|

18|

r

~t
T

tewpoints Research Insti
I

TranSqueak - Making the world a smaller place
On-the-fly translation of Etoy projects
and instant messaging

Michael Ruger, Yoshiki Ohshima

VPRI Technical Report TR-2004-001

Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

TranSqueak - Making the world a smaller place
On-the-fly translation of Etoy projects and instant messaging

Michael Riiger
Yoshiki Ohshima
Viewpoints Research Institute
1209 Grand Central Avenue
Glendale, CA 91201, USA
michael@squeakland.org
Yoshiki.Ohshima@acm.org

Abstract

This paper presents an extension to the existing
multilingualization work (m17n) which will allow peo-
ple to collaborate on Squeak Etoy projects across
different natural languages.

Squeak etoys support several languages, both ISO-
Latin based ones (erg., English, German, French), and
non-1SO languages (e.g., Japanese). Switching
between languages for the Etoy tiles is fairly easy to
support as the tiles provide a predefined set of words
and phrases, which only need to be translated once.

There are two areas where we need to go beyond
the predefined and pre-translated set of phrases: user
supplied names and communication between collabo-
rators. This paper will present an approach based on
online translation services. We will demonstrate a
working prototype and a first analysis of the feasibility
of this approach.

1. Introduction

“The real technology
—beyond all our other technologies—
is language” [1]

Squeak, and with it Squeak Etoys, is open source
software - which means it is a communal effort of
people from various backgrounds, both technical and
cultural. Throughout the programmer community ([2]
[3] English is the lingua franka of choice, but even
there the different cultural backgrounds occasionally
lead to misunderstandings.

Since the Squeak Etoy system was made available
on Squeakland.org [4] to a larger audience in early
2001 it has successfully been adopted in schools
around the world. The multi-lingual Squeak developer

community provided the necessary support for multiple
languages and character sets. During the film shoot for
the Squeakers documentary [5] an interactive session
between students at a Squeak workshop at CAMP [6]
and children from the Open Charter School in Los
Angeles took place. It was then that we realized how
the language barrier made this almost impossible to do.
Being accustomed to more or less fluent
communication in English with adults from all over the
world we tend to forget that children do not have a
fluency in foreign languages.

So when we started work on providing subtitles in
several languages for the Squeakers documentary the
idea came up to build support into the Squeak Etoy
system to overcome the language barrier.

Squeak already supports several languages, both
ISO-Latin based ones (e.g., English, German, French),
and non-ISO languages (e.g., Japanese) [7]. The
Squeak Etoy system with its tile based scripting system
makes it fairly easy to support translated versions of the
tiles as the tiles provide a predefined set of words and
phrases, which only need to be translated once.

There are two areas where we need to go beyond the
fixed set of phrases: user supplied names (objects,
variables, scripts) and direct communication (instant
messaging) between collaborators.

Squeak's network support tools can be used to con-
nect to on-line translation services to translate strings
on-the-fly. Thanks to Squeak's reflection capabilities
we are actually able to identify strings that need to be
translated and replace them with their translated
counterparts. There are a number of special cases like
composite words that need to be taken into account.

Communication between collaborators making use
of the Squeak implementation of the Jabber [8] instant
messaging protocol can be intercepted and translated
using the same mechanism.

nn

COMPUTER
SOCIETY
VPRI Technical Report TR-2004-001

Proceedings of the Second International Conference on Creating, Connecting and Collaborating through Computing (C5'04)
0-7695-2166-5/04 $20.00 © 2004 IEEE

2. Machine Translation

Machine translation (MT), as natural language trans-
lation has been called historically, has become more
widely available in recent years:

“One of the earliest pursuits in computer science,
MT has proved to be an elusive goal,
but today a number of systems are available
which produce output which, if not perfect,
is of sufficient quality to be useful
in a number of specific domains. " [9]

In addition to a number of commercial products and
services there are also a few free systems available,
both standalone and online systems (Ergane, Traduki,
Linguaphile, GPLTrans, Google language tools,
Babelfish, Excite Japan [10-16]).

