
Viewpoints Research Institute, 1025 Westwood Blvd 2nd flr, Los Angeles, CA 90024   t: (310) 208-0524 

 

 

 
 
 
 
 
 
 

The Parks PDA: A Handheld Device for
Theme Park Guests in Squeak

 
 
 
 
Yoshiki Ohshima, John Maloney, Andy Ogden
 
 
 
 
 
 
 
 
 
VPRI Technical Report TR-2003-002 

Miguel tl3
Typewritten Text
Presented as a Practitioner
Report at OOPSLA 2003,
Anaheim, CA,
October 26-30, 2003

Miguel tl3
Typewritten Text



The Parks PDA: A Handheld Device for Theme Park Guests in Squeak

Yoshiki Ohshima
∗

Twin Sun, Inc.
360 N. Sepulveda Blvd.

El Segundo, CA 90245 USA
Yoshiki.Ohshima@acm.org

John Maloney
†

MIT Media Lab
E15, 77 Massachusetts Ave.
Cambridge, MA 02139 USA
JohnMaloney@earthlink.net

Andy Ogden
‡

Strategy, Design, and
Development Consulting
1738 N. Bellford Ave.
Pasadena, CA 91104

aogden@earthlink.net

ABSTRACT
The Parks PDA is a lightweight, handheld device for theme
park guests that functions as a combination guidebook, map,
and digital camera. Together with a small team of artists
and designers, we created a prototype Parks PDA and con-
tent for a three hour guest experience, including a camera
interface, a hyper-linked guide book, three games, an ani-
mal spotters guide, a cross-referenced map, animated movies
with lip-synched sound, a ride reservation system, and more.
Over 800 visitors to Disney’s Animal Kingdom� theme park
tested the Parks PDA over a two week period.

Developing the software for this test posed a number of chal-
lenges. The processor and memory of the target device were
slow, the screen was small, and we had only three months
of development time.

We attacked these problems using Squeak, a highly-portable,
open source Smalltalk implementation. We ported Squeak
to the target device and used it to provide nearly bit-identical
behavior across four different platforms. This supported a
cross-platform development style that streamlined the pro-
duction of both software and content. We created a tiny
user interface and application framework for pen-based de-
vices and implemented a simple card-stack media editor and
player using it. We isolated and addressed several challeng-
ing performance issues.

The project was completed on time and guest response was
favorable. Looking back, we can identify seven aspects of
Squeak that contributed to the success of the project. In

∗Yoshiki was a student at Tokyo Institute of Technology and
interning at WDI R&D while doing this work.
†John was at Walt Disney Imagineering R&D while doing
this work.‡Andy was at Walt Disney Imagineering R&D while doing
this work.

Figure 1: The PDA Showing the “Home Page”.
There are five hyper-link buttons on the screen. To
the left of the screen there are seven silk-screened
buttons. Attached to the right is the digital camera.

fact, we feel that Squeak was the ideal tool for this job.

1. INTRODUCTION
By the late 1990’s, computers were becoming small and light
enough that you could carry one everywhere, even on vaca-
tion. At Walt Disney Imagineering R&D, the big question
was, could you create a user experience on a handheld de-
vice that was both fun and useful enough to justify carrying
that device in a theme park? For us, a color screen was
essential. Unfortunately, theme park guests spend much of
their time outdoors where an ordinary backlit color liquid
crystal display (LCD) becomes illegible. In late 1999, Sharp
announced a very compact personal digital assistant (PDA),
the Zaurus MI-C1, that had a reflective color LCD display
that worked well even in direct sunlight. The MI-C1 was
one of the first PDA’s to have such a display. The MI-C1
also supported a camera, another essential feature for us.

With a new medium, such as a PDA in a theme park, pro-
viding a new content is challenging since there are no prior
examples to study. It is even possible that the medium itself
has a fatal flaw. We decided to test this new medium by cre-
ating a working prototype with enough content to support
three hours of use in Disney’s Animal Kingdom� theme park
and to test it on 800 randomly chosen guests. The business

VPRI Technical Report TR-2003-002



mission of this test was “to rapidly evaluate the potential
appeal of a PDA user experience for theme park guests that
might ultimately take advantage of wireless connectivity and
location-sensing technologies without having to wait for the
maturation of those technologies.”

