
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

Toward a More Scalable End-User Scripting
Language

Alessandro Warth, Takashi Yamamiya, Yoshiki Oshima, Scott
Wallace

VPRI Technical Report TR-2008-001

squeak
Typewritten Text
This material is based upon work supported in partby the National Science Foundation underGrant No. 0639876. Any opinions, findings, andconclusions or recommendations expressed in thismaterial are those of the author(s) and do notnecessarily reflect the views of the NationalScience Foundation.

Toward A More Scalable End-User Scripting Language

Alessandro Warth† Takashi Yamamiya†

alex@vpri.org takashi@vpri.org

Yoshiki Ohshima† Scott Wallace†

yoshiki@vpri.org scott@vpri.org

†Viewpoints Research Institute
1209 Grand Central Ave.

Glendale, CA 91201

Abstract

End-user scripting languages are relatively easy to learn,
but have limited expressive power. Tile-based scripting
systems are particularly accessible to beginners, but usu-
ally are very limited in scope and usually lack extensibility,
and for some tasks the tile idiom becomes cumbersome.
Conventional programming languages used by computer
professionals are far more powerful, but at the cost of
additional complexity and limited environmental support,
which place them out of the casual programmer’s reach.
This paper presents TileScript, an attempt to combine the
accessibility of a tile-based programming interface with the
leverage of a full textual programming language and with
a simple means of extension, making it potentially an ap-
pealing tool for the novice programmer without sacrificing
any expressiveness. All TileScript programs, whether built
originally with tiles or textually, can always be edited both
graphically via a drag-and-drop tile interface and textually,
and the user can freely switch back and forth between
tile and textual representations at any time. Additionally,
TileScript’s simple yet powerful extensibility mechanisms
allow the language to be used to tackle problems that
would normally be out of the scope of an end-user scripting
language.

This material is based upon work supported by the National Science
Foundation under Grant No. 0639876. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

1. Introduction

Computers are present in virtually every aspect of our
lives: middle-schoolers and grandmothers alike use them at
home, at school, and at work. Sadly, computers are mostly
used for activities like word processing, web browsing, e-
mail, and games. To truly take advantage the power of their
computers, end-users must be able to write programs. This
makes end-user programming languages and environments
an important area of research.

A number of end-user programing systems have been
proposed. These systems have focused on various goals,
and can be classified based on several criteria. One such
criterion is the steepness of the learning curve — in other
words, how easy it is for a new user to become productive.
In systems like Viscuit [1] and StageCast [2], for example,
simple graphical pattern-matching and rewrite rules allow
end-users to compose simple animations quickly and eas-
ily, with very little training required.

Another criterion is the ceiling height, i.e., how well the
language scales to more complex problems. A full-fledged
programming language with many built-in features, where
the user writes textual programs, will get the highest marks
on this criterion.

The tension between these criteria makes the task of de-
signing an end-user programming system a difficult one.
No system that we are aware of has both a gentle learning
curve and a high ceiling. Existing systems tend to spread
on the spectrum from gentle learning curve/low ceiling to
steep learning curve/high ceiling. Viscuit, for example, has
a very low learning curve, but expressions in Viscuit are
represented solely iconically; Viscuit, in fact, does not even
have the concept of numbers or arithmetic. In such systems,
one quickly hits the rather low ceiling, after initially enjoy-

timstreet
Typewritten Text
VPRI Technical Report TR-2008-001

Figure 1. A screenshot from the TileScript
system. The same code is shown as tiles and
text-based code.

ing simple and easy programs.
Systems like Scratch [3] offer graphical building blocks

that the user can manipulate and combine with the mouse
to construct programs. The blocks are symbolic representa-
tions of the elements of a program (such as numbers, sym-
bols, and control structures) so the user has to learn what
each block does and means, but as he learns more about
these blocks, his productivity increases. Unfortunately, this
gentle learning curve has some negative consequences; for
example, Scratch intentionally omits the concept of inter-
object reference to avoid confusion. This design choice
makes it tricky to write a program where multiple objects
work together.