Most of the above systems are still in a rather
rudimentary state, but Babelfish and the Excite Japan
sites seemed promising. Those translators are primarily
designed to translate short, but complete sentences.
We’ll discuss the applicability of them in the section
“Evaluation”.

Our original design goal was to use the Babelfish
web service, but, unfortunately, it turned out it had
been disabled. As the Excite Japan site does not
support web services we decided to use the standard
http protocol to send the translation requests and
retrieving the translation results by parsing the returned
html page.

The mechanics of corresponding with the particular
translation service are encapsulated in the implementa-
tions of the WebTranslator clients for Babelfish and
Excite Japan..

3. Translating Instant Messages

Collaboration on (Etoy) project requires a form of in-
stant communication. Possible forms are communica-
tion by (video) phone, audio chat or instant messaging.
As we are a looking at a way of building a bridge
across the language barrier, none of the audio based
forms of communication would work. At least not until
real time translation of spoken language becomes avail-
able to us.

For our prototype we used the Squeak implemen-
tation of the Jabber protocol [8] which is based on
XML. The current implementation of the XML tools in
Squeak does not yet support multi-byte character
encodings and needed to be patched accordingly.

The next step was to connect the chat client with the
translation mechanism. There are two options to
translate the message text: on the sender or the receiver
side. We decided to have the receiver of a message
perform the translation avoiding the need to first
transmit the destination language setting to the sender
first. We still need to transmit the source language
setting. The XML standard fortunately already
supports this through the “xml:lang” tag:

<message
from="squeak@buccaneer. impara.de/home"

to="michael@buccaneer.impara.de"

type="chat"

xml:lang="en">

<body>Hello, how are you?</body>
</message>

After receiving a message the modified Jabber client
extracts the body of the message and hands it over to
the WebTranslator client. After receiving the translated
string it replaces the original body of the message with
the translated string and forwards it to the message list.

X Chat for squeakebuccancer.impara.de/home @0
squeak@tuccanesr impara.deshome | Hello, how are vou? =
squeakatuccaneer impara.defhome @ Hallo, wie geht es Ihnen?
michael @ Fut, danke,
squeakatuccaneer impara.defhome @ Can vou help me with a problem?
aqueakabuccaneer impatra.defhome - Kontien Sie mir mit eifiem Problem helfen?
michael | Seltatverstasndlichl!
aqueakabtuccaneer impatra.defhome © How <can a car follow a path?
squeaketuccanesr impara.defhome @ Wie kann ein Auto einem Weg folgen?
michael 1 Sie brauchen ein Sensor und den "color sees” Test
squeak@tuccanestr impara, defhome | And the "color sees” needs to zee the path's color?
squeakatuccaneer impara.defhome : Tnd die "Farte zieht” Notwendigkeiten. die Farte des Weges zu zehen?
Figure 1:
An example dialog between German and English.
The original English phrases are shown with the translated counterparts for reference.
Proceedings of the Second International Conference on Creating, Connecting and Collaborating through Computing (C5'04)
0-7695-2166-5/04 $20.00 © 2004 IEEE

VPRI Technical Report TR-2004-001

4. Translating Projects

In this section, we discuss the design and implemen-
tation of the Squeak project translation.

A Squeak project can conceptually be considered to
represent a desktop, or the live state of a user’s work
consisting of a set of objects. The objects include
visual and non-visual objects, and, of course, strings.

The Squeak system has a mechanism to extract all
necessary objects within a project from the entire
system, serialize them, and store them into a file. This
file is called a project file. The file can be later loaded
into Squeak and will continue the execution from the
state when it was saved.

Our goal is to translate the strings that represent the
names and symbols in a project, here specifically Etoy
projects as those are the ones mainly used by children.
One could imagine to translate all code written by pro-
grammers though.

In a Squeak Etoys project there are only a limited
number of places where the user can input text or
names.

