurrency control [KR81] rely on the availability of a rollback

(or undo) operation. As shown in Section 4.4.2, a programming language that supports

worlds greatly simplifies the implementation of rollbacks, and therefore could be the

ideal platform for building these mechanisms.

91

VPRI Technical Report TR-2008-003 110

4.7 Future Work

I believe that worlds have the potential to provide a tractable programming model for

multi-core architectures. As part of the STEPS project [KIO06, KPR07], I intend to

investigate the feasibility of an efficient, hardware-based implementation of worlds that

will enable the kinds of experiments that might validate this claim. For example, there

are many problems in computer science for which there are several known algorithms,

each with its own set of performance tradeoffs. In general, it is difficult to tell when

one algorithm (or optimization) should be used over another. My hardware-based

implementation should make it practical for a program to choose among optimizations

simply by sprouting multiple “sibling worlds”—one for each algorithm—and running

all of them in parallel. The first one to complete its task would be allowed to propagate

its results, and the others would be discarded.

When multiple sibling worlds propagate their side effects using the commit op-

eration, it is possible that the parent world will be left in an inconsistent state. The

notion of serializability, in transaction-processing systems, could be used for detecting

“collisions” that arise when multiple sibling worlds commit their changes. This in turn

could be used to provide a variant of the commit operation that is only carried out

when there are no collisions, which would have a number of interesting applications.

For example, in a language that supports concurrency, it would enable a transactional

memory abstraction to be implemented as a library.

One limitation of worlds is that they only capture the in-memory side effects that

happen inside them. Programmers must therefore be careful when executing code

that includes other kinds of side effects, e.g., sending packets on the network and

obtaining input from the user. It would be interesting to investigate whether some of the

techniques used in reversible debuggers such as EXDAMS [Bal69] and IGOR [FB89]

can be used to ensure that, for example, when two sibling worlds read a character from

92

VPRI Technical Report TR-2008-003 111

the console, they get the same result.

The (abstract) lookup table shown in Figure 4.2 (B) is indexed by two keys: object

tag and property name. While this is sufficient to support worlds in a conventional

programming language like JavaScript, certain advanced features may require more

keys. In order to directly support module-specific state, for example, we might add

a third key to our lookup table that associates each piece of state with a particular

module. Similarly, in order to support context-oriented programming (COP) [HCN08],

we may want to add a third key to our lookup table that identifies a context. If we

want to support both modules and COP, we will need four keys. Therefore it may be

interesting to look into supporting an arbitrary number of keys, although this will have

to be done carefully in order to avoid over-complicating the programming model.

93

VPRI Technical Report TR-2008-003 112

CHAPTER 5

Conclusions

This dissertation argues that programming languages and constructs designed specifi-

cally to support experimentation can substantially simplify the jobs of researchers and

programmers alike. I have supported this thesis by targeting two very different kinds of

experimentation, namely (i) experimenting with new ideas in the domain of program-

ming language design, and (ii) using experimentation as a programming paradigm.

Of course, a new programming language is not actually helpful unless program-

mers are compelled to use it, or in the very least, experiment with it enough to truly

understand the powerful ideas behind it. I end this dissertation with a few pieces of

“marketing advice” for language designers who wish to encourage programmers to do

this third kind of experimentation, and seamlessly harness the interest generated by

their experiments to build a user community. This advice is based on my experience

with the OMeta/JS Workspace Wiki1, a framework that enables programmers to exper-

iment with OMeta (or any other language implemented with OMeta, like Worlds/JS)

in the convenience of their web browser, without having to install any additional soft-

ware.

• Give them a prototype that runs inside the web browser.

Conference papers are a good way to introduce a new programming language

to a large audience of programmers and researchers. But let’s face it: no matter
1Available at http://www.tinlizzie.org/ometa-js/

94

VPRI Technical Report TR-2008-003 113

how novel, useful, and well-designed your language may be, it is not going to

captivate everyone. And only a fraction of those who are interested in your

language will be interested enough to go through the hassle of downloading and

installing your prototype implementation so that they can experiment with it.

By implementing a prototype that runs inside the web browser—one that does

not have to be installed—you make it easy for whomever is interested in your

language to try it out, which is likely to translate into a larger user community.