At the other end of the spectrum, there are languages and
systems with fully textual code. Many educational and end-
user development environments are based on Java, Python
and other conventional languages, which makes them very
expressive. Also, text-based programming tends to be more
efficient than tiles as programs grow in complexity. Pro-
cessing [4] and J0 [5] are based on simplified versions of
Java, and provide end-user-oriented development environ-
ments. However, users have to deal with syntax errors, and
face a steeper learning curve.

1.1. The Goal

Our goal is to create a new end-user scripting language
with a gentle learning curve and a high ceiling. Our sys-
tem should support both tile scripting and textual coding,
and the transition between these two representations should
be as smooth as possible. Specifically, we aim to make it

Figure 2. The same Etoys script in graphical
representation and textual representation.

possible for the user to:

• convert a tile script into equivalent textual code, and
vice-versa;

• extend the system by creating new kinds of tiles (ab-
stractions), and optionally customize their appearance.
(The meaning of new tiles should be described using
tiles or textual code.)

• “pop the hood” of any part of the system, so that he
can learn about (and perhaps even modify) it.

Although users will most likely get started using the tile
scripting interface, all of the knowledge they acquire with
the tiles will still be valid once they make the transition to
text-based programming.

Our idea draws upon Squeak Etoys [6] [7]. Etoys, like
Scratch, offers visual building blocks (called “tiles”) which
the user can combine by dragging-and-dropping to make a
unit of program called a script.

Etoys tile scripts can be converted into textual code (rep-
resented in the system’s base language, Squeak Smalltalk),
as shown in Figure 2. Unfortunately, this conversion is only
“one way”; once the user edits the code textually, there is no
mechanism to convert the edited text back to tiles. This lim-
itation exists because Smalltalk is a lot more expressive than
the tile language, which makes it is possible for the user to
type in code that does not have a corresponding graphical
tile representation. Also, the Etoys object model is not the
same as Smalltalk’s, which means that the knowledge of the
model the user acquires by using Etoys cannot be translated
to Smalltalk programming. Lastly, because Etoys tiles are
implemented in Smalltalk by the system’s developers, the
end-user is cannot extend the tile language with new tiles;
he is limited to using the ones provided by the developers.

Figure 3 shows a comparison of the systems described in
this section. In the figure, the vertical axis denotes the steep-
ness of learning curve; the lower the oval is located, the eas-
ier to start using. The horizontal axis denotes the complex-
ity of programs one can write comfortably in the system.

timstreet
Typewritten Text
VPRI Technical Report TR-2008-001

Figure 3. A classification of various end-user
programming systems.

Our proposed system in the middle has similar steepness
of learning curve as Etoys but trys to cover wider kind of
programs.

1.2. Approach

We chose to use JavaScript [8] as the basis for TileScript
both because of its simple object model and good reflective
facilities, and because we had already produced our own
implementation in Squeak.

Building our system on top of Squeak gave us access to
the Morphic graphics framework [9], which facilitated the
creation of our tile-based user interface and gave us access
to a rich library of graphical objects.

We extended our JavaScript implementation with a sim-
ple macro system. TileScript’s user-defined tiles are imple-
mented as macros; since macros are also part of our base
language, they can be written using tiles as well as textual
code.

TileScript programs are stored as parse trees. We im-
plemented conversions from textual code and tiles to parse
trees, and from parse trees to textual code and tiles. Thus,
tiles and textual code are views of the same model.

Lastly, we provided a mechanism that allows users to
customize the visual appearance of new as well as existing
tiles.

Figure 1 shows a screenshot from the system. The func-
tion that draws a triangle is shown in tiles on the right and
in text at the bottom in a JavaScript object inspector.

The rest of this paper is organized as follows. Section 2
briefly describes our JavaScript implementation and our ex-
tensions to the language. Section 3 describes our extensible
tile-based programming interface. In section 4, we discuss
the findings from this experiment. Section 5 discusses re-
lated work. Section 6 discusses future work and concludes.

macro @if(cond, tbranch, fbranch) {
if (cond)

tbranch
else

fbranch
}

Figure 4. Definition of the if macro.

2. Our JavaScript Implementation

JavaScript is a language that features a dynamic,
prototype-based object model. It has notably rich reflec-
tive features. While existing implementations widely used
in common web-browsers and elsewhere provide these dy-
namic and reflective features, we decided to implement our
own JavaScript on top of Squeak, which is another dynamic
language. This approach allows us to change the language
freely, to do deeper introspection of program execution, and
to leverage the powerful Morphic GUI framework.