They can be categorized into five types:

a) object name

b) script name

¢) variable name

d) button label

e) text in a TextMorph
When a project is stored into a project file, the strings
are saved together with the objects that refer to them.
We utilize the knowledge about this structure to
identify which strings should be translated. We need
three steps to translate the strings in a project:

The first is to identify the strings to be translated
(Identifying). The second is to translate the strings
(Translating). The third is to replace the original
strings with the translated ones gracefully (Replacing).

In the following, we will first discuss the overall
strategy and then the details of each step.

4.1.The Strategy

Translating the strings in an Etoy project turned out to
be more challenging than the straightforward approach
used in the translation of instant messages.

Simply replacing strings in the project file is not
possible as the length (and class) of a string may
change in the process. Strings contained in projects
also appear in a variety of contexts, each requiring a
different approach and interpretation of the translation.
Strings in a button can be simply translated and re-
placed whereas names of scripts or variables have to
conform to certain syntactic restrictions (no white
space, special characters, beginning uppercase letter
etc) and are often composed of several word

components. So basically we need to first analyze each
string's context before we can start the translation
process.

Opening a project internally involves three stages:
loading the project (unserializing it), entering the
project (setting up internal structures and connecting it
to the system environment) and finally starting the
interactive session. The second stage modifies some of
the project structures, creating objects originally not
included in the project. Therefore we need to identify
all strings after loading the objects but before entering
the project. After the project is fully set up we can then
replace the strings with their translations before the
interactive session starts (Figure 2).

I i £yi
Unserialize dentifying

objects in file

I
]

Enter
the project
T Translating
[

)
L

Start interactive
session

Replacing

Figure 2:
Stages of project loading and translation

The translation step is relatively simple. After the
identifying step, we use the same Web-based translator
to get the translated result. However, there are many
special cases to be taken into account. As we wrote
above, the translated result of a script name, for
instance, needs to be an acceptable (syntactically
correct) script name. The result from the Web-based
translator needs to be checked and modified if
necessary to conform to these requirements. We will
discuss the details in section 4.3 .

Finally, the original string has to be replaced with
the translated result. Although there are existing meth-
ods for replacing object names, and to a limited extent
for script names, these methods rely on the current
Presenter which governs the scripting system status in
the current project. This means that the replacing step
needs to be done after the project has been entered (see
again figure 2)

4.2.1dentifying the Strings
Identifying the strings to be translated is done after a

project file is loaded, all objects in the file are unserial-
ized, and the references between the objects are proper-

nn

COMPUTER
SOCIETY
VPRI Technical Report TR-2004-001

Proceedings of the Second International Conference on Creating, Connecting and Collaborating through Computing (C5'04)
0-7695-2166-5/04 $20.00 © 2004 IEEE

@0 p-coos[m< =D] X
Mo SO OED|SIRE LATFEET[$rS
o SONE FEDS I SOOEED IR

L v Ao D UEE
[o |
0 ;B8

Bt T ER D hIREE

A A

L
2

A

Q] & 27U7H
VE o Sl # e
LE s SovinBE TS U F R

., -

A==)

Figure 3:
An example Japanes Etoy with script and variable names

ly restored. At this point, the ProjectLoader class has
access to the array of all objects in the project. This
array is called arrayOfRoots. The expression in
figure 4 retrieves the array of morphs with a name that
needs to be translated.

morphOrList arrayOfRoots select: [:0b |
ob isMorph and: [ob knownName notNil]]

Figure 4:
Retrieving the array of “morphs to be translated”

All user created Morphs, either painted, grabbed from
the supplies flap, or the object catalog, have a property
called knownName. A knownName is indeed a type
of the strings to be translated. The translator selects the
sub-instances of Morphs which have a knownName
defined from the arrayOfRoots In the following, this
selected array is referred to simply as “morphs to be
translated”. User-defined scripts and variable names
can be tracked from this array. The same applies to
buttons and TextMorphs as they also have the
knownName property.