The production team for this test consisted of nine creative
staff – artists, designers, and show writers – plus two pro-
grammers. We had three months to create both the content
and the software. We also needed to integrate hardware
components such as a digital camera and a location sensing
system. Using most languages and development processes,
this would seem ambitious, perhaps even impossible. For-
tunately, we had a secret weapon: Squeak[5]. Squeak is a
highly-portable, open-source Smalltalk implementation with
a modest memory footprint and an easily extensible virtual
machine. Yoshiki Ohshima had already ported Squeak to
an earlier Sharp Zaurus model with good results.

This paper explains how Squeak supported the object-ori-
ented programming techniques and cross-platform develop-
ment processes that made the project an overwhelming suc-
cess. Towards the end of the paper, we identify seven prop-
erties of Squeak that were key to that success.

2. A PDA FOR THEME PARKS
The Parks PDA is a lightweight, handheld device for theme
park guests that functions as a combination guidebook, map,
and digital camera. Our prototype Parks PDA contained
content for a three hour guest experience covering about a
third of Disney’s Animal Kingdom� theme park. In addi-
tion to the hyper-linked guide book and camera, the Parks
PDA contained three games, an animal spotters guide, a
cross-referenced map, a number of animated movies with
lip-synched sound, a simulated ride and restaurant reser-
vation system, an online shopping application, and a short
feedback survey.

2.1 The Guest Experience
This section describes guest’s experience of using the Parks
PDA. All the guests in a group (e.g., a family) typically
shared a single Parks PDA device, either by standing close
together or by passing the unit around.

Hosted Narrative
Upon entering a new “land” (part of the park) guests were
automatically prompted to play a narrative hosted by an
animated character who explains the “story” of that land.
Since the earbud allowed only one guest at a time to hear the
audio, a repeat button was provided to allow every member
of the party to enjoy this experience.

Digital Map and Index
Either the digital map or an on-screen index could be used
by guests to locate and learn about attractions, shops, restau-
rants, and restrooms. All information was cross-indexed, al-
lowing the guest to quickly jump between the map and the
information pages.

Sign Posts
Guests came upon sign posts distributed throughout the
park marked in a simple code consisting of four basic shapes.
By entering this code using the silk-screened symbol buttons

on the Parks PDA, the guest could get detailed information
in the form of audio, text and images about the plants or
animals in that location. Symbol codes were used to create
a detailed botanical tour of one section of the park.

Ride Reservations
Guests could use their Parks PDA to make a reservation for
one of the most popular rides. To make sure that they had a
chance to take advantage of this feature, they were prompted
with an invitation as they passed selected locations for the
first time. If they made a reservation, then shortly before
the reservation time, a reminder was presented, giving them
a comfortable amount of time to get to the ride. When
the guest and their party arrived at the ride, they showed
their “electronic ticket” to the attendant and were allowed
to bypass the queue line.

Games
While guests were waiting in the queue lines of other attrac-
tions they could pass the time enjoyably by playing inter-
active games themed to reinforce the attraction they were
about to see.

Digital Picture Taking
Guests could use the PDA’s digital camera feature to take
pictures during their test session. The camera interface in-
cluded an easy to use erase function. Guests could take an
unlimited number of photos as long as they kept a maximum
of 40.

Online Picture Viewing
Back home, guests could visit a website and enter their ID
and password to access a page showing a map in the same
graphical style as the one that appeared on the Parks PDA,
but with thumbnails of their pictures placed around the map
in the approximate locations where the photos were taken.
The guest could either view full-sized versions of their photos
on the screen or print them out. The map showing the
thumbnails could also be printed as a record of their visit
and an implicit invitation to return to the park.

2.2 User Testing
The Parks PDA was tested on over 800 guests over a two-
week period. PDA’s were distributed to guests who agreed
to participate. After using the Parks PDA for two to four
hours, the guest returned it and gave us their feedback about
the experience.