To capture the syntax structure of code, we have added
a new macro system to the language. We use macros as the
internal representation of tiles in our tile-scripting system.
Since macro definitions are made in the same language, the
end-user can write his own macros and hence define his own
tiles, as we shall see below.

In the rest of this section, we briefly explain our base
implementation of JavaScript and the macro system.

2.1. The Base Implementation

Our JavaScript parser and compiler are written in
OMeta [10]. OMeta programs resemble EBNF grammars
with interleaved semantic actions; we use a few different
OMeta grammars to convert JavaScript programs to exe-
cutable Smalltalk code.

A JavaScript object is a dictionary-like entity, so it is
represented as a Dictionary in Squeak. JavaScript field ac-
cesses are converted to Squeak dictionary access-by-key op-
erations, with delegation to the prototype object.

Our JavaScript implementation is written in 350 lines of
OMeta, together with 750 lines of JavaScript library code
written in JavaScript itself. This compactness is one of the
keys in this project, as we would like to make the inner
workings of our system fully accessible to the user.

2.2. The Macro System for Tiles

We have added a macro system to the base implemen-
tation described above. A macro definition begins with the
macro keyword, followed by a macro name, which must

timstreet
Typewritten Text
VPRI Technical Report TR-2008-001

macro @repeat(k, body) {
var n = k
while (n-- > 0)

body
}

Figure 5. Definition of the @repeat macro.

start with a @. For example, Figure 4 shows a macro ver-
sion of the if-then-else statement, which can be used
as follows:
@if(5 > 6, alert("yes"), alert("no"))

The example we are going to use in the rest of this pa-
per is the repeat statement. Repeat is a simplified ver-
sion of the while loop that is useful in turtle geometry and
other end-user oriented programs. The macro definition of
repeat is given in Figure 5. Note that upon expansion,
the local variable n will get a unique internal name so that
nested repeats will work.

Macro expansion happens at compile time, whereas at
parse time, macro applications are kept in the parse tree; a
macro instantiation corresponds to a tile instance, and the
conversion from/to the graphical tile is done to/from the
parse node that represents the macro instantiation. For ex-
ample, when the user writes a code snippet with the macro,
like:

@repeat(10, alert("hello"))

a repeat object is created and its two fields are initial-
ized with the arguments (i.e., a parse tree for 10 and another
parse tree for alert("hello")).

Notice that the bodies of the macros in our system are
written in the end-user language, which simplifies the task
of creating a new tile.

3. Tile Implementation

The macro system described in the previous section al-
lows us to make any desired subset of a textual language
available for viewing in graphical form. The textual code is
parsed to create a parse tree. In this section, we describe the
conversion to graphical tiles from the parse tree, as well as
conversion in the opposite direction.

3.1. Conversion To Graphical Tiles

For each macro application, the parser creates an in-
stance of the JavaScript “class” Tile that represents a node
in the parse tree. There are different kinds of Tile ob-
jects to represent different types of syntax nodes; we pro-
vide pre-made Tiles for each basic JavaScript construct

Figure 6. The appearance of while statement
with default look.

Figure 7. The appearance of while statement
with customized look.

such as if, while, etc. so that these can be also repre-
sented visually. These different Tiles delegate to a “su-
perclass” called GenericTile, which defines common
behavior for all tiles; the specific tile types specialize this
inherited behavior as appropriate.

A method called makeTile() is implemented by the
Tiles. In the TileScript implementation, this method es-
capes to underlying Smalltalk code that creates the graph-
ical tile representation in the Morphic GUI framework.
Since the tiles can be nested, makeTile() is also called
recursively to create nested graphical tiles.

We could have used a single, universal, graphical repre-
sentation for every macro, since all macros have the same
structure (i.e., one parent and zero or more children nodes.)
Figure 6 shows a hypothetical visual of the while state-
ment in this generic way. The generic tile would be created
with a list of sub-tiles, which would then be laid out in a
simple manner.

However, we would like to provide better looking, better-
suited, and more distinctive, tiles for the most commonly
used basic language constructs. For example, the graphical
representation of while actually looks like Figure 7.

