

TinLizzie WysiWiki and WikiPhone:
Alternative approaches to asynchronous and
synchronous collaboration on the Web

Yoshiki Oshima, Takashi Yamamiya, Scott Wallace, and Andreas
Raab

[Also published in the Proc. of the 5th International Conf. on Creating, Connecting, and Collaborating through
Computing (C5 2007)]

VPRI Technical Report TR-2007-001
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

Miguel
1

TinLizzie WysiWiki and WikiPhone:
Alternative approaches to asynchronous and synchronous

collaboration on the Web

Yoshiki Ohshima† Takashi Yamamiya†

yoshiki@squeakland.org tak@metatoys.org

Scott Wallace† Andreas Raab‡

scott.wallace@squeakland.org andreas.raab@qwaq.com

†Viewpoints Research Institute ‡Qwaq, Inc.
1209 Grand Central Ave. 460 S California Ave #304

Glendale, CA 91202 Palo Alto, CA 94306

Abstract

This paper presents TinLizzie WysiWiki and WikiPhone,
two systems which explore new approaches to media-rich
end-user collaboration on the World Wide Web.

TinLizzie WysiWiki enables authoring of interactive,
media-rich documents, containing graphical objects bear-
ing user-defined scripts, on the Web. In TinLizzie WysiWiki,
a user manipulates text and active objects in a WYSIWYG
graphical editor in a manner similar to Squeak eToys.

A notable aspect of TinLizzie WysiWiki is that it allows
both synchronous and asynchronous collaboration among
multiple users. In asynchronous collaboration, the user
content is saved in a common format and posted on the
Web. Later, another user can visit and update the document
on the server. In synchronous collaboration, more than one
user can share a document and edit it simultaneously and
collaboratively in real-time.

The second system presented is called WikiPhone.
WikiPhone is a minimalist voice over IP (VoIP) system
which uses only HTTP. WikiPhone allows multiple users
to talk to each other using a web browser. WikiPhone’s
strength is its simplicity in terms both of the user experi-
ence and of its implementation. The user simply points a
web-browser to a URL, and then directly participates in
a conversation, or listens to ongoing conversations among
others. In the implementation, it seeks the simplest possible
approach, yet provides a usable VoIP system.

Both systems still require a small, portable web browser
plugin, but otherwise they stay within the artificial limita-
tions of today’s World Wide Web. The authors think that

they exhibit possible future directions for collaboration on
the Web.

1 Introduction

The World Wide Web, or Web, has been very successful.
It seems nowadays to dictate not only many end-users’ be-
havior, but also the mindsets of researchers and software
vendors; the perception is that a new system should run
in web browsers to be successful. As a consequence, im-
provement in the overall user experience in applications has
been held back by limitations of the Web and of commonly
used Web browsers. For example, an application written in
JavaScript runs much more slowly than it should, and has
limited graphics capability. Considering the fact that the
computer’s capability and performance have improved dra-
matically year after year, it is noteworthy that the respon-
siveness of an application like an email client on the web is
slower today than a typical email client was years ago – as
if a perverse kind of inverse Moore’s law were at play.

Two particular areas in which the authors think typical
web applications fall short are end-user multimedia script-
ing and real-time collaboration. There is no end-user script-
ing system in which a non-technical user can create graphi-
cal objects, specify their behavior in an end-user accessible
programming system, and share the result on the Web. Kay
stated his criticism on the Web in the discussion page about
the Logo programming language on Wikipedia [1]:

It really bothers me that the Logo examples in this

Miguel
VPRI Technical Report TR-2007-001

Miguel
2

article can’t be tried out in 2006 (given that this
was easy on an Apple][in 1979)!

Also, there is no system written in JavaScript running in
a browser that will allow users at remote locations to talk to
or see each other. Given the fact that the NLS system [2] in
’68 already proved the feasibility of real-time collaboration
on the computer, computer researchers and industry should
have made it possible by now after four decades.

In this paper, we present two systems that explore the
possibilities of end-user multimedia scripting and voice chat
in Web browsers.

One of the systems, called TinLizzie WysiWiki, enables
the authoring of media-rich content within Web browsers,
and sharing among users. The content editing experience
resembles Squeak eToys’ [3], but the content is shared by
multiple users. The user can put a hyperlink to other doc-
uments, so that it is possible to create a network of linked
projects in a spirit similar to that of WikiWikiWeb. More
notably, TinLizzie WysiWiki provides real-time collabora-
tion; multiple remotely located users can edit the same doc-
ument at the same time collaboratively.