Selection
Guests were chosen at random by Walt Disney World Mar-
ket Research staff, shown an example Parks PDA, and in-
vited to participate in the test. Most people visit theme
parks with family or friends; we chose one adult member of
each party to be our primary contact for the test.

Registration
Each guest was directed to a registration area where they
were assigned a unique ID and password and given a num-
bered Parks PDA. The guest name, ID, password and PDA
number were recorded in a database. The guest name and
ID were also downloaded into the Parks PDA via IrDA. Hav-
ing the guest name and ID in the Parks PDA allowed the
experience to be personalized and simplified tracking of their

VPRI Technical Report TR-2003-002



photos. The ID and password were written on a printed map
given to the guest. This information allowed them to later
access their photos online.

Instruction
Groups of eight to twelve guests at a time were then given a
five-minute briefing on how to use the Parks PDA. Instruc-
tions included a scripted overview of the content features
and how to use the PDA’s graphical “finger push” interface.
Guests were given suggestions for picture taking and shown
how to wear the PDA and use the attached earbud for audio.
The guests were then invited to explore the park with their
PDA’s and asked to return to the drop-off location three to
four hours later.

Interview
At the end of the test session, guests dropped off their Parks
PDA at a restaurant in the Africa land where a room was
reserved for interviews. They were interviewed by Walt Dis-
ney World Market research specialists for approximately 20
minutes about their experience. They were also told how
to go online to view the pictures they took with the Parks
PDA.

Photo Upload
The Parks PDA devices returned by the guests were taken
to a photo uploading station where the guest’s photos and
session log were uploaded to a laptop computer via the IrDA
port. The photo files were later transferred to the website.

PDA Recharging
After uploading the guest photos, the Parks PDA was check-
ed for damage and placed in a charging rack. Early the next
morning, the screen was cleaned to remove any fingerprints,
the earbud cushion was replaced, and the Parks PDA was
checked for proper functioning.

3. THE HARDWARE PLATFORM
The hardware for the Parks PDA was the Sharp Corpora-
tion’s Zaurus MI-C1 PDA, a device available only in Japan,
where Sharp’s Zaurus PDA’s enjoyed a large market share.
It’s specifications are shown in Table 1. The original retail
model had only a single expansion slot. Sharp, our partner
in this experiment, designed and built 100 custom MI-C1
units with a second expansion slot, allowing us to use both
the digital camera module and a 128MB Compact Flash
memory card at the same time. Sharp also doubled the
RAM of these custom units, from 8MB to 16MB.

The SH-3 CPU is a RISC processor with 16-bit fixed-width
instruction set with low power consumption but only mod-
est performance; our tests show that its arithmetic inten-
sive performance is an order of magnitude slower than the
206MHz StrongARM. Access to the underlying hardware
was made through ZaurusOS, a Sharp proprietary operat-
ing system based on a realtime microkernel called XTAL[2].

Along the left side of the screen, we created a strip of touch-
sensible, silk-screened navigation buttons: Home, Back,
Camera and four symbols. The Home and Back button
function like their equivalents in a typical web browser. We
dedicated a button to the camera because we wanted guests
to be able to access the Parks PDA camera as quickly as an

Table 1: The specification of Sharp MI-C1
dimension: 136mm × 80mm × 22mm
weight: 190g (incl. second CF slot)
CPU: Hitachi SH-3 60MHz
display screen: 320× 240, 16 bit color reflective LCD
Operating System: Sharp proprietary OS called ZaurusOS
Memory capacity: 16MB DRAM
Sound Output Quality: 8-bit sample, mono,

up to 22.5kHz sampling rate
Com Ports: one serial port and one IrDA port
Expansion Slots: 2 Compact Flash type I slots.
Miscellaneous features: Silk screened touch-sensitive area.
Key Performance Numbers
Read throughput CF card: 440kb/s
Read throughput DRAM 10.3MB/s
Write throughput DRAM 5.7MB/s
Typical Battery Life: 10 hours; 1.5 hours with camera on

ordinary camera.

