|

18|

1

o

T

r

jewpoints Research Ins

Kedama: A GUI-based Interactive Massively
Parallel Particle Programming System

Yoshiki Ohshima

VPRI Technical Report TR-2005-001

Viewpoints Research Institute, 1025 Westwood Blvd 2nd flr, Los Angeles, CA 90024 t: (310) 208-0524

Kedama:
A GUI-based Interactive Massively Parallel Particle Programming System

Yoshiki Ohshima
Twin Sun, Inc.
360 N. Sepulveda Blvd. Suite 1040
El Segundo, CA USA 90245
Email: yoshiki@squeakland.org

Abstract

Decentralized and complex systems can be powerful
tools for modeling concepts in mathematics, science and
engineering. StarLogo and NetLogo were the first systems
to allow middle and high school children to build dynamic
models from many thousands of programmable particles.

This has inspired Kedama: an authoring system that sim-
plifies the scripting and construction of massively parallel
models to allow more students to join in this new rich en-
vironment. This has given rise to new user interface and
programming language designs.

Kedama has the following notable features: 1) Scripts
in Kedama can be written in a graphical tile scripting inter-
face. Its users are alleviated from syntax errors, and all pro-
gram elements are visually presented to the user. 2) Kedama
is an extension of Squeak eToys: children who have learned
to “script in the large” can use same techniques to “script
in the small” with many thousands of objects. 3) The se-
mantics and syntax are simplified but retain full power of
expression. 4) The Ul in Kedama is dynamic: scripts and
other properties in Kedama can be dynamically modified
while scripts are kept running. 5) Kedama is more portable,
being able to run on more than two dozen types of platforms,
including the most used around the world. 6) Kedama is
fast. Various simulations typically run about 3 times faster
than previous systems. This improvement made it possible
to write different classes of examples.

1. Introduction

Many physical, biological and social phenomena, as well
as mathematical concepts can be modeled as decentralized
and complex systems. The simulations of such systems can
be written with massively parallel particles. In a typical de-
centralized system, the behavior of each particle tends to be

VPRI Technical Report TR-2005-001

very simple, yet the interaction between them or even just
the sheer number of them produces interesting emergent be-
havior.

The combination of a simple program and complex be-
havior is attractive to educators who try to use new tools
in classrooms especially in math and science. If students
could construct their own simulations and explore the prob-
lem domain, they would reach a better understanding of the
simulation and simulated phenomena.

To materialize the idea, Resnick proposed a system
called StarLogo [1]. StarLogo, and Wilensky’s NetLogo
[2], are designed for high school students’ use. These sys-
tems have been accepted by many educators and students.

1.1. The Challenges

If StarLogo and NetLogo are already popular, why is the
author working on yet another system? This is because the
author sees an opportunity to provide a more accessible,
user-friendly system. Below is the list of areas that can be
improved.

First, none of the existing systems, as far as the author’s
knowledge, doesn’t allow direct manipulation of the simu-
lation. For example, in StarLogo and NetLogo, there are
separated panes for writing textual code and running the
simulation. The user has to switch back and forth between
the panes, and when the user does so, the program stops
running and the simulation is reverted to the initial state. To
allow the users to freely explore the domain and do “what-
if” simulations, it is desirable that the entire system is kept
executing while the user is modifying the system.

Also, the syntax and semantics of the scripts could be
much simpler and suitable for a particle system. The syn-
tax of Logo [3], which StarLogo and NetLogo are based
on, is adequate if the system has only one entity that the
user interacts with. For example, if the user writes a set-
Color command in Logo, there is no ambiguity in regard to

which object will change its color. However, once the sys-
tem starts having other kinds of objects, the ambiguity must
be resolved.

The last area to mention is the performance and imple-
mentation. The popular implementation language of this
kind of system, Java, provides good performance in general
cases but it is not suitable to implement highly-specialized,
fine-tuned vector operations that are needed in massively
parallel particle simulations. Also, the static nature of the
Java language makes it harder to implement a flexible object
system. Also, the latest Java implementation is available
only on a limited set of platforms.