The second system presented, WikiPhone, is a minimal-
ist implementation of a voice over IP system. It exhibits
how simple a VoIP system can be. Given this minimal ef-
fort, the user experience is surprisingly satisfactory.

While both systems require a small browser plugin to
implement otherwise impossible features, they interoper-
ate nicely with existing systems and standards. This ap-
proach gave us interesting trade-offs and constraints. In the
remainder of this paper, more background is given in sec-
tion 2, the design and trade-offs of TinLizzie WysiWiki and
WikiPhone are given in section 3 and section 4, respectively,
and a discussion of the results is given in section 5.

2 Background and Related Work

In this section, the motivation of the work, and of related
work in similar domains, is discussed.

As described in the previous section, the Web has been
very popular. However, because it wasn’t designed to allow
bi-directional, symmetric communication, nor with content
authoring in mind, most Web-based applications operate
under various artificial limitations.

On the other hand, being on the Web certainly has practi-
cal benefits. A web browser is indeed a primary application
platform for virtually every Internet user. And modern web
browsers cope well with some kinds of artificial restrictions
such as Internet firewalls. Also, schools and corporations
tend to have policies which make it difficult, if not impos-
sible, to install new software. Since the JavaScript engines
are already ubiquitous, an application written in JavaScript
can run with zero-installation effort. It also means that soft-
ware update can be done on the server side.

There have been various attempts to enable some form
of authoring of Web content within Web browsers. The
WikiWikiWeb, or Wiki, system [4] takes advantage of the
“Form” feature of the browsers to let end-users edit textual
content on the Web.

From the user’s point of view, the strength of a Wiki
is that hyperlinked text, or hypertext, seems to be a well-
accepted description of a set of knowledge; a set of knowl-
edge is a network of inter-dependent concepts, so hyper-
linked text seems to match with it well. The success of Wiki
motivated a lot of “clones” which provide different features
and different interfaces to try to improve the user experi-
ence. However, it is clear that a Form-based Wiki system
will not reach a threshold that provides an appropriate com-
fort level for many users. The problem is that the editing
is not “direct”; instead, the user has to type in text that fol-
lows somewhat cumbersome markup rules, and then check
the rendered result afterwards. For this problem, some re-
cent Wiki systems implement a kind of WYSIWYG editor
in JavaScript [5]. These systems are often dubbed “Wysi-
Wiki” or similar phrases.

While these attempts have been helpful for the near term,
we should not be held hostage to the artificial limitation that
only text (and perhaps some static pictures) can be used.
The kinds of content our group is interested in are the ones
with multi-media and, more importantly, with graphical ob-
jects with user-defined behavior.

Let us imagine an article in an Internet-based encyclope-
dia that discusses, for example, a topic in physics of some
phenomenon. The writer of the article might wish to have a
simulation of the phenomenon. To write such a simulation,
the author creates some graphical objects and write rules
to specify the behavior of them. When a reader visits the
page, the graphical objects follow the rules, or scripts. and
will move around, change size and color, interact with one
another, appear and disappear. Note that this should not be
limited to canned animations; the scripts should be acces-
sible to the readers as well. With such interactive scripts,
a reader can try “what-if simulations”, and refine the be-
havior so that he can gain a deeper understanding of the
phenomenon. Along this line, our group experimented with
a Logo execution engine which, because it was written in
JavaScript, is accessible from any web browser [6]. This
system is effective at what it sets out to do, but it is limited
to a turtle and lines.

Another drawback of a typical Wiki system (or, we might
say, another design trade-off to accommodate Web limita-
tions) is that its mode of collaboration is limited to “asyn-
chronous”. Even if there are two or more users looking at
the same article, they cannot interact with each other. They
might want to paint a picture together or construct differ-
ent parts of a simulation together. There are a few systems
written in JavaScript for real-time collaborative editing on

Miguel
VPRI Technical Report TR-2007-001

Miguel
3

the Web which begin to address such desires, but these are
usually limited to simple text or line drawing [7].

A natural expectation for real-time collaboration is that
users should be able to have voice conversations with each
other. The phone system has provided this ability all of our
lives, but it is costly and cumbersome. On the Internet, there
are now a number of Voice over IP (VoIP) telephony sys-
tems such as Skype and Gizmo Project. Good VoIP systems
are already mature and have been used by millions of users.
However, one might wonder, out of curiosity, how simple a
VoIP system can be.