A special case here are the watchers for variables.
Watchers are instances of UpdatingStringMorph with
no knownName defined, but they own a reference to
the name of the variable. In order to translate the
variable references in watchers correctly, the instances
of UpdatingStringMorph are selected from the
arrayOfRoots as well.

Note that not all UpdatingStringMorphs are
watchers and therefore might not need to be translated.
In the subsequent process, we check the accessors in
the watchers to determine whether the instance of
UpdatingStringMorph should be updated.

Up to this point everything can be done using meth
ods in class ProjectLoading. However, at a later stage
we would like to utilize the existing methods of
Presenter to distinguish user defined script names and
variable names from others. We therefore store the

user created objects and the array of UpdatingString-
Morph in the project parameters.

After entering the project, Presenter’s allKnown-
ScriptSelectors method is used to identify the user
defined script names. The user-defined variables are
defined in sub instances of Player. So variable names
are collected from those players that are associated
with morphs in the “morphs to be translated” array.

The contents of TextMorphs, and labels of buttons
are also collected.

4.3.Translating the Strings

The translation is performed on the collected strings in
a similar manner as with the chat messages. However,
care has to be taken for the different context in which
strings appear. For example, the script names should
not contain any white spaces or special characters. To
adjust the result from the Web translators to Squeak's
syntactic conventions, the strings have to be processed
and modified if necessary. This is simply done by
removing the “dangerous” characters.

In English, multi-word script names are often
composed out of several concatenated words; e.g.
turnRight. The same is applies to variable names. To
translate these strings as well, the concatenated words
need to be split into their components before being
passed to the Web translator. A simple state-machine
based converter that looks at the Capital letters in the
string suffices in this case. After the translated
components come back the string needs to be
composed again, meaning the strings have to be
processed before and after they are passed to the Web
translator.

Another detail in this step is the fact that there is
already a large set of translated words. The localized
version of Squeak Etoys includes a dictionary with app.
one thousand entries with translations for button labels,
default object names, command and slot names, and
dialog messages. Those should be translated

nn

COMPUTER
SOCIETY
VPRI Technical Report TR-2004-001

Proceedings of the Second International Conference on Creating, Connecting and Collaborating through Computing (C5'04)
0-7695-2166-5/04 $20.00 © 2004 IEEE

consistently. The translator should take this dictionary
into account and consult it before going through the
Web translator.

A final detail is the asymmetrical nature of the transla-
tion requirements: a non-English speaking teacher or
student is usually forgiving of the occasional ap-

pearance of English words, but an English teacher or
student will have a problem if a translated project still
contains Japanese characters (see figures 6 and 7).
Since the Web translator typically returns the original if
it cannot translate the given words, this is not just a
hypothetical situation.

This issue has to be addressed differently based on
the direction of translation. From Japanese to
European languages, we use Kakasi[17] to translate
“all” the Japanese characters into alphabetical notation.
While Kakasi cannot handle uncommon proper names,
it allows us to replace all Japanese characters with rea-
sonably good roma-ji notation. The Kakasi program is
called via OSProcess [18].

words to be

translated

unknown veocabulary

split Squeaky word known vocabulary
into words

Web translation

Remove Japanese chars
with Kakasi
if necessary

translation by

4.4.Replacing the Strings

internal dictionary

The final step is to replace the strings. Object names
l can be simply replaced with the #tryRenameTo:
method. As the #tryRenameTo: method notifies the
affected objects, we don’t have to take any further
actions in this case.

If a morph has an associate player the morph is
scripted and may have user-defined scripts and
variables. Renaming those requires special care
because they are also used in the body of scripts.