1.2. Contributions

Based on the observations in the previous section, the
author has implemented a new massively parallel particle
system called Kedama. Kedama has the following notable
features.

Visual Scripting Kedama provides a visual programming
interface for writing massively parallel particle simu-
lations. The interface resembles the well-documented
Squeak eToys so the user can learn it quickly.

Direct Manipulation The data and code are shown as
graphical objects so that they can be manipulated di-
rectly.

Cleaner Syntax and Semantics The uniform object-
oriented syntax is more suitable to write parallel
particle programs. The semantics is straightforward
and analogous to Squeak eToys.

Performance Although it is hard to do fair comparisons,
a simple equivalent program in Kedama typically runs
3 to 10 times faster than StarLogo and NetLogo. This
performance improvement opens up the possibility to
write new and qualitatively different classes of exam-
ples.

Portability Kedama is implemented on a highly-portable,
reasonably-fast, open-source VM. The VM allows cus-
tom routines (“primitives”) to be compiled by an opti-
mizing C compiler to optimize the low-level operations
in Kedama. The VM and primitives are so portable that
it has ported to many uncommon platforms.

In short, Kedama shows that a simpler, more dynamic,
user-friendly and fast implementation of massively parallel
particle system is possible.

1.3. The Organization of the Paper

The following sections are organized as follows. In
Section 2, the overview of the Squeak eToys system that

VPRI Technical Report TR-2005-001

| B carleirate

| B caremptyseript
8 g vasie

! B tarimake sound'feoroak

| B tariforvard by §5 .

| [tarhurn by d5

g B ||
5 B
sheadine [ERES ||

—

) Car's. pensize:
B cors waiisryio [ines

Figure 1. A screenshot from a typical eToys
session

Kedama is based on is introduced. In Section 3, the lan-
guage of Kedama is described. In Section 4, the semantics
of scripts in Kedama is described. In Section 5, the imple-
mentation of Kedama is briefly explained. In Section 6, an
example, performance evaluation, and the Kedama’s multi-
lingual feature are introduced. Finally, further related works
that are not covered in Introduction are discussed, and the
conclusion of the paper is given.

2. Squeak eToys: New Opportunity

Squeak eToys [4] [5] is a visual, tile-based scripting sys-
tem designed primarily for fifth and sixth grade (11 and 12
years old) children. In Squeak eToys, a user can directly
manipulate graphical objects on screen, and construct a pro-
gram by using symbolic and graphical representations of
objects. In the rest of the paper, Squeak eToys is referred to
as “eToys”.

EToys is drawing upon the past ideas, such as Bruner’s
constructivist theory of education and Papert’s Logo. EToys
is a tool that mimics a kind of toy so that the children can
have fun to play with it. However, it is designed to let chil-
dren build simulations and programs so that they can engage
mathematical and scientific studies.

Since its public release in 1999, eToys has been enjoying
its growing popularity around the world; there are schools
officially using eToys in Spain [6], Japan [7], Germany,
Canada and the US. Also, there are several books published
about eToys in different languages ([5], [8]). Its popularity
and wide acceptance led us to design a system that keeps
the similarity to eToys.

2.1. Graphical Objects, Viewers and Scripts

An object in eToys is represented as a visible, interactive,
graphical entity. Each object has properties or slots. Slots

include intrinsic X and y coordinates as well as other non-
intrinsic ones that are defined in terms of the relationship
with other objects, such as isUnderMouse (set to true when
the mouse cursor is pointing the object).

In a typical session, the user paints his own painting with
eToys’ paint tool, and then the system automatically con-
verts the painting into a graphical object.

EToys provides a tool, called a viewer, to “look into” the
graphical objects. A viewer provides the symbolic view of
the associated object in the form of readouts of the slots.
In Figure 1, there is an object that looks like a car, and the
viewer of the car is shown on the right edge. The viewer
also holds the tiles that represent the commands that the
object understands. The execution typically causes some
change of the properties. Let us call the dynamic effects
caused by the execution of command actions.