The specialized look of such a tile is created by hand
in Morphic. Morphic provides a direct manipulation inter-
face for creating and copying “Morphs” (“Morph” is the
basic graphic object in Morphic), for changing their size,
color, border, etc., and most notably for embedding them
into one another. By using this interface, we manually cre-
ate a Morph structure that serves as the “template” for a
particular tile.

The tile designer may embed as many “spacer” Morphs,
and other cosmetic Morphs, as he wishes, to lay things out
nicely and to create precisely the appearance he prefers. He
then needs to designate (via a menu) a morph to represent
each “hole” to be filled by tiles dropped by the user during

timstreet
Typewritten Text
VPRI Technical Report TR-2008-001

drag-and-drop tile scripting; each “hole’ Morph” is subse-
quently marked with a distinctive Morphic “property” so
that the TileScript system can know which morphs are to be
replaced. In the case of while, for example, there are two
holes’ to be marked, one for the boolean expression to be
evaluated, and another for the statement(s) to be repeatedly
executed.

In the implementation of makeTile() for a tile which
has such a user-defined graphical tile template, the tem-
plate is deeply copied and then the Morphs that represent
the holes are replaced by the tiles that represent sub-trees.

The end-user can easily use the same mechanism to cre-
ate customized tiles to suit his personal taste. For repeat,
for example, the end-user would assemble Morphs and
make a good-looking Morph with (more than) two sub-
morphs. He would then identify two morphs (the iteration
count and the body) via the UI. Once the user is happy with
the look, TileScript stores the Morph as the new template
for repeat.

Note that it is not strictly necessary to create a cus-
tomized look for a user-defined tile; the generic tile can
provide the same editing functionality.

When a macro node in the parse tree contains a non-
macro (i.e., textual) node, a special kind of tile that behaves
as a text field is instantiated. The layout algorithm of these
tiles (including the text field tile) is simple at this point and
resulting morphs tend to be sparse when the user mixes tex-
tual code and tiles.

Needless to say, the tile representation can be edited
graphically. The user may obtain new tiles from any of the
available templates, drag-and-drop them to construct a func-
tion, or delete tiles by dragging them out of structure, and
he can type in expressions in the text fields.

Each of the basic constructs in textual code (such as
while, if, or a function application), has its own pre-
defined macro.

3.2. Conversion from Graphical Tiles

So far we have explained how to create a graphical repre-
sentation from textual code that contains macros. To enable
graphical editing by the user, we also need a way to con-
vert the graphical representation back to a parse tree and to
textual code.

If we look at a graphical tile (represented as a Morph) in
the script, there are submorphs that are marked as particular
sub-nodes in a tree. The converter recursively looks at the
sub trees in the Morph and converts them to parse trees.

For a user-defined tile, the same macro definition can be
used to do the conversion from tiles to the macro node. The
macro specifies the name of tile, and the names (and num-
bers) of arguments. As long as the user marks the morphs
that represent the sub-trees (provided as arguments) prop-

erly, the converter can visit the submorphs and convert them
to partial parse nodes. Then, the parse node object for the
user-defined tile itself is created with these sub-trees.

Each parse node knows how to convert itself to textual
code, which makes it possible for parse trees to be rendered
as text. In the current implementation, the indentation and
layout in the original text is lost even if the user were only
to write some textual code, convert it to the tiles, and then
go back to textual code without modifying the tiles; we are
planning to add more attributes to parse tree nodes so that
properties such as comments, indentation levels, and posi-
tions in the original source code are preserved when possi-
ble.

3.3. Conversion from Base JavaScript to Macros

It is also useful to be able to convert arbitrary textual
code written in the base JavaScript language (i.e., without
macros) to the form with macros. To do this, we provide a
macro definition for every JavaScript construct. The defini-
tion of @if above is an example of such a macro. By run-
ning a visitor that converts JavaScript constructs to macros,
one can convert the textual JavaScript code to tiles.

4. Discussion

In this section, we discuss our findings and prospects for
future work.

4.1. Extensibility

One of our goals was to provide fully bi-directional
transformations between textually-written code and graphi-
cal tiles. We succeeded in doing this. However, we feel that
our implementation is not as deeply extensible as it should
be, for we can neither view nor modify the semantics and
syntax of the language itself.