The existing facility for renaming the script name
(Player>>#renameScript: newSelector:) does not
change the script names used in the Script-
EditorMorphs. While we implemented a reasonably
good mechanism to translate the script names in the tile
scripts, this is still an on-going issue. There are cases
where the automatic conversion is not guaranteed to
work: a script name may be used as the argument for
the PlayField’s #tellAllContents: or even stored into
a variable if the type of the variable is set to script
name. The real problem for those cases is that the

v At ZUAEE

normal IEI X [D = | |]

<

adjust result to
the convention

merged
results

to the next step

Figure 5:
The steps involved in the translation of
script, variable or object names

tio) O [B= cOuE[8¢

s :L\¢\$'3|; NEE increase b':.r| —) QO & variables]
L] = %\ =3 il -
o SUviaER forward by s ZUOVGER's NIEE s =GV AEE s IR . Lo
’ —
Q| £ soripts)
! o SUnviER E normal
1 Ito ZLAGER emptySoeript
L -
Figure 6:
An example Japanese Etoy with only partial translations
Proceedings of the Second International Conference on Creating, Connecting and Collaborating through Computing (C5'04) .mﬂ
0-7695-2166-5/04 $20.00 © 2004 IEEE g)(f;’icpllé{%

VPRI Technical Report TR-2004-001

L @ O [ASmartar] ithoves

ASmartEar's| v acceleration increaze bj.r| w5

ASmartCar forward bvw ASmartCar'zlacceleration

fiormal IEI x

=2 B v ASmartCar

L
e

[D Search |
"
Q| & variables)

AZmartCar'z acceleration . 0.0

e ~

=
<,

O
1 B
1 B

Lo

= zoripts)

AZmariCar itMoves

AZmariCar emptvSoript

tiormal

Figure 7:
The fully translated Japanese Etoy

script name can be detached from the Player that owns
the script. The interactive script rename function of the
Squeak Etoy system cannot tell which of the symbols it
should rename, because there may be different scripts
in different objects that share the same name.
Fortunately, we can expect that the same script name in
different objects will be translated to the same one. If
we translate “all” of the occurrences of a script name
(represented as an instance of Symbol), no matter
where they are, into the same translated string at once,
most projects can be expected to continue to work after
the translation process.

One may think that renaming variable is as tricky as
it is the case with script names. However, a variable
name is strongly tied to the player in a script, and it
only appears in the scriptors. It is possible to
implement an interactive function to rename a variable
that can be guaranteed to do the right thing. We have
implemented the interactive function first, and then the
translator utilizes this function in this step. The
interactive function recursively traverse the tiles in the
ScriptEditorMorphs, and renames the appropriate
variable occurrences.

The interactive variable renaming function has to
take the two special cases into account. One is
watchers and the other is siblings.

A watcher, or an UpdatingStringMorph which
behaves as a watcher, accesses the value of the variable
it is associated with by calling the standard getter and
setter. If the target is the Player that owns the variable
being renamed and the setter and the getter selectors
match the standard getter and setter, the function
updates the accessors as well.

The other case is siblings. If a variable of one of the
siblings is changed, all of the siblings and the watchers
watching the siblings have to be updated as well.
Translation of button labels is mostly straightforward.
However, some of the system defined buttons, such as

0-7695-2166-5/04 $20.00 © 2004 IEEE

the “trigger” setting button at the top of the
ScriptEditorMorph, has the knownName. While
translating it does not hurt program execution, it isn’t
the “precise” way.

TextMorph content translation is straightforward.

5.Evaluation

For testing purposes we gathered the 115 projects from
“Project Okiba”[19]. Not all of them are pure Squeak
Etoy projects, but we did get a good sense on how well
the translator performs.

Attempting to translate all of the projects provided
great input to the debugging process, as the site has a
wide variety of projects by different authors. The
flexibility of the Squeak Etoys system allows the user
to construct her projects in very different ways.
Limiting the tests to our own projects only would never
have shown all the different cases.

We found that the translation quality of strings in
projects was not satisfying. One of the reason is that
online translators are not designed to handle short
names or incomplete sentences as they are typically
used in programs. In case of Squeak Etoys, pro-
grammers tend to use simpler words, often words in
Hiragana. An incomplete sentence with excessive
Hiragana seems to confuse the Web based translators
easily.

One the reason they use simpler words is there are
many inexperienced programmer (or people who
consider themselves non-programmers) trying to write.
Also the existing translation is aimed towards children
and tends to use hiragana.