We can think of the web browser-based prototype as a kind of “gateway drug”:

once the programmer is hooked, he will likely graduate to a more conventional

(and possibly more robust) implementation.

There are several ways in which a programming language may be prototyped

to run inside the web browser. My OMeta/JS implementation, for example,

translates OMeta programs to JavaScript code that can be executed directly with

the eval function. Other alternatives include Java applets, ActionScript / Flash,

etc.

• Eliminate the cumbersome edit-compile-run cycle with a workspace.

The traditional edit-compile-run cycle is not conducive to experimentation. For

example, it can be frustrating to have to create a test file just to verify an assump-

tion about how the language works. A Smalltalk-style workspace—i.e., a text

editor that allows code fragments to be evaluated—makes programming a much

more interactive (and fun!) activity, and therefore provides a better environment

in which to introduce programmers to your language.

• Give them a place to share their code online.

The availability of a medium for users to share interesting examples can be in-

strumental in building a user community. A great way to do this is to evolve

95

VPRI Technical Report TR-2008-003 114

the workspace discussed above into a wiki. In other words, make it possible

for users to save the contents of their workspace sessions, and share them with

other users. (In fact, I made my Worlds/JS prototype available as a OMeta/JS

Workspace Wiki page.) This kind of wiki also makes it easy for users to create

off-shoots of other users’ examples.

The idea of using the workspace as a user interface for exploratory programming

inside the web browser, as well as the idea of turning it into a wiki, originated in

my colleague Takashi Yamamiya’s JavaScript Workspace [Yam].

• Keep your prototype implementation simple, and make the source code

freely available.

A prototype implementation that is simple and easy to understand...

– will be read by programmers who wish to attain a deeper understanding of

the semantics of your language.

– will be modified by those who want to experiment with variations of the

syntax and/or semantics of your language. This can be a valuable source

of ideas for future work, and you can encourage it by making the source

code to your prototype available using the same workspace-wiki discussed

previously.

– will encourage members of the user community to port your language to

different platforms. This really works: OMeta has been ported to a number

of other languages including C#, Python, Scheme, Lisp, and Factor.

A good way to reach this goal of simplicity, apart from using OMeta, is to em-

brace the differences between “prototype” and “industrial-quality implementa-

tion”. Your prototype does not have to be particularly efficient or robust, it just

needs to be good enough to allow programmers to write interesting examples.

96

VPRI Technical Report TR-2008-003 115

R

[Bal69] Robert M. Balzer. “EXDAMS—EXtendable Debugging and Monitoring
System.” In AFIPS Spring Joint Computer Conference, volume 34, pp.
567–580, 1969.

[BDN05] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. “Classbox/J:
Controlling the scope of change in Java.” In OOPSLA’05: Proceedings of
20th International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 177–189, New York, NY, USA, 2005.
ACM Press.

[BDW03] Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. “Classboxes: A
minimal module model supporting local rebinding.” In In Proceedings
of JMLC 2003 (Joint Modular Languages Conference), volume 2789 of
LNCS, pp. 122–131. Springer-Verlag, 2003.

[BKV08] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. “Stratego/XT 0.17. A language and toolset for program transfor-
mation.” Science of Computer Programming, 72(1-2):52–70, 2008.

[Bra08] Gilad Bracha. “Monkey patching (blog post).” http://gbracha.
blogspot.com/2008/03/monkey-patching.html, 2008.

[BS08] Ralph Becket and Zoltan Somogyi. “DCGs + Memoing = Packrat Pars-
ing, but Is It Worth It?” In Paul Hudak and David Scott Warren, editors,
PADL ’08: Proceedings of the 10th International Symposium on the Prac-
tical Aspects of Declarative Languages, volume 4902 of Lecture Notes in
Computer Science, pp. 182–196. Springer, 2008.

[Cha87] David R. Chase. “An improvement to bottom-up tree pattern matching.” In
POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pp. 168–177, New York, NY,
USA, 1987. ACM.