We plugged a proprietary IR location sensor (about 40 ×
15 × 10mm) into the serial port. This sensor received lo-
cation codes at various locations in the park. These loca-
tion codes were used to help guests navigate and to trigger
location-specific events, such as playing an animated wel-
come message when the guest first enters a new area.

We used the MI-C1’s IrDA port to download guest registra-
tion information and to upload their photos and log files.

We built an impact-resistant plastic case to protect the unit,
keep its attachments in place, and provide a themed look for
a device that might otherwise look like a business tool. We
also added a neckstrap with an integrated “earbud” style
headphone to allow the user to hear audio output without
disturbing other guests. We assumed that the stylus would
be easily lost, so we discarded it. The UI was driven by
pressing one’s finger directly against the touch screen.

4. THE SOFTWARE PLATFORM: SQUEAK
Squeak is a highly portable, open-source implementation
of Smalltalk-80 that provides nearly bit-identical operation
across platforms. The Squeak virtual machine (VM) im-
plementation consists of three parts. The bytecode inter-
preter, the object memory system and a collection of primi-
tives. The bytecode interpreter and the object memory are
written in Squeak itself and translated into ANSI C code.
They are exactly the same on all platforms. Most of the
primitives are also portable, but a small handful of primi-
tives are OS-specific, including primitives for display output,
touch-screen input, clocks, file system access, sound, and so
on. These primitives and a small amount of startup code
must be ported to make Squeak run on a new platform [4].

Squeak uses a virtual image model. A snapshot of the state
of Squeak’s object memory can be saved in an image file that
can later be resumed from the point at which the snapshot
was taken. Since Squeak runs on a platform-independent
virtual machine, the image file format is free from actual
hardware dependencies. A Squeak image file can be resumed
and run on any computer for which you have a Squeak vir-
tual machine, even if the OS, processor, or even the byte-
ordering is different from that of the platform that wrote

VPRI Technical Report TR-2003-002



ZaurusOS
22%

VM code area
3%

Base image
5%

Application
Code
2%

Runtime Data
Structure

21%

Cache Buffer
26%

Free
21%

Figure 2: Runtime Memory Usage of the 16MB
DRAM. “ZaurusOS” includes the work area of
JPEG library and the camera, and the native stack.
The “Free” area satisfies the transient memory
needs of the applications.

the image file.

4.1 Squeak VM extensions
In addition to porting Squeak to the Zaurus, we also added
a number of primitives to access Zaurus-specific hardware
features including:

• camera control and image capture

• audio output

• power saving and sleep

• reading the current battery level

• checking the amount of free space on the Compact
Flash card

• configuring the Zaurus silk-screened button strip.

We also added primitives improve the performance of key
graphic operations including:

• scaling and alpha-blending 16-bit images

• JPEG image compression and decompression

The ability to port and easily extend the virtual machine was
essential, and Squeak’s open-source, portable design made it
easy. Only about 6700 lines of C and 2000 lines of Smalltalk-
80 glue code were needed to accomplish the port to the Za-
urus and to implement the custom primitives.

4.2 Memory Footprint
Memory is a limited resource on handheld devices. Squeak
helped us use that resource efficiently.

We stripped down a version 2.4c Squeak image by removing
classes and methods that we didn’t need. This “base image,”
containing only 204 classes and 4872 methods, was 835k
bytes1. Our application code added 88 classes and 1897
methods. This code and it’s associated objects added 134k
bytes of CompiledMethods (these are mostly bytecodes) and
267k bytes of additional objects to the base image.

The virtual machine also takes up space. The core of the
Squeak VM, the interpreter and the object memory com-
pile into about 150k bytes of SH-3 code. However, native
libraries such as the JPEG decoder/encoder add hundreds
of kilobytes to the executable. With all the necessary li-
braries, the final virtual machine executable file size was
close to 500k bytes.