WikiPhone tries to provide the simplest imaginable im-
plementation of a VoIP system, with a minimum of fea-
tures. Feature-laden commercial VoIP systems do not nec-
essarily suit the needs of all users. A much lighter-weight
VoIP such as WikiPhone may suit users wanting direct web-
based voice conversations without authentication (“log in”),
or simply to listen. It provides an experience similar to CB
Radio.

3 TinLizzie WysiWiki

The characteristics of TinLizzie WysiWiki can be sum-
marized as follows:

Media-rich authoring with scripting Content is authored
in an eToys-like environment [3]. All objects can be
edited in a WYSIWYG fashion, by direct manipulation
with a pointing device, and can be scripted via tile-
based scripts. The result is saved in a document file
and shared on a server so that other users can open and
see it. The document appears the same to the user as it
did to its author as he edited it.

Interoperability User content is saved in an Open Docu-
ment Format (ODF) [8] so that OpenOffice.org appli-
cations can open it. Some actual editing can be un-
dertaken using OpenOffice as well. The content trans-
mission between the server and the client is done in
WebDAV (for reading/writing) or HTTP (for reading
only). The system requires some small support from
a browser plugin, and is built on top of the highly
portable Squeak virtual machine [9] so that it runs in
the majority of web browsers, on all major platforms,
and also as a standalone application.

Asynchronous and Synchronous Collaboration In addi-
tion to traditional Wiki style (asynchronous) collabo-
ration, real-time, or synchronous, collaboration is also
supported. Multiple users can edit a document simulta-
neously. (The network transport for synchronous com-
munication doesn’t use HTTP in the current imple-
mentation.)

In the following, these items are explained.

Figure 1. A screenshot of the TinLizzie Wysi-
Wiki user interface.

3.1 Media-rich authoring with scripting

The TinLizzie WysiWiki system is built on top of an
object system called Tweak [10]. Tweak draws upon
Squeak [9], the Morphic graphical user interface frame-
work [11] [12] and eToys [3]. Tweak not only tries to over-
come various limitations of Morphic and eToys, but also,
more notably, it provides a foundation for concurrent pro-
gramming and distributed computing.

On top of the core architecture of Tweak which provides
the object model, the authors and colleagues have imple-
mented an eToys-like end-user scripting system. In that
system, the user can create graphical objects, and modify
the behavior and the properties of the objects they create. It
is important to support this “exploration style of program-
ming”, as the user often doesn’t have a clear view of the fi-
nal results in advance. As is the case with eToys, the script-
ing system of TinLizzie WysiWiki allows the user to mod-
ify the behavior of existing objects freely, and the user gets
feedback immediately because all objects in the system are
constantly active.

A library of pre-defined prototypes of graphical, mul-
timedia objects that the user can instantiate is provided.
Such objects includes a movie player, a sound recorder and
player, a painting tool, a text field, etc. Also, a set of wid-
gets that support a programming system for massively par-
allel particles similar to the Kedama system [13] is imple-
mented. With this rich set of objects, the user can create a
wide variety of multimedia content.

3.2 Interoperability

The authors wanted TinLizzie WysiWiki to run on all
commonly-used platforms, so we tried to make the system
be compatible with commonly used systems and standards,

Miguel
VPRI Technical Report TR-2007-001

Miguel
4

as much as possible. As for portability, TinLizzie WysiWiki
is built on top of the Squeak virtual machine (Squeak VM).
Squeak VM has been ported to more than two dozen plat-
forms, ranging from the commonly used platforms such as
Windows, Linux, and Macintosh to some exotic platforms
such as various PDAs and the prototypes of the OLPC lap-
top [14]. One of the notable features of Squeak is that a
program written for the Squeak VM runs “identically” ev-
erywhere; the pixels on the screen are guaranteed to be the
same across all platforms. Also, the browser plugin ver-
sion of the Squeak VM allows TinLizzie WysiWiki to run
in most commonly-used web browsers. The user simply
points a web browser to a URL to access content in Tin-
Lizzie WysiWiki. When the user accesses a page on the
server, a document file is downloaded to the client side and
an editing session takes place on the user’s machine. This
requires the program or plugin to be installed on the com-
puter, but enables us to write a system with multimedia ca-
pability that runs efficiently.