We had attempted to define a method called eval()
in JavaScript for each kind of parse node; i.e, we tried to
provide a meta-circular implementation of JavaScript which
could be viewed and modified in the same system. How-
ever, a meta-circular definition has to have a fixed point, and
we realized that the fixed point cannot be so deep; a function
definition requires functions defined, a function call uses
many function calls, getters and setters get and set values
from objects, and if requires a if statement. These fa-
cilities cannot be written in the user-level language. In the
other words, they have to be “primitives” and the user can-
not modify them, for example, using tiles.

In this sense, we contend that the macro system provides
better separation between the base language and the lan-
guage that the end-user works with. For example, consider

timstreet
Typewritten Text
VPRI Technical Report TR-2008-001

the @if macro. The user can still change the look of its as-
sociated tile, and even change its semantics. From the user’s
point of view, this is a very powerful concept even though
he can neither change nor even see the definition of if in
the base language,

We would like to revisit this issue in the future and try to
define a language with a smaller core.

4.2. The Choice of Base Language

The choices of base language and end-user language
have interesting trade-offs. Having a mainstream syntax
helps to lower the learning curve in a practical sense, but
from the standpoint of making text and tiles isomorphic, it
can be problematical.

For instance, we would like to provide a model of the
grammar that advanced end-users can access and under-
stand. One of the authors made a kind of a visual gram-
mar editor called LanguageGame [11]. We plan to exper-
iment with an end-user grammar editor along the line of
LanguageGame.

Had we decided to use a language with uniform syn-
tax, like LISP or Scheme, as our base language, it would
be fairly easy for end-users to understand the grammar, be-
cause it would be so simple. Javascript syntax has a much
more complex grammar, and will certainly make the addi-
tion of extensible syntax to our system more difficult on the
end-user.

4.3. The Type System

One of the biggest advantages of tile scripting is that it
can be made type-safe without any additional complexity.
The drag-and-drop interface can be made so that only type-
conforming tiles may be combined, and the resulting script
doesn’t produce any run time errors.

TileScript does not currently have any type-checking
mechanisms. Since TileScript allows textual coding and
conversion to tiles, developing a reasonable type system
will be an interesting challenge.

4.4. Formatting Textual Code

In the current implementation, parse tree nodes do not
carry any information about the formatting of their corre-
sponding textual code. Consider what happens when the
user writes some code textually, converts it to tiles, and
then makes some very small modification. If he converts
the tiles back to textual code, all formatting information
such as indentation and line breaks will be lost. In order to
minimize such nasty surprises, TileScript parse tree nodes
should contain as much formatting information as possible
(these should be stored as properties), and the different con-
versions take them into account.

Figure 8. A nested tree from a flat expression.

4.5. Structure of Tiles

In our current implementation, the visual appearance of a
tile script follows the structure of the parse tree. This is fine
in most of the cases, but can be cumbersome for a chain of
arithmetic operators. For example, if the user thinks about
an expression:

sum = a + b + c + d + e

he does not need to think about operator precedence; it is
better to simply think of the above expression as the “sum
of five values”. However, the in the tile representation, the
user is inevitably forced to look at nested expressions as
shown in Figure 8. A sophisticated tile scripting environ-
ment should allow the user to edit such expressions in less
rigid ways.

5. Related Work

Scratch is a tile-based scripting language for kids. A per-
vasive simplicity and a well-polished user interface make
Scratch a welcoming environment for first-time users. Nat-
urally, this ease of use comes at a price. Unlike most other
programming languages, Scratch provides no form of ab-
straction (e.g., users cannot create their own tiles or func-
tions.) Scratch projects that go beyond a certain threshold of
sophistication tend to contain unwieldy programs that can
be difficult to write and to maintain.

Our own Squeak Etoys, another easy-to-learn tile-based
scripting language, supports user-defined procedures, or
scripts. Although Etoys scripts cannot return values (which
makes them less powerful than functions), they provide an
important form of abstraction that in turn enables users to
tackle moderately sophisticated projects without “feeling
like a dog standing on its hind legs”. This is clearly a step
in the right direction, but we can do better.