The user can create and edit scripts. Editing a script
includes adding and removing commands, dropping a slot
onto the argument position of a command, changing the
numerical arguments, and expanding the arithmetic expres-
sions. Figure 1 shows a script with turn by 5 and forward
by 5 commands.

A script can be marked as “ticking”. A ticking script
repetitively executes itself at a regular time interval. Multi-
ple commands in a script are executed in a top-down man-
ner. For example, the script in Figure 1 makes the car drive
in a circle, because “it is moves a little and turns a little over
and over again”.

The first example in Logo was a turtle making a circle.
In eToys, it is a car making a circle. However, the biggest
difference is that scripts can be modified at any moment,
even as they are running. Any modification such as adding
a command or changing a parameter takes effect instantly.
This dynamic nature of the system lets the children try dif-
ferent options and explore the problem domain quickly.

2.2. The Tile Scripting Language

The syntax of the tile language in eToys is object-
oriented; namely, a command in eToys is defined in terms
of the receiver object and the message sent to the receiver
with some arguments.

All the commands in eToys take a form of:

<receiver><command><zero-or-more args>

Note that this form is very close to the Squeak’s textual syn-
tax. The semantics of this command is also very close to the
Squeak’s message passing paradigm. In fact, a tile script
is converted to a textual method in a straight-forward way,
and then, internally, the converted method is executed by
the Squeak interpreter.

The language of eToys is statically-typed. When the user
trys to combine tiles by dropping one onto another, it will

VPRI Technical Report TR-2005-001

succeed only if these tiles satisfy the type restriction. There
is visual feedback that indicates the type conformance. The
language is prototype-based. When the user add a variable
or a script to an object, the individual object changes its
“shape” and behavior.

2.3. Squeak Implementation

The implementation of eToys is also suitable to build a
customized and optimized particle system. EToys is built
on the top of a dynamic object-oriented language called
Squeak [9]. Squeak offers an open-source and reasonably
fast virtual machine (VM); the VM is ported to more than
two dozens of platforms. Also, Squeak provides a portable
way to write the customized VM routines called primitives.
A primitive is typically written in Squeak itself and trans-
lated into ANSI compliant C code. The code can be com-
piled by an optimizing compiler, and linked together with
the VM to improve the performance of certain operations.
In this way, the primitives are reasonably well optimized,
and highly portable among platforms.

The public version of Squeak only has a byte-code inter-
preter, but doesn’t come with a JIT compiler. However, as
shown in the section 6.2, Kedama spends most of the time in
primitives so that the interpretation overhead is very small.

3. The Kedama System

In this section, the overview of Kedama system is de-
scribed. The objects that consist of the system and the slots
and the commands the objects have are also explained.

3.1. The Objects in Kedama

In addition to the objects of eToys, Kedama defines three
new kinds of object. The most important one is the parallel
turtle. A parallel turtle represents a group of homogeneous
turtles, often explained as “a breed of turtle”. One of the
other objects is called a Kedama world that represents the
place in which the turtles reside. A Kedama world is a two-
dimensional plane and provides the coordinates and head-
ings for the turtles in it. The last type of object is the patch
variable. A patch variable provides a two-dimensional ma-
trix of cells. Each cell of this matrix corresponds to a grid
point in the coordinates of a Kedama world and holds an
integral value.

Similar to the objects in eToys, these Kedama objects
have graphical representations. The graphical representa-
tion of a breed of turtle is called an exemplar, and it is shown
as a small square on the screen. A Kedama world is typi-
cally magnified and shown as a bigger square than its logical
size. Turtles in the Kedama world are rendered as colored

¥ turtle2

sarigls

B urteziserip
S B ruene2iseript

| [turtlez’emptySeript

B turuez's; zrouped B grase:
B wenezs mruecount. EH 51
0! g kedama wrily
Cl B eed torvard byi§s e,

| B turtee turn byiEs

B turnezs;x Baas |
B rurtezs’y, BB a5
B turnez's heading B |00
B tuenez's solor- =
B ez anelets 0
{ B tuenezs bounceon, i
B ‘ez’ bounceDnColor i
! B ruenez die
B turnea's distanceTn 0