[Cli06] Curtis Clifton, Todd Millstein, Gary T. Leavens, and Craig Chambers.
“MultiJava: Design Rationale, Compiler Implementation, and Applica-
tions.” ACM Transactions on Programming Languages and Systems, 28(3),
May 2006.

[DGL07] Marcus Denker, Tudor Gı̂rba, Adrian Lienhard, Oscar Nierstrasz, Lukas
Renggli, and Pascal Zumkehr. “Encapsulating and exploiting change with

97

VPRI Technical Report TR-2008-003 116

changeboxes.” In ICDL ’07: Proceedings of the 2007 International Con-
ference on Dynamic Languages, pp. 25–49, New York, NY, USA, 2007.
ACM.

[DLR07] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. “Seaside: A Flex-
ible Environment for Building Dynamic Web Applications.” IEEE Soft-
ware, 24(5):56–63, 2007.

[ECM99] ECMA International. ECMA-262: ECMAScript Language Specification.
European Association for Standardizing Information and Communication
Systems, Geneva, Switzerland, third edition, December 1999.

[EH04] Torbjörn Ekman and Görel Hedin. “Rewritable Reference Attributed
Grammars.” In Martin Odersky, editor, ECOOP ’04: Proceedings of the
18th European Conference on Object-Oriented Programming, pp. 144–
169, 2004.

[EH07] Torbjörn Ekman and Görel Hedin. “The JastAdd extensible Java com-
piler.” In OOPSLA ’07: Proceedings of the 22nd ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming Systems, Languages,
and Applications, pp. 773–774, New York, NY, USA, 2007. ACM.

[FB89] Stuart I. Feldman and Channing B. Brown. “IGOR: a system for program
debugging via reversible execution.” ACM SIGPLAN Notices, 24(1):112–
123, 1989.

[FH06] Richard A. Frost and Rahmatullah Hafiz. “A new top-down parsing algo-
rithm to accommodate ambiguity and left recursion in polynomial time.”
ACM SIGPLAN Notices, 41(5):46–54, 2006.

[For02a] Bryan Ford. “Packrat Parsing: simple, powerful, lazy, linear time, func-
tional pearl.” In ICFP ’02: Proceedings of the seventh ACM SIGPLAN In-
ternational Conference on Functional Programming, pp. 36–47, New York,
NY, USA, 2002. ACM Press.

[For02b] Bryan Ford. “Packrat Parsing: a practical linear-time algorithm with
backtracking.” Master’s thesis, Massachusetts Institute of Technology,
September 2002.

[For02c] Bryan Ford. “Pappy: a parser generator for Haskell.” http://pdos.
csail.mit.edu/˜baford/packrat/thesis/, 2002.

98

VPRI Technical Report TR-2008-003 117

[For04] Bryan Ford. “Parsing Expression Grammars: a recognition-based syntac-
tic foundation.” In POPL ’04: Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 111–
122, New York, NY, USA, 2004. ACM Press.

[GHJ95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley Professional, January 1995.

[Gos05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley, third edition, 2005.

[Gra03] Paul Graham. “Beating the Averages.” http://paulgraham.com/avg.
html, 2003.

[Gri06] Robert Grimm. “Better extensibility through modular syntax.” In PLDI
’06: Proceedings of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 38–51, New York, NY, USA,
2006. ACM Press.

[HCN08] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. “Context-
oriented Programming.” Journal of Object Technology (JOT), 7(3):125–
151, March-April 2008.

[HM98] Graham Hutton and Erik Meijer. “Monadic parsing in Haskell.” Journal of
Functional Programming, 8(4):437–444, 1998.

[HMP05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.
“Composable memory transactions.” In PPoPP ’05: Proceedings of the
tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 48–60, New York, NY, USA, 2005. ACM.

[HP01] Haruo Hosoya and Benjamin Pierce. “Regular expression pattern match-
ing for XML.” In POPL ’01: Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 67–80,
New York, NY, USA, 2001. ACM.

[IKM97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
“Back to the future: the story of Squeak, a practical Smalltalk written in
itself.” In OOPSLA ’97: Proceedings of the 12th ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pp. 318–326, New York, NY, USA, 1997. ACM.