Figure 2 shows the breakdown of the memory usage at run-
time. The total DRAM capacity on the device was 16MB.
We allocated 12MB for Squeak heap, leaving 4MB for the
OS and the Squeak virtual machine. As shown in the figure,
the relative overhead for the Squeak virtual machine and
the base image is quite small. This allowed us to use mem-
ory space for working with large graphics files and, as we’ll
see, for a large image cache that was important for overall
performance.

5. SOFTWARE ARCHITECTURE

5.1 Applications
The core Parks PDA application is an interactive informa-
tion retrieval program based on hyper-linked pages, similar
in concept to the World Wide Web. A Page contains zero or
more links to other pages, and the user navigates through
the content by following these links. We call this core appli-
cation Stacker, since it models a stack of cards (pages).

Many of the pages and links on the World Wide Web are
textual, but we wanted the Parks PDA experience to be
primarily graphical. Thus, every page of our content is a
full-screen graphic image and every hyper-link is a graphi-
cal button. Using pre-rendered, full-screen images gave the
artists complete control over the visual experience; there
were no tool bars, window, or menus that might remind
guests of daily business tools or frustrating computer expe-
riences.

However, high-quality graphics require memory. Each full-
screen image is a 320×240 pixel, 16-bit color bitmap. Some
pages had smaller images or animated sprites in front of
the full-screen image. While the content for a Parks PDA
might ultimately be delivered over a wireless network, for
this test we kept the content on a 128 megabyte Compact
Flash storage card. This allowed us to create a user test with
the maximum quality graphics; our only limitation was how
much content would fit onto the Compact Flash card.

In addition to Stacker, the Parks PDA software includes
thirteen other applications as shown in Table 2. Navigating
among these applications is completely seamless to the user.

1The version 3.5 release image of Squeak distribution is more
than 10MB in size and contains more than 1800 classes and
over 41000 CompiledMethods.

VPRI Technical Report TR-2003-002



Table 2: The applications in Parks PDA
Name Description
Stacker (main app) player/editor of hyper-linked pages
Map zooming, hyper-linked park map
Talking Mask lip synched talking virtual host
Restraunt Reservation make priority seating reservation
Online shopping buy park exclusive goods
Fastpass get FASTPASS® ride reservation ticket remotely
Bugboms an artillery game
Camera digital camera interface and photo album
Kilimanjaro Quiz trivia game
PT Flee’s Word Circus a hangman like game
Symbol Code Entry enter four digit code to get info
Survey online survey
Guest Registration register the device to the guest
Uploader upload photos, log files, and survey data via IrDA

To help us analyze usage patterns, we logged guest actions
as they used the Parks PDA. Each log entry includes a time
stamp, the action taken (e.g., page transition, photo taken,
or application switch), and additional action data such as
the destination page or application.

5.2 UI Considerations for Handhelds
Several considerations arose when designing the user inter-
face for the Parks PDA. First, a handheld device has dif-
ferent display and input affordances than a desktop, laptop,
or even a tablet computer. For example, it’s screen is far
too small for overlapping windows to be effective. Further-
more, theme park guests should be enjoying the park around
them; we didn’t want to burden them with complex UI in-
teractions such as scrolling, window manipulation, or menu
selection. Finally, the MI-C1, like most PDA’s, uses a touch
screen that can only track the pen (or a finger) while it is in
contact with the screen. Techniques such as roll-overs and
changing the cursor to indicate the active user interface el-
ements cannot be used, since they depend on being able to
track the pointing device while the “mouse button” is up.

For these reasons, we adopted a simple button-pressing con-
vention for all user inputs, similar to touch-screen interfaces
found on information kiosks. We used drop shadows and a 3-
D look as a visual cue that a graphical object was a pressable
button. Users pressed these screen buttons with their finger.
Since a fingertip is less precise than a stylus, our screen but-
tons had to be large, with buffer space around them to avoid
accidentally pressing an adjacent button. Even with these
precautions, user testing revealed that the buttons were not
quite large enough for some users with exceptionally large
fingers. Overall, we were happy with our decision to omit
the stylus, even though it meant that screens collected finger
prints and had to be cleaned daily.