B turtlez's getReplicated:

[‘ @ O [eorpn foral x}

turtlez's! SpaichValueln patchi’ & fi 1000000

B wuenez's; patcnvaluern Eg 40

B -turttez's: mrieor

B wrnez's; mruevisive’ g % wue

v @ O [wrtez]sorpiz © sormsd 5

wrtle's x &ifH 70

[H -turtez's upHill 0

urtlez's §y & a0

Figure 2. A screenshot of Kedama session

pixels. A patch variable is shown as a square without mag-
nification. The value of each cell is converted to a color and
the color is shown at the corresponding pixel. If specified,
the cells are rendered in the corresponding Kedama world
as well.

Figure 2 shows a screen shot of a typical session. The
Kedama world is shown at the top-left, two patch variables
are shown at the middle, and two exemplars are shown be-
low.

The viewer for each different type of object provides dif-
ferent sets of properties and commands. The user combines
the commands and properties from viewers of different ob-
jects to construct scripts.

3.2. The Trade off: Big vs. Small Feature Set

When one defines a programming system, there is a trade
off on the size of the feature set the system provides. With
more features, the user could write more complex programs.
On the other hand, of course, too many features can easily
confuse the user.

This observation applies more to Kedama. The primary
audience of Kedama is school students, not necessarily a
technical group. The system should not overwhelm the au-
dience. Also, Kedama’s programming interface is graphi-
cal. The icons, tiles, and buttons to control too many fea-
tures would occupy more screen “real estate”.

Based on this observation, the development of Kedama
has been carried out by an incremental approach. It started
from a minimum system, and once the bare minimum ver-
sion started running, examples from other systems were
tested on Kedama to determine the most important features.

VPRI Technical Report TR-2005-001

After some iteration, examples that are unique to Kedama
were tested as well to refine the feature set.

The resulting feature set is interestingly concise. This is
the direct consequence of the characteristics of decentral-
ized systems; as described in Section 1, the description of
behavior of objects in a decentralized and complex system
tends to be very simple, yet the interaction between many
objects creates non-trivial simulations. This means that the
features to describe the behavior can be simple.

Table 1 lists the slots and commands of Kedama objects.
It lists the names and types of slots. The slots marked as
“(r)” are read-only, and others allow read and write.

3.3. Slots and Commands of Parallel Turtles

Parallel turtles have slots that can be classified into two
different flavors; one is intrinsic and the other is non-
intrinsic, or defined in relation with other objects.

Intrinsic ones, X, Yy, heading, color and visible, are de-
fined in a straightforward way. Note that the position x and
y) are defined in the Kedama world coordinates, however.
Also note that the turtles don’t “collide” with each other
unless the user writes a script to detect the collision.

Among the non-intrinsic slots, patchValue and upHill
are defined in the relationship with a patch variable. The
getter of patchValue gets a patch variable argument, and
returns the cell value at which the turtle resides. The set-
ter of patchValue, similarly, gets a patch variable and a
number as arguments and stores the specified number to the
patch cell at the turtle’s position. The upHill slot, which
is read only, gets a patch variable as an argument, and re-
turns the direction of steepest gradient in the patch from the
position of the turtle.

The getter of grabAtMyPositionOf gets an exemplar as
an argument and returns a turtle in a breed at the argu-
ment’s position. If there is no such turtle in the breed,
grabAtMyPositionOf returns itself. A special kind of getter
of getReplicated creates the receiver’s clone and returns
the newly created clone. The read-only slots, angleTo and
distanceTo return the angle and distance to the specified
turtle, respectively.

The commands of the parallel turtle are simple. The se-
mantics of forward by and turn by is the same as eToys’.
The die command removes the executing turtle from the
system.

The turtleCount slot is special in the sense that it con-
trols the property of a breed itself. The change of the
turtleCount value is instantly reflected and the number of
turtles in the breed changes.