[Ing08] Dan Ingalls. “The Lively Kernel: just for fun, let’s take JavaScript seri-
ously.” In DLS ’08: Proceedings of the 2008 Dynamic Languages Sympo-
sium, pp. 1–1, New York, NY, USA, 2008. ACM.

99

VPRI Technical Report TR-2008-003 118

[JD88] Gregory F. Johnson and Dominic Duggan. “Stores and partial continu-
ations as first-class objects in a language and its environment.” In POPL
’88: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 158–168, New York, NY, USA,
1988. ACM.

[Jef85] David R. Jefferson. “Virtual time.” ACM Transactions on Programming
Languages and Systems, 7(3):404–425, 1985.

[Joh79] Steven C. Johnson. “YACC: Yet Another Compiler Compiler.” In UNIX
Programmer’s Manual, volume 2, pp. 353–387. Holt, Rinehart, and Win-
ston, New York, NY, USA, 1979.

[Joh95] Mark Johnson. “Memoization in Top-Down Parsing.” Computational Lin-
guistics, 21(3):405–417, 1995.

[Jon87] Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages (Prentice-Hall International Series in Computer Science).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

[KIO06] Alan Kay, Dan Ingalls, Yoshiki Ohshima, Ian Piumarta, and Andreas Raab.
“Proposal to NSF, granted on August 31st, 2006.” http://www.vpri.
org/pdf/NSF_prop_RN-2006-002.pdf, 2006.

[KPR07] Alan Kay, Ian Piumarta, Kim Rose, Dan Ingalls, Daniel Amelang, Ted
Kaehler, Yoshiki Ohshima, Chuck Thacker, Scott Wallace, Alessandro
Warth, and Takashi Yamamiya. “Steps Toward the Reinvention of Pro-
gramming (First Year Progress Report).” http://www.vpri.org/pdf/
steps_TR-2007-008.pdf, 2007.

[KR81] H. T. Kung and John T. Robinson. “On optimistic methods for concurrency
control.” ACM Transactions on Database Systems, 6(2):213–226, 1981.

[KRB91] Gregor Kiczales, Jim D. Rivières, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, Cambridge, MA, 1991.

[LM01] Daan Leijen and Erik Meijer. “Parsec: Direct Style Monadic Parser Com-
binators for the Real World.” Technical Report UU-CS-2001-35, Univer-
siteit Utrecht, 2001.

[LS90] Michael E. Lesk and Eric Schmidt. “Lex – A lexical analyzer generator.”
In UNIX Vol. II: Research System (10th ed.), pp. 375–387. W. B. Saunders
Company, Philadelphia, PA, USA, 1990.

100

VPRI Technical Report TR-2008-003 119

[Mor93] J. Gregory Morrisett. “Generalizing first-class stores.” In SIPL ’93: Pro-
ceedings of the ACM SIGPLAN Workshop on State in Programming Lan-
guages, pp. 73–87, 1993.

[MTM97] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Stan-
dard ML. MIT Press, Cambridge, MA, USA, 1997.

[NCM03] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. “Poly-
glot: An extensible compiler framework for Java.” In CC ’03: Proceedings
of the 12th International Conference on Compiler Construction, 2003.

[NJ06] V. Krishna Nandivada and Suresh Jagannathan. “Dynamic state restoration
using versioning exceptions.” Higher-Order and Symbolic Computation,
19(1):101–124, 2006.

[Par94] Terence John Parr. “An Overview of SORCERER: A Simple Tree-Parser
Generator.” Technical report, University of San Francisco, 1994.

[Piu06a] Ian Piumarta. “Accessible Language-Based Environments of Recursive
Theories (a white paper advocating widespread unreasonable behaviour).”
Technical report, Viewpoints Research Institute, 2006.

[Piu06b] Ian Piumarta. “Open, extensible programming systems.” Keynote, Dy-
namic Languages Symposium, 2006.

[PQ94] Terence J. Parr and Russell W. Quong. “Adding Semantic and Syntactic
Predicates To LL(k): pred-LL(k).” In Computational Complexity, pp. 263–
277, 1994.

[PQ95] T. Parr and R. Quong. “ANTLR: A predicatedLL (k) parser generator.”,
1995.