Figure 2. Graphical view of a script in TinL-
izzie WysiWiki.

TinLizzie WysiWiki documents are stored externally in a
standard ODF format. ODF has a few variants for presenta-
tion, spreadsheet, and text processing, and we have chosen
to use the “presentation” variant as the primary format. This
decision was made because a project in Tweak eToys tends
to be graphics-oriented, with all the content typically resid-
ing on a single screen. Our ODF converter in Tweak con-
verts the Tweak eToys objects into the XML-based ODF.
This can be a lossy conversion in the current implementa-
tion; not all available Tweak eToys objects, and not all prop-
erties of some, are perfectly preserved at present, but future
work should repair this defect.

When saving a user project, one of the biggest prob-
lems was how to externalize user-defined scripts. ODF de-
fines a way to store program fragments (typically in Basic
or JavaScript), but the primary representation of a script in
TinLizzie WysiWiki is a graph of live objects. This is be-
cause what the user manipulates is the graphical objects that
represent the syntax elements, so that the natural represen-
tation of them is to keep them in the dynamic form. Fig-
ure 2 shows an example script. The elements in the script
can be moved around by the user to edit it. In the cur-
rent implementation of TinLizzie WysiWiki, a script is first

rendered into equivalent Smalltalk textual code, and then
stored within the XML as an attribute of a node. Upon load-
ing, the textual code is converted back to the Tweak’s object
structure. Along with the textual representation, a static pic-
ture of each scriptor is stored into ODF as an element of
the document. Thus, when the ODF file is opened with the
Impress OpenOffice.org application, the visual look of the
project is reproduced, including the graphical appearance of
the scripts.

The ODF file created is then sent to the server. Since
the transport of documents is done via WebDAV, the user
doesn’t have to change any settings such as proxies. The
server could be an ordinary Web server, but a feature we
wanted was version control of documents. We decided
to use the SVN version control system with Apache (via
mod_dav_svn).

The user can put hyperlinks in the document. The link is
a local name of document or a fully qualified URL. When a
reader of the document clicks on the hyperlink, the specified
document is fetched from the server or the local disk and
opened.

So far, the typical use of TinLizzie WysiWiki has ap-
peared to be similar to that of Wiki. A user starts editing,
and submits the change. Then another user takes the revised
version from the server, and continues. This can be called
“asynchronous” collaboration. The benefit of asynchronous
collaboration is that the users don’t have to be working at
the same time, but an obvious downside is that they cannot
communicate with fast turn-around.

3.3 Asynchronous and Synchronous Collabora-
tion

In addition to asynchronous collaboration, TinLizzie
WysiWiki supports synchronous, or real-time, collabora-
tion. When two or more users find that they are editing
the same page at the same time, one can “invite” others to
his page. Then, his page is serialized and sent to the in-
vited users. In other words, they get “identical” working
snapshots of the page. From there, all users’ interactions
are sent to all other participants’ computers; thus the com-
putations on all participants’ computers can be carried out
identically.

This real-time collaboration model is called the Simpli-
fied TeaTime (STT) mechanism of Croquet [15] [16]. The
Croquet project is known to have a 3D graphical interface,
but the underlying object model doesn’t have any depen-
dency on an object’s graphical appearance. Croquet’s ob-
ject model is unified with Tweak’s in the TinLizzie Wysi-
Wiki system, so that any Tweak eToys object can behave as
a Croquet object. This mechanism of distributed computa-
tion relies on the fact that if the computation is started from
an identical state on different computers and if there are no

Miguel
VPRI Technical Report TR-2007-001

Miguel
5

Figure 3. Two users are interactively editing a
WysiWiki page.

non-deterministic events, the computation will be identical
on different computers as is advances. And if a user event is
time-stamped properly and delivered to the other comput-
ers at the “same (pseudo) time”, the invariant of identical
computation will be kept.

Figure 4. A schematic view of network topol-
ogy and data format used in TinLizzie Wysi-
Wiki.

In a system with STT, the network traffic is very low;
only the user events and periodic “heartbeat” events need
to be sent. Currently, a typical user event is encoded as a
packet whose size is 170-200 bytes. When the user drags an
object for example, 40-50 packets are sent for every second.
This results in 7k bytes/sec to 9k bytes/sec network traffic.
Obviously, a mouse event wouldn’t need that much data and
we could optimize it; on the other hand, as long as a packet
fits in an Ethernet packet, such optimization wouldn’t make
as much improvement. The latency is dictated simply by
the underlying network. The latency is comparable with the
results from “ping” program. A user in the group sees the
other participants’ cursors on his screen and sees the cursors

making changes simultaneously. Once the editing is done, a
participant can save the document in ODF. Figure 3 shows
that there are two cursors on a computer screen.