The software for the Parks PDA was built using two object-
oriented frameworks: PenSprites, a stripped-down user in-
terface framework, and PDAApplications, an model to switch
applications similar in spirit to Java Applets. A third pack-
age manages images and other media. The remainder of this
section describes these three software components.

5.3 PenSprites
PenSprites is simple, lightweight user interface framework
that, like Morphic[12][7], combines the roles of display, user
input, and autonomous behavior (animation or “stepping”)
into a single class, Sprite. As in Morphic, it is easy to create

new kinds of Sprites with custom appearance and/or user
input behavior by making a subclass of Sprite and adding
just a few methods. However, PenSprites is much simpler
than Morphic: PenSprites consists of only 18 classes and
323 methods, and it takes up only 50k of space. In contrast,
a recent version of Morphic has over 400 classes and 10,000
methods, and consumes several megabytes. While we could
have created a stripped-down version of Morphic for this
project, it was quicker to write PenSprites from scratch.
The resulting framework is tiny and precisely tailored to
handheld, touch-screen devices.

At the core of PenSprites are two key classes, Sprite and
Stage. A Sprite knows its own position and bounds, can
draw itself, handles pen and keystroke input, can perform
periodic activities, and can do simple animations involving
position, size, and transparency. The class Sprite defines
default behaviors for all these things, although in many cases
that default behavior is to do nothing. A Stage holds a
collection of Sprites, manages display updates, dispatches
user inputs, and processes any ongoing Sprite animations
and periodic activities. A Stage also handles any pen and
keyboard events that aren’t handled by a Sprite.

Both Sprite and Stage are designed to be specialized by sub-
classing. When building a PenSprites application, one cre-
ates a subclass of Stage to hold the application state and be-
havior and subclasses of Sprite for each new kind of graphical
object used by that application. For example, the BugBoms
game defines its own subclass of Stage and eleven subclasses
of Sprite. However, BugBoms is a fairly complex game with
several screens and many custom widgets; most applications
are made up of Sprites from a small library of reusable wid-
gets.

When PenSprites application is running, it’s Stage repeat-
edly invokes the following method:

doOneCycle
self processInputs.
self processActions.
self updateDisplay.

The methods processInputs, processActions, and updateDis-
play, as well as doOneCycle can all be overridden and special-
ized by an application stage. For example, PDAMoviePlayer
overrides doOneCycle to check the millisecond clock and ad-
vance to the next frame of the movie if necessary.

5.4 PDA Application Switcher
Although using the Parks PDA is a seamless experience, its
implementation actually consists of fourteen applications,
each of which is a kind of Stage (see Table 2). The main
application is a hyper-linked card stack containing naviga-
tional screens and the bulk of the content. Certain pages
in this “main stack” are placeholders that link to the other
applications.

An instance of PDAApplicationSwitcher manages this suite
of applications. At any given moment, there is one active

VPRI Technical Report TR-2003-002



application that processes user inputs, runs animations and
other ongoing activities, and updates the display. However,
PDAApplicationSwitcher has its own version of the Stage in-
teraction loop that calls the active stage’s doOneCycle and
also:

1. checks for ride reservation state changes

2. checks the battery level

3. polls the location sensor

4. returns to home card after a few minutes of idle time

5. optionally, puts the device to sleep when idle

Of course, one could also use threads to perform these back-
ground tasks, but threads can be tricky to reason about and
debug. Furthermore, tasks are not always independent. One
might want to conserve processor cycles by omitting battery
level checks and location sensor polling during a performance
sensitive animation sequence. It’s easy to implement such
policies in PenSprites.

The application switcher allows the code for the Parks PDA
to be factored a number of small applications that can be
independently implemented and tested. Each application
retains complete control over its own screen display, user
input, and background activities. Care was taken to avoid
extra screen updates when switching between applications,
so application switches are fast and appear seamless to the
user. Many of the applications are quite small, some as few
as one or two methods.

The application switcher was implemented fairly late in the
development process, after many of the applications had al-
ready been written. It is notable that it required few changes
to the existing applications. Most applications were con-
verted by merely inserting the class PDAApplicationStage
above them in the class hierarchy. We attribute the ease
of making this change to the clean design of the PenSprites
framework, OOP in general, and Smalltalk-80 in particular.