[Red08] Roman R. Redziejowski. “Parsing Expression Grammar as a Primitive
Recursive-Descent Parser with Backtracking.” Fundamenta Informaticae,
79(3-4):513–524, 2008.

[Ree78] David P. Reed. “Naming and synchronization in a decentralized computer
system (Ph.D. dissertation).” Technical Report TR-205, Massachusetts In-
stitute of Technology, Cambridge, MA, USA, 1978.

[Ree05] David P. Reed. “Designing croquet’s TeaTime: a real-time, temporal en-
vironment for active object cooperation.” In OOPSLA ’05: Companion
to the 20th annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pp. 7–7, New York, NY,
USA, 2005. ACM.

101

VPRI Technical Report TR-2008-003 120

[Ros95] Guido van Rossum. “Python reference manual.” Technical Report CS-
R9525, Centre for Mathematics and Computer Science, Amsterdam, The
Netherlands, 1995.

[SC89] D. J. Salomon and G. V. Cormack. “Scannerless NSLR(1) parsing of pro-
gramming languages.” In PLDI ’89: Proceedings of the ACM SIGPLAN
1989 Conference on Programming Language Design and Implementation,
pp. 170–178, New York, NY, USA, 1989. ACM Press.

[Sch64] D. V. Schorre. “META-II: a syntax-oriented compiler writing language.”
In Proceedings of the 1964 19th ACM National Conference, pp. 41.301–
41.3011, New York, NY, USA, 1964. ACM Press.

[ST95] N. Shavit and D. Touitou. “Software Transactional Memory.” In PODC
’95: Proceedings of the 12th Annual ACM Symposium on Principles of
Distributed Computing, pp. 204–213, 1995.

[Tan08] Éric Tanter. “Contextual values.” In DLS ’08: Proceedings of the 2008
Dynamic Languages Symposium, pp. 1–10, New York, NY, USA, 2008.
ACM.

[TES73] L. G. Tesler, H. J. Enea, and D. C. Smith. “The LISP70 Pattern Matching
System.” In IJCAI ’73: Proceedings of the 3rd International Joint Confer-
ences on Artificial Intelligence, pp. 671–676, Stanford, MA, 1973.

[Vis97] Eelco Visser. “Scannerless Generalized-LR Parsing.” Technical Report
P9707, Programming Research Group, University of Amsterdam, 1997.

[Vis01] Eelco Visser. “Stratego: A Language for Program Transformation Based
on Rewriting Strategies.” In RTA ’01: Proceedings of the 12th Interna-
tional Conference on Rewriting Techniques and Applications, pp. 357–362,
London, UK, 2001. Springer-Verlag.

[VS07] Eric Van Wyk and August Schwerdfeger. “Context-Aware Scanning for
Parsing Extensible Languages.” In GPCE ’07: Proceedings of the 6th In-
ternational Conference on Generative Programming and Component En-
gineering. ACM Press, October 2007.

[Wad87] Philip Wadler. “Views: a way for pattern matching to cohabit with data ab-
straction.” In POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pp. 307–313, New
York, NY, USA, 1987. ACM.

102

VPRI Technical Report TR-2008-003 121

[War07] Alessandro Warth. “LazyJ: Seamless Lazy Evaluation in Java.” In FOOL/-
WOOD ’07: (Informal) Proceedings of the International Workshop on
Foundations of Object-Oriented Languages, January 2007.

[WSM06] Alessandro Warth, Milan Stanojević, and Todd Millstein. “Statically
scoped object adaptation with expanders.” In OOPSLA ’06: Proceedings of
the 21st ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pp. 37–56, New York,
NY, USA, 2006. ACM Press.

[WYO08] Alessandro Warth, Takashi Yamamiya, Yoshiki Ohshima, and Scott Wal-
lace. “Toward a More Scalable End-User Scripting Language.” In Inter-
national Conference on Creating, Connecting and Collaborating through
Computing (C5), 2008.

[Yam] Takashi Yamamiya. “JavaScript Workspace.” http://metatoys.org/
propella/js/workspace.cgi.

103

VPRI Technical Report TR-2008-003 122