Figure 4 depicts the communication protocols and data
format used in TinLizzie WysiWiki.

4 WikiPhone

The characteristics of the WikiPhone system can be sum-
marized as follows:

Interoperability The transmission of voice data is done
solely in HTTP, which minimizes firewall problems.
The system requires a browser plugin, but it is the same
Squeak virtual machine used by eToys and TinLizzie
WysiWiki.

Simplicity The user interface is extremely minimal. The
user only points his web browser to a specific URL,
and voice conversations become instantly possible
with any other users who are on the same URL.

In the following, these items are explained.

4.1 Interoperability

The implementation can be considered an experiment in
how simple a VoIP system can be. A typical VoIP sys-
tem has the concept of sessions, and uses protocols such
as SIP [17]. These systems are modeled after the telephone
system. However, if the purpose is just to transmit voice
data two ways and have conversations, the layers upon lay-
ers of protocols become unnecessary.

The approach that WikiPhone took was to use two
HTTP/1.1 connections between a client and a server be-
cause HTTP protocol can only handle one way connection.
To make the latency shorter, HTTP chunked data encoding
is used. The small plugin program running on the user’s
browser compresses the audio from the microphone input
and sends the data to a server. The server simply distributes
incoming data packets to different clients listening to the
URL, and it doesn’t modify the packets itself. This ap-
proach could be easily extended to other streaming media
such as video. The client program continuously fetches data
packets from the URL and plays them back on the client
computer. The URL can be thought of as a radio channel
that a user can not only tune in to, but also talk back on.

The server program is written in Squeak, which provides
a variety of sound codecs. Currently the audio data is gener-
ally compressed with the GSM codec that gives about 10:1
compression rate for 22 kHz 16-bit mono audio. The server
gets about 4k bytes data from per second from each client.
Thus, the network traffic is a bare minimum.

Miguel
VPRI Technical Report TR-2007-001

Miguel
6

Miguel

The number of users who can be on a server is limited by
the server-side network capacity. Because any heavy com-
putation like compression and sound mixing is done on the
client side, the server’s computation cost is not a primary
performance issue. Furthermore, no centralized database is
needed.

Latency is the largest issue with this protocol. Our exper-
iments have shown that it is longer than 300ms for shorter-
distance conversations, and longer than 500ms for inter-
continental conversations. Conventional VoIP systems use
UDP as their transportation layer to reduce latency. But
WikiPhone uses TCP to take advantage of extensibility and
interoperability.

WikiPhone still requires a browser plugin when it is used
in web browser directly, because neither JavaScript nor even
a common plugin such as Flash supports sound synthesis.
While having to require a browser plugin is not ideal, the
plugin is again a Squeak VM and the code of WikiPhone
is downloaded from the server on demand. Many features
that makes a VoIP system practical are missing, but given
its simplicity, it works strikingly well.

4.2 Simplicity

In a typical use of WikiPhone, the user simply points his
Web browser to a URL, then starts the conversation right
away. No login procedure is required. If you coordinate
with your friends, you can have effortless conversations,
with an interface affording ambient presence of others.

The protocol used for WikiPhone is also simple. It is
designed as a module just for transport streaming media
on top of HTTP. There is no authentication, and no secu-
rity management. This is reasonable because HTTP already
has various kinds of such methods, such as the TLS layer.
The WikiPhone protocol can be combined with them if it is
needed.

5 Discussion and Future Work

In this section, the current status of the projects and pos-
sible future work are discussed.

5.1 TinLizzie WysiWiki

5.1.1 WYSIWYG

TinLizzie WysiWiki aims to be a WYSIWYG editor. The
promise of a WYSIWYG editor, as the acronym suggests,
is that the author can closely control the final appearance of
the document by editing content in a form closely resem-
bling the form in which it is to be viewed. However, perfect
WYSIWYG is a partial fiction, because, for example, the
pixel resolution and color characteristics of various readers’

Figure 5. A page that explains gravity with a
scripted simulation.

screens will vary. (In the community of Wiki, the concept is
sometimes called WYSIWYM: “what you see is what you
mean”).