Table 1. The slots and commands of Kedama

Slot or command name Type
Turtle slots (intrinsic)
X, y, heading Number
visible Boolean
color Color
Turtle slots (derived)
patchValue Number (1)
upHill, angleTo, distanceTo Number
getReplicated, grabAtMyPositionOf Turtle (r)
Turtle commands
forward by, turn by, die
Turtle breed slots
turtleCount Number
Kedama world slots
color Color
pixelPerPatch Number
topEdgeMode, bottomEdgeMode, Symbol
leftEdgeMode, rightEdgeMode
patchDisplayList, turtleDisplayList Collection
Patch Variable slots
color Color
displayType Symbol
shiftAmount, scaleMax, sniffRange, = Number

evapolationRate, diffusionRate

Patch Variable commands
decay, diffuse

3.4. Slots and Commands of Kedama World

A Kedama world offers the following intrinsic slots:
There are four “edge modes” that specify the default be-
havior for turtles. If a turtle is about to move off an edge of
the Kedama world, the turtle’s new position is determined
by the corresponding edge’s mode. If the mode is wrap,
the turtle wraps around to the opposite edge. If the mode is
bounce, the turtle bounces back. If the mode is stick, the
turtle stops at the edge.

The color slot specifies the background color and
pixelPerPatch specifies the magnification upon rendering.

A Kedama world keeps track of associated patches and
breeds of turtle to be rendered on top of it. The slots,
patchDisplayList and turtleDisplayList provide them re-
spectively.

VPRI Technical Report TR-2005-001

3.5. Slots and Commands of Patch Variable

A patch variable offers three different functions to
map the integral values in its cells to colors. A slot
called displayType specifies the function. The options are
logScale, linear, and color. If displayType is logScale,
the logarithm of the value is calculated first, and the log
value is used to determine the saturation of the hue spec-
ified by the color slot. If displayType is linear, the value
is shifted by the amount specified by the shiftfAmount slot
and the result is used as the saturation of the shade of color.
If displayType is color, the value is interpreted as a pixel
value of R:G:B = 8:8:8.

The decay command reduces all values at the rate spec-
ified by evapolationRate slot. Similarly, the diffuse com-
mand reduces all values, but it uses the average of the neigh-
boring cells for the new value of a cell.

3.6. Plotting

In a complex system, it is important to extract a repre-
sentative value of the entire system and plot a graph to un-
derstand the collective behavior. In a typical programming
environment, the plotting feature is built-in so the user only
needs to specify the variable to plot the graph for the vari-
able.

Kedama, of course, allows the user to make a graph plot-
ting. However, the biggest difference of Kedama is that the
plotter object is no different from normal eToys objects; i.e.,
the plotter object is also tile-scriptable. The user can change
the parameter of plotting in the same manner he manipu-
lates other objects. The idea is to expose the otherwise hid-
den “under the hood” machinery to the user so that he can
explore the system without requiring additional knowledge.

3.7. Color Manipulation

In Kedama, there is another set of features to support the
bulk manipulation of colors of turtles. If a Kedama world
can be “filled” with turtles; i.e. create a turtle at each grid
point, whole new classes of examples are possible. One
interesting class of examples is to have the turtles exchange
their colors between themselves and patches and “wear” the
color. Or, a kind of patch programming, where each cell is
actually a turtle, can be possible, too. Thanks to the per-
formance of Kedama, it is practical to do “fill the world”
examples and create a real-time animation.

4. Semantics of Parallel Execution

In Kedama, the semantics of scripts needs some consid-
eration because of the presence of parallelism. The paral-
lelism should not only be accommodated, but in a way that

is understandable to non-technical users without sacrificing
the performance.

There are two important questions to be answered to de-
fine the semantics. These questions are “how many times
is a command executed?” and “in what order are the com-
mands executed?” The questions are answered by the key
concept I call line-wise synchronization and single thread
execution.