Even with the small samples size of instant
messaging dialogs we made a couple of interesting
observations concerning the behavior of the web based
translators we used. For one the Japanese translation
tends to err on the side of politeness. This is even

Proceedings of the Second International Conference on Creating, Connecting and Collaborating through Computing (C5'04)

nn

COMPUTER

VPRI Technical Report TR-2004-001

SOCIETY

x Chat for yoshikiebuccaneer.impara.de/temp

e

voshikigbuccaneer impara.deftemp @ Squesk THMADEIEHE T T,
voshiki@tuccaneer. impara. deftemp @ It iz funny to plavy with Squeak, is,
voshikigtuccaneer impara.dedtemp @ Squeak T BEs (F8E L0,
voshikigbuccaneer impara. deftemp ¢ It iz pleasant w0 play with Squeak,
michael 1 I think so ool

michael : Do vou like Math?

voshiki@tuccanesr impara.dedtemp @ B PdEE T

voshikigbuccaneer impara.defteny | We like mathematicz

michael : Can you help me with a project?

voshikigbuccaneer impara.deftemp : EATHEITLET
voshikigbuccaneer. impara. deftemp | Bejoicing, we help

michael ! I want 1o drive a car

voshikigtuccaneer impara.deftemp : HALEELZHF- ToFgFTh T
woshiki@buccaneer. impatra, destemp © Do vou have the car?
michaegl | Yes

voshikigbuccaneer impara, desftenny @
voshiki@tuccaneer. impara, deftemp

BOEE s, AV FILOESE2ITAT SN

Pleaze trv being atle to connect the direction of the car and the direction of

the steering wheel
michael @ Thank vou, now [understand!

voghikigbuccaneer impara.deftemp @2 MEFD|VET 2+, EOFEIEH U ET

voshikigbuccaneer. impara. deftemp © When it iz worthy of direction division, driving the <ar btecomes simple

Figure 8:
An example Japanese-English dialog

visible in the English translation in the dialog seen in
figure 8. Another is the obvious difficulty of dealing
with referential expressions in sentences.

More on the amusing side: various
translations of the word "Squeak".

literal

6.Future Work

As we test more programs, we’d expect to gather more
typical words and extend our own dictionaries for user-
defined Squeak Etoys vocabulary. The translations
could also be cached so they would be available
offline. Human intervention: After an initial machine
translation the result could be refined by the user and
then cached for future reference.

7.References

[1] Norman Fisher, (Wired 1999: 134).
[2] http://squeak.org/
[3] http://lists.squeakfoundation.org/listinfo/squeak-dev

[4] http://squeakland.org/whatis/whatishome.html
[5] http://www.squeakersfilm.org/

[6] http://www.camp-k.com/

[7] Yoshiki Ohshima and Kazuhiro Abe.

The design and implementation of multilingualized
squeak. In Proceedings of the Conference on Creating,
Connecting and Collaborating through Computing
(C5), pages 44-51. 1IEEE, 2002.

[8] http://www jabber.org

[9] http://www.eamt.org/mt.html

[10] http://www .travlang.com/Ergane/

[11] http://traduki.sourceforge.net/

[12] http://linguaphile.sourceforge.net/

[13] http://translator.cx/

[14] http://www.google.com/language tools
[15] http://babelfish.altavista.com/

[16] http://www.excite.co.jp/world/text

The translator at the excite site uses the technology
licensed by Amikai, Inc. http: //www.amikai.com.

[17] Kakasi http://kakasi.namazu.org/

[18] David T. Lewis.

OSProcess package on SqueakMap.
http://mapl.squeakfoundation.org/sm/
package/812c9d14-5236-4cad-82ea-cc3e3837e30d.
[19] Kazuhiro Abe and et. al. Project okiba.
http: //swikis.ddo.jp/abee/3.

Proceedings of the Second International Conference on Creating, Connecting and Collaborating through Computing (C5'04)
0-7695-2166-5/04 $20.00 © 2004 IEEE

VPRI Technical Report TR-2004-001