A trade-off related to screen resolution is the choice of
what a page in TinLizzie WysiWiki should be modeled after.
A typical article on Wiki is primarily in text, and is typically
longer than can be viewed on one screen. The browser that
is showing the article usually has scroll bars. If there are
non-text contents (such as pictures) in the article, they are
anchored to positions in the flow of text and move on the
screen when the user scrolls the text. On the other hand,
a page in TinLizzie WysiWiki is modeled as a presentation
slide with no scroll bars around it. There is a text widget
with scroll bars, but such a text widget is embedded as a
sub-part of a page. In other words, the current abstraction
of a document is a multimedia content with some embedded
text objects, but not the other way around. (See figure 5.)

From our experience, even in an article with simulations,
the primary information will still be in text. For future
WysiWiki systems, we will explore different abstractions
for documents.

Another aspect of screen resolution is that the line end
wrapping and justification can be different on different com-
puters; also the relative size of text and embedded contents
may be different. Our solution for this problem is to replace
the rendering engine of Tweak and Squeak with Cairo [18],
which supports scalable graphics. We have an experimen-
tal version of such graphics system called Rome, and will
continue further refinement.

5.1.2 Version Control

We currently use the SVN repositories for versioning doc-
uments. A problem with this approach is that ODF files
are in binary so that we don’t get the full benefit of using a
version control system. In a future system, the internals of

Miguel
VPRI Technical Report TR-2007-001

Miguel
7

ODF files (XML files) should be taken into account.

5.1.3 Synchronous Collaboration

The synchronous collaboration in TinLizzie WysiWiki uses
the framework provided by Croquet. It works both in the
LAN and WAN environment with low latency. At the same
time, the framework is under development and still missing
some pieces like peer discovery in wide-area networks, and
failure recovery. The authors believe that the fundamental
concepts of TeaTime, such as keeping identical computa-
tion on distributed computers, strong notion of time, and
peer to peer network topology, have desirable characteris-
tics. However, these still need refinement.

5.2 WikiPhone

WikiPhone shows an extraordinarily simple implemen-
tation of VoIP. However, it has limitations to overcome to
be practical.

5.2.1 Network Topology

One may think that the server-based network topology is
the biggest problem keeping WikiPhone from being prac-
tical. The server-based approach surely adds latency and
contributes to the scalability problem. On the other hand,
the HTTP based approach, which is the central idea of
WikiPhone, provides very simple foundation for implemen-
tation. The user’s perception is closer to the Web access-
ing compared to typical VoIP systems; WikiPhone and Web
shares single point of entry for different services.

5.2.2 Audio Quality

For a telephony system, minimizing the latency is very im-
portant. While our approach has inherent overhead, there
are areas where overall latency is improved.

The Squeak VM (running on Linux in particular) itself
adds 300ms or more of latency because of the buffering.
The VM primitives should be visited and the buffer size
should be adjusted. In the current implementation, the over-
all latency can be as low as a few hundred milliseconds but
can also be up to a few seconds.

Also, the arrival rate of data packets is not uniform on
the Internet. In the current implementation, there is no at-
tempt to smooth them. An interesting approach is to com-
bine the data transmission with Croquet’s message mecha-
nism so that the packets are time-stamped, and the playback
timing is adjusted on the client computers.

The choice of codec is also important. The GSM codec,
which is currently used, is fine for simple voice, but the
quality is not very satisfying.

Some of the problems here will be solved by Moore’s
Law. The sound quality with codecs, and some part of the
latency problems can and will be solved. It will be interest-
ing to watch these developments.

5.2.3 Understandability and Educational Value

Also, the simplicity has some educational value in learning
about VoIP, and, more generally, about digital audio. A user
can open the URL for the data packets, and see the actual
binary data right there in the browser. A learner thus has a
way to see that audio is something that can be represented
as digital data, and sent around.

5.3 Future of Web Scripting

Today, all commercially viable Web browsers have
JavaScript engines integrated. JavaScript is a fine language,
but the way it is integrated with the browsers and the typical
implementations of the engine aren’t designed for writing
programs with multimedia content.

Our group is working on a malleable dynamic language
execution engine. One of the applications of this engine is
to improve the performance of JavaScript. In fact, our aim is
to make JavaScript fast enough to write all the graphics sys-
tem in it. We envision that this, or similar systems, will lift
some of the artificial limitations of today’s web program-
ming, and bring about better platforms for collaboration.