TileScript is our attempt to create an end-user program-
ming language that is just as welcoming to new program-
mers as Scratch and Etoys, but which scales to arbitrarily
complex tasks like a conventional programming language.

Squeak’s Universal Tiles (UniTiles) was an earlier at-
tempt at creating a more scalable end-user scripting system.
UniTiles was isomorphic to Smalltalk, which made it just
as expressive as—but no easier to learn than—Smalltalk.
Additionally, because Smalltalk does not support macros,

timstreet
Typewritten Text
VPRI Technical Report TR-2008-001

a UniTiles implementation of our repeat example would
require its body argument to be passed in as a block, which
can be confusing to beginners. TileScript’s macro construct
and its associated user interface component make it easy for
end-users to define their own control structures.

Like TileScript, IMP [12] allowed programmers to de-
fine their own control structures using a macro-like mech-
anism. The main difference between these two approaches
is that IMP was based on syntax extension: each new con-
trol structure was accompanied by a BNF description of its
intended syntax. The analog of syntax extension in Tile-
Script is our tile-creation GUI, which allows end-users to
design the look-and-feel of the tile associated with a partic-
ular macro. We believe this approach to provide a better fit
with our intended users, who are not expert programmers.

6. Conclusions

In this experiment, we added a small macro system to
JavaScript to capture both the syntactic structure and the se-
mantics of textual code into parse tree nodes that are used as
internal representations of the code. We also described con-
versions between arbitrary tile scripts and arbitrary textual
code, which work in either direction.

With these facilities, we managed to build a system in
which new kinds of tiles in the tile-scripting system can be
defined in a way accessible to end-users. All of the con-
structs of our language are available to the end-user in both
tiles and text, which allows the end-user to explore all as-
pects of the system in a fairly deep manner.

This project is still in its infancy. As discussed in the
previous section, we aim to allow even deeper exploration
by defining more parts of the system in itself, and also to
make the system more practical for real end-users to use
effectively.

Acknowledgement

We would like to express thanks for the valuable insights
that Alan Kay, Kim Rose, Ted Kaehler, Bert Freudenberg,
Ian Piumarta, and other colleagues have given us.

References

[1] Y. Harada and R. Potter, “Fuzzy rewriting: soft pro-
gram semantics for children,” in In Proceedings of Hu-
man Centric Computing Languages and Environment,
October 2003, pp. 39–46.

[2] D. C. Smith, A. Cypher, and L. Tesler, “Programming
by example: novice programming comes of age,” in
Communications of the ACM, vol. 43, no. 3, March
2000, pp. 75–81.

[3] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman,
and M. Resnick, “Scratch: A Sneak Preview,” in In
proceedings of Second Conference on Creating, Con-
necting and Collaborating through Computing (C5),
2004, pp. 104–109.

[4] C. Reas and B. Fry, Processing: A Programming
Handbook for Visual Designers and Artists. MIT
Press, 2007.

[5] A. Jonas, D. Lee, and A. Myers, “J0: A Java Exten-
sion for Beginning (and Advanced) Programmers,”
http://www.cs.cornell.edu/Projects/j0/.

[6] A. Kay, K. Rose, D. Ingalls, T. Kaehler, J. Maloney,
and S. Wallace, “Etoys & SimStories,” February 1997,
ImagiLearning Internal Document.

[7] B.J. Allen-Conn and K. Rose, Powerful Ideas in the
Classroom. Viewpoints Research Institute, 2003.

[8] “ECMAScript Language Specification,” 3rd edition
(December 1999).

[9] J. Maloney, Squeak: Open Personal Computing and
Multimedia. Prentice Hall, 2002, ch. 2: An Introduc-
tion to Morphic: The Squeak User Interface Frame-
work, pp. 39–68.

[10] A. Warth and I. Piumarta, “OMeta: an Object-
Oriented Language for Pattern Matching,” in In pro-
ceedings of Dynamic Language Symposium, 2007, (to
appear).

[11] T. Yamamiya, “Languagegame - an interactive parser
generator,” pp. 110–117, 2003.

[12] E. T. Irons, “Experience with an extensible language,”
in Communications of the ACM, vol. 13, 1970, pp. 31–
40.

timstreet
Typewritten Text
VPRI Technical Report TR-2008-001