Suppose we have multiple commands in a script and one
of them is a forward by command for a breed of turtle.
Upon the execution, all the turtles in this breed move for-
ward. In the other words, this command is executed a num-
ber of times that is equal to the number of the turtles. The
line-wise synchronization concept means that a command is
executed only after all the actions associated with previous
commands are completed. In this example, all the turtles
in the breed move forward before the next command in the
script takes effect.

Another concept is the single thread execution; that is,
for each invocation of a script, there is only one thread run-
ning through the entire script. If a command in the script
doesn’t have any side-effect, its actions can be optimized.
However, if an action caused by a command on a turtle has
some side-effect, the side-effect is visible to the action on
the next turtle. A Test-Yes-No command, which corre-
sponds to an if-then-else statement in a typical language,
is treated as a larger but otherwise normal command; i.e.
for each turtle in the breed, the Test and execution of the
commands in either the Yes or No clause are repeated.

Figure 3 and Figure 4 depict the execution semantics.
Figure 3 shows the sample script, and the black line in Fig-
ure 4 shows the flow of control.

The flow of control enters from the top of the script. The
first command in the script resets the numinTopHalf slot of
the object named Kedama to zero. Since this slot is defined
for a non-turtle object, the assignment action is executed
only once.

Then, the process threads through the forward by com-
mand. This is a turtle command thus executed for each tur-
tle in the turtle1 breed. The jagged line in Figure 4 depicts
that the action is taken as many times as the number of the
turtles in the breed.

After the completion of the forward by actions on tur-
tle1’ turtles, it executes the Test-Yes-No tile, which is
treated as one “fat” command. Since it has a reference to
the turtle1, this fat command is executed for every turtle
in the breed in a serialized manner. For each turtle in the
turtle1 breed, the command checks the turtle’s y coordi-
nate and increase the numinTopHalf slot by one if y is less
than 50. As a net effect, the value of numinTopHalf will
indicate the number of turtles in the turtle1 breed whose y
coordinate is less than 50.

Lastly, the thread updates the plotter’s x and y. These

VPRI Technical Report TR-2005-001

Figure 4. The thread of execution on the script

two lines are non-turtle command so they are executed just
once.

5. The Implementation

The implementation of Kedama can be divided into three
layered parts. The upper level that the user interacts with
is the user interface (UI) part. At the middle level, there
is the internal representation of objects. At the bottom is
the Kedama execution engine that contains the optimized
primitives. All of these are implemented in Squeak. The
line count of code is about six thousand.

Kedama’s Ul extends the eToys’, which is written in a
GUI framework of Squeak called Morphic [10]. In Mor-
phic, all graphical entities, including viewers, tiles, and user
objects are a sub-instances of the Morph class in the frame-
work.

A careful design of the data representation of a parallel
turtle is crucial to gain performance. In the current imple-
mentation of Kedama, the values of the same slot for all the
turtles in a breed are stored in a homogeneous array. For ex-
ample, the X coordinate of turtles in a breed are stored in an
array of 32-bit floating point value, so are y, heading, and
other user-defined slots. These arrays are legitimate Squeak
objects and also have compatible memory format with ar-
rays in C language. These arrays are then passed to the
execution engine and manipulated uniformly.

Kedama implements a parse-tree-to-parse-tree transfor-

Chamber's ceilingFos2 = ‘$52,5

Champer's zravs 0

molecule's wrileCount = £2000

e L

molecule:forward by §1.03

Test molecule's’yi§<iChamber's ceilingPos:

‘Chamber's & ceilingMomentum increase byi§ 505

Yes ‘molecule'si§y € Chamber'siceilingPos’§+i51 -
‘moleculeturn by 180 %
No

ChamberisetCeiling

14 O [Chamber] setceiing ~ faemmal? [Z] 36

Chamber's: § ceilingMomentum decrease by Chamber'sigravity

Chamber's:§ ceilingPos decrease by Chamber's;ceilingMomentum:d *1§0.01 3]

celling's:Ey «iChamber's celingPos

Chamber's;% ceilingPos2 + $100!#-{Chamber'siceilingPos:

Figure 5. A gas tank with a moving ceiling

mation so that the commands to the parallel turtles are trans-
lated differently. During this transformation, tiles are iden-
tified as a parallel command or not, and added the invoca-
tions of the execution engine primitives and special control
structure in it.