5.5 Managing the Media
A multimedia application uses many images and sounds,
which require a lot of space. The media for a large appli-
cation like Parks PDA cannot all fit into RAM at once; it
must be kept in external storage until needed. One way to
to do this is to store every piece of media – or “asset” – as
a separate file. However, for an application with hundreds
of assets, managing file names and versions can be a tedious
and error-prone business. Furthermore, all those files must
be dealt with when moving the application among machines
or sharing it among team members. Some file systems have
trouble handling large numbers of files. Finally, when space
is tight, the amount of space lost due to rounding file sizes
up to the device’s block size can be significant.

To avoid these potential problems, we implemented a simple
media storage system that stores a collection of assets in a
single file. Assets are stored sequentially in the file as records
of the form:

<asset ID> (3 bytes)

<type ID> (2 bytes)

<size> (4 bytes)

<serialized asset data...>

A new asset is added by assigning it a unique ID and ap-
pending a new record to the asset file. An existing asset can
be updated by appending a record containing a new version
of that asset to the file. When an asset file is opened, its as-
sets are scanned sequentially while constructing a dictionary
mapping asset ID’s to file offsets. Versions of the same asset
stored later in the file merely update that asset’s dictionary
entry. When the scan is complete, every dictionary entry
points to the most recent version of its asset. An asset file
can be compacted to remove all but the latest asset versions
to reclaim space.

Asset files greatly simplified media development. It was easy
to keep the assets together, it was easy to move them onto
a Compact Flash memory card for testing on the device,
and it allowed artists to work together more easily. Initially,
each artist had one or more asset files for their sections of
the project. As the project progressed, these asset files were
merged into a small number of master asset files. Artists
would often take turns working on an asset file, each making
some changes before passing the file on to another artist. In
fact, this process worked so smoothly that we were able to
make additions and changes to the content while user testing
was underway.

6. PERFORMANCE TUNING
Adequate performance is critical for a good guest experience.
A key goal is to minimize the latency between a button press
and the moment a response appears on the screen. Most of
the Parks PDA content consisted of one full-screen image
per card. Thus, in response to a button press the system
typically had to fetch and display a full-screen image.

The time for this operation is determined by 1) reading a
screen image from Flash memory, 2) decoding that image
if necessary, and 3) updating the display. These operations
were all implemented as primitives written in C. As with
many media-rich applications, performance is so completely
dominated by the media-manipulation primitives that the
speed of the bytecode interpreter is almost irrelevant.

Compared to desktop and laptop computers, mobile devices
have slow processors, narrow data paths, and small or non-
existent caches. To our surprise, we found that accessing
Flash memory on the Zaurus MI-C1 was slower than reading
from a disk drive on a desktop computer. This is due to
an expensive error-correcting code computation. Thus, the
effective read speed of Flash memory depends on the speed
of the CPU. On the Zaurus MI-C1, data can be read from
a Compact Flash card at about 440k bytes/sec.

The next two sections explain how we achieved adequate
performance even on a device with modest computational
power.

6.1 Data Accessing Speed

VPRI Technical Report TR-2003-002



Table 3: Compression Comparison on MI-C1
Format File Size Read (r) Decode (d) r + d

(bytes) (msecs) (msecs) (msecs)
RAW 153600.0 362.99 1.18 364.17
RLE 124593.2 277.93 82.02 360.01
JPEG 18881.8 43.81 695.49 739.30

Table 4: Compression Comparison on iPAQ

Format File Size Read (r) Decode (d) r + d
(bytes) (msecs) (msecs) (msecs)

RAW 153600.0 123.47 0.24 123.71
RLE 124593.2 90.80 11.62 102.42
JPEG 18881.8 15.07 44.15 59.22

A full-screen image (320x240 pixels, 16-bit color) consumes
about 154k bytes in uncompressed form. Thus, at 440k
bytes/sec, it takes roughly 1/3 second to read an uncom-
pressed image from the Compact Flash card. If the image
is stored in compressed form, the reading time will decrease
but that savings may be exceeded by the image decompres-
sion time. One must make empirical measurements on repre-
sentative content to determine the best compression strategy
for a given device.