6 Conclusions

We have presented two systems which try to provide bet-
ter collaboration over the Internet, in particular on the Web.
TinLizzie WysiWiki enables multi-user collaboration using
user-scriptable, media-rich graphical objects. In addition
to providing Wiki-like asynchronous collaboration, it also
allows synchronous, real-time, collaboration similar to a re-
mote desktop. WikiPhone is a minimalistic VoIP system
that lets users talk to each other. Both systems still require
minimum support of a locally installed browser plugin, but
we hope to lift this limitation in future systems.

The prototypes of these systems are working, and they
have given us some insights about collaborative systems.
We discussed these lessons and future directions.

Acknowledgement

We would like to express thanks for the valuable insights
that Alan Kay, Kim Rose, Ted Kaehler, Bert Freudenberg,
Michael Rueger, Kazuhiro Abe, David Smith, and other col-
leagues have given us.

Miguel
VPRI Technical Report TR-2007-001

Miguel
8

References

[1] A. Kay, http://en.wikipedia.org/wiki/
Talk:Logo %28programming language%29.

[2] D. C. Engelbart and W. K. English, “A research cen-
ter for augmenting human intellect,” in In Proceedings
of the AFIPS Fall Joint Computer Conference. The
Thompson Book Company, 1968, pp. 395–410.

[3] A. Kay, K. Rose, D. Ingalls, T. Kaehler, J. Maloney,
and S. Wallace, “Etoys & SimStories,” February 1997,
ImagiLearning Internal Document.

[4] W. Cunningham, “The WikiWikiWeb,” http:
//c2.com/cgi/wiki.

[5] I. döt Net, C. West, C. Dent, M. Liggett,
R. King, D. Rolsky, and K. Liu, “Wikiwyg,”
http://www.wikiwyg.net/.

[6] A. Bryant, C. Putney, L. Andrews, and A. Kay, 2006,
http://logowiki.net.

[7] C. Allen, “SynchroEdit,” http://www.synch-
roedit.com/.

[8] M. Brauer, P. Durusau, G. Edwards, D. Faure,
T. Magliery, B. Radius, and D. Vogelheim,
“Open Document Format for Office Ap-
plications (OpenDocument) v1.0,” http:
//docs.oasis-open.org/office/v1.0.

[9] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay, “Back to the Future – The Story of Squeak,
A Practical Smalltalk Written in Itself,” in Object-
Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), 1997, pp. 318–326.

[10] A. Raab, “Tweak,” http://tweak.impara.de.

[11] J. H. Maloney and R. B. Smith, “Directness and Live-
ness in the Morphic User Interface Construction Envi-
ronment,” in ACM Symposium on User Interface and
Software Technology (UIST), 1995, pp. 21–28.

[12] J. Maloney, Squeak: Open Personal Computing and
Multimedia. Prentice Hall, 2002, ch. 2: An Introduc-
tion to Morphic: The Squeak User Interface Frame-
work, pp. 39–68.

[13] Y. Ohshima, “Kedama: A GUI-based Interactive
Massively Parallel Particle Programming System,” in
Visual Languages and Human Centric Computing,
2005, pp. 91–98.

[14] Y. Ohshima, K. Wakita, and M. Sassa, “A Report
on Porting the Programming Environment Squeak to
SHARP Zaurus and its Evaluation (in Japanese),”
Transaction of Information Processing Society of
Japan: Programming, vol. 41, no. SIG-9 (PRO 8), pp.
62–77, November 2000.

[15] D. A. Smith, A. C. Kay, A. Raab, and D. P. Reed,
“Croquet - A Collaboration System Architecture.” in
In proceedings of First Conference on Creating, Con-
necting and Collaborating through Computing (C5),
2003, pp. 2–9.

[16] D. P. Reed, “Naming and synchronization in a decen-
tralized computer system,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1978, (available as
Technical Report: TR-205).

[17] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. John-
ston, J. Peterson, R. Sparks, and E. Schooler, “SIP:
Session Initiation Protocol,” iETF RFC 3261.

[18] C. Worth and K. Packard, “Xr: Cross-device render-
ing for vector graphics,” (presented at the 2003 Ottawa
Linux Symposium).

Miguel
VPRI Technical Report TR-2007-001

Miguel
9