The Kedama execution engine is a set of primitives. The
execution engine contains 38 exported primitives and 7 sup-
porting functions. Some of the primitives are used to opti-
mize the parallel commands such as forward by and turn
by. Others support the rendering such as the patch vari-
able color mapping. The engine also contains various vec-
tor arithmetic primitives. These are used to improve the
performance of “vector and scalar” or “vector and vector”
operations that show up in user-defined expressions.

The graphical tile scripting system limits the available
operations and the combinations of types; however, this is a
blessing rather than a curse. The limiting nature of possible
operations makes it possible to provide primitives for these
operations beforehand.

6. Kedama in Action

Kedama is and is not a prototype system. While it will
evolve over the time, it is stable, has a good feature set,
and ready to use in classrooms. In this section, an exam-
ple that takes advantage of Kedama’s expressive power and
performance, some performance evaluation, and the multi-
lingual feature to put it in classrooms around the world are
discussed. To see more examples, refer to another paper
by the author [11]. Also, the common examples presented
in [1], such as the ant colony and termites, are successfully
replicated in Kedama.

6.1. A Gas Tank Example

Figure 5 is a screen shot from a simulation of gas parti-
cles in a chamber. There is a moving ceiling represented by

VPRI Technical Report TR-2005-001

another breed of turtle, and there is also a gravity field. The
ceiling is pulled downwards by the gravity field thus trying
to do a constant acceleration motion. However, when a par-
ticle hits the ceiling, it gives a small momentum upwards to
the ceiling and bounces back. The edge mode of bottom,
left, and right are set to bounce so as the ceiling closes to
the bottom edge, the more particles hit the ceiling and give
more momentum to the ceiling. With thousands of particles,
individual behavior is averaged out and the ceiling position
reaches equilibrium.

The user can change the parameters such as the number
of particles and the gravity constant dynamically. When
the user does so, the animated motion from the old to new
equilibrium is compelling for the user to see why the ideal
gas equation stands.

The code for this example is simple. There are only ten
lines in a ticking script, and about seven in the scripts to set
the initial condition.

6.2. Performance

The data layout in homogeneous arrays is in the native
C format so that they can be manipulated directly by C-
compiled primitives. If the Squeak VM spends a large po-
tion of the execution time in primitives, we can say that the
byte-code interpretation is not the bottle neck; other imple-
mentation languages wouldn’t give too much performance
improvement over current Kedama’s implementation. In
simple examples such as “Bouncing Atoms” in [11], the
system spends about 80% of time in primitives of Kedama.
On a Pentium-M 900MHz computer, “Bouncing Atoms”
with 20,000 particles runs at about 32 frames per second.
For comparison, an equivalent example in NetLogo 2.1 runs
about 1.8 fps with “Exact Turtle Positions & Sizes” setting
turned on (default) or 8.7 fps with off. Note that the latter is
closer to what Kedama does, but still Kedama outperforms
more than 3 times.

As the model becomes more complicated, the advan-
tage of having the pre-compiled parallel primitives becomes
smaller. However, even in the worst case, where all opera-
tions are serialized, Kedama retains the performance advan-
tage.

6.3. Localization

Kedama should be accessible to the students all over the
world. Since the primary audience of Kedama is school
students, non-English speaking students should be able to
use the system in their native language.

The author and his colleagues have added the multilin-
gualization feature to Squeak [12] so that it can handle
multi-byte character sets. Also, Squeak has a simple mes-
sage catalog translation mechanism called “Babel”, imple-

mented by Diego Gomez Deck. With these mechanisms,
and again, thanks to the limiting nature of tile-scripting,
Kedama provides a way to translate a// messages, tiles, and
other UI related phrases visible to the user. The Japanese
version is fully done, and the author expects that adding
more languages is straight forward.

7. Related Work

As mentioned many times in this paper, StarLogo and
NetLogo have been used in schools. Kedama is inspired by
them, but the author believes that it overcomes some of the
predecessors’ drawbacks.

There are more advanced particle systems such as
Swarm [13] and Agentsheets [14]. Swarm is an Objective-C
library and provides a powerful simulation environment, but
it isn’t a dynamic manipulation environment, and requires
far more complex textual coding to do simple programs.

Agentsheets supports a wider variety of functions and
has a GUI tile scripting interface. However, it doesn’t sup-
port full direct manipulation, such as dynamic code editing.

8. Conclusion

A massively parallel particle system called Kedama is
presented. Kedama has graphical tile scripting that is aimed
to non-technical students. Kedama’s dynamic interaction
lets the user change the code and parameters while the sys-
tem is running and freely explore the problem domain.

The implementation utilizes a highly-portable, open-
source virtual machine. The performance is typically faster
than the similar systems implemented in Java.

The use of tile scripting has many advantages. Not only
does it make the system more accessible to end users, the
execution engine can provide optimized primitives.

Kedama is now stable enough to try in actual
classrooms. Colleagues and I are planning to use
the system at high schools this year (2005). The
package is available for everyone for free via the
Internet at http://www.is.titech.ac.jp/
“ohshima/squeak/kedama/, or an Internet search
with “Kedama Squeak”.

There are some areas to be improved. For example, the
integration with Point type adds the ability to use point-
and vector-functions in expressions will add another level
of expressiveness.

References

[1T M. Resnick, Turtles, Termites, and Traffic Jams: Ex-
plorations in Massively Parallel Microworlds (Com-
plex Adaptive Systems). MIT Press, 1994.

VPRI Technical Report TR-2005-001

[2] U. Wilensky, “NetLogo,” 1999, http://ccl. northwest-
ern.edu/netlogo/.

[3] S. Papert, Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, 1980, (Second Edition
1993).

[4] A. Kay, K. Rose, D. Ingalls, T. Kaehler, J. Maloney,
and S. Wallace, “Etoys & SimStories,” February 1997,
Imagilearning Internal Document.

[5] B.J. Allen-Conn and K. Rose, Powerful Ideas in the
Classroom. Viewpoints Research Institute, 2003.

[6] D. G. Deck and J. L. R. Rodriguez, “Squeak in Spain
as Part of the LinEx Project,” in Proceedings of the In-
ternational Conference on Creating, Connecting and
Collaborating through Computing (C5), 2004, pp.
160-165.

[7] S. Konomi and H. Karuno, “Initial Experiences of
ALAN-K: An Advanced LeArning Network in Ky-
oto,” in Proceedings of the Conference of Creating,
Connecting and Collabora ting through Computing
(C5), 2003, pp. 96-103.

[8] T. Yamamoto, Play With Squeak (in Japanese).
Shoeisha, 2003.

[9] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay, “Back to the Future — The Story of Squeak,
A Practical Smalltalk Written in Itself,” in Object-
Oriented Programming, Systems, Languages, and Ap-
plications, 1997, pp. 318-326.

[10] M. Guzdial and K. Rose, Squeak: Open Personal
Computing and Multimedia. Prentice Hall, 2002, ch.
An Introduction to Morphic: The Squeak User Inter-
face Framework, pp. 39-68.

[11] Y. Ohshima, “The Early Examples of Kedama, A Mas-
sively Parallel System in Squeak,” in Proceedings of
the Conference of Creating, Connecting and Collab-
ora ting through Computing (C5), 2005.

[12] Y. Ohshima and K. Abe, “The Design and Implemen-
tation of Multilingualized Squeak,” in Proceedings of
the Conference on Creating, Connecting and Collab-
orating through Computing (C5). 1EEE, 2002, pp.
44-51.

[13] M. Daniels, “Integrating Simulation Technologies
With Swarm,” Agent Simulation: Applications, Mod-
els and Tools, 1999.

[14] A. Repenning, “Agentsheets: A Tool for Building
Domain-Oriented Dynamic, Visual Environments,”
Ph.D. dissertation, Colorado University, 1993.