We considered three compression options: no compression
(RAW), Squeak run length encoding (RLE), and JPEG en-
coding. Run length encoding works best for content with ar-
eas of solid color, whereas JPEG works best on continuous-
tone images such as photographs and natural textures. Both
compression schemes are implemented using fast VM prim-
itives. Table 3 shows the tradeoffs among these options for
the Zaurus MI-C1. The numbers are the average of the real
content of the Parks PDA, which contains 415 full screen
images created by professional designers.

As the table shows, using RLE compression doesn’t save
significant time, but it does yield a modest 19% space sav-
ings. JPEG compression significantly reduced the contents
size and hence the reading time, but unfortunately decod-
ing JPEG images was unacceptably slow on the MI-C1. We
thus choose RLE compression for the Parks PDA.

Table 4 shows how the tradeoff between read time and de-
compression time depends on the actual device. On the
Compaq iPAQ 3600 implementation of the Parks PDA, us-
ing JPEG compression is the best choice. The high speed
of JPEG decoding on the iPAQ is due in part to our use of
a fast JPEG library from Intel: the Intel Integrated Perfor-
mance Primitives (IPP) [6].

The final step is to display the decompressed image on the
screen. Compared to reading and decompressing the image,
this operation is relatively quick: 52.4 milliseconds on the
MI-C1 and 10.5 milliseconds on the iPAQ.

6.2 Caching and Prefetching Assets
Unfortunately, image compression did not solve our perfor-
mance problem. We decided to use 4 megabytes of DRAM

as a cache for images. Images in the cache would not need to
be read or decompressed, resulting in a much faster response
time.

The cache was simple: decompressed images were cached
using an LRU replacement algorithm. We implemented this
cache as a subclass of AssetFile so no client code had to be
changed. A cache hit returned the cached asset immediately;
a miss called the normal asset file read operation, then added
the newly-read asset to the cache before returning it. This
worked well since frequently used pages such as the home
page and the map page were often cached. Response to
the “back” button was also fast since recently visited pages
would also be in the cache.

However, we realized we could do even better. We decided to
anticipate upcoming asset requests and prefetch these assets
into the cache using time that the processor would otherwise
be idle. Prefetch predictions were made by examining all
links on the current page. Since users often spend several
seconds viewing a page, there is time to prefetch images for
several of these possible next pages. Once the user clicks
on a link, the prefetch queue is cleared and a new prefetch
cycle is started. We arbitrarily chose to limit prefetching to
the first three outgoing links.

One might imagine that prefetching would always be suc-
cessful if the user paused long enough. However, links on
the page are not the only way to navigate to another page.
The user can enter a symbol code to jump to an arbitrary
page. A page reached via symbol code entry is much less
likely to be in the cache. Another case is a page containing a
large number of outgoing links. While many pages had four
or fewer links, certain index pages (e.g., the page listing all
the restaurants) had many more.

How well did caching and prefetching work? After the test,
we analyzed 289 log files taken during the last four days of
our user tests. In an average session, caching and prefetching
resulted in cache hits 77.1% of the time over 336.3 page
visits.

There are several questions one might ask. First, what is
the breakdown of the cache effectiveness between caching
and prefetching? Second, what would have happened if the
cache size was smaller or bigger? To answer these questions,
we built a simulator to replay user actions from the log file
and gathered data for different combinations of caching and
prefetching.

Table 5 shows the result of this simulation. The table shows
five cache policy variations, including the one we used in
the actual test: 1) the original policy, 2) caching only (no
prefetching), 3) doubling the number of links examined dur-
ing prefetching (to 6) with the same the cache size, 4) dou-
bling the number of links examined during prefetching and
also doubling the cache size (to 8 megabytes) and 5) caching
only with half the cache size (2 megabytes) and no prefetch-
ing.

These results show that, while caching alone was quite ef-
fective, prefetching added a significant 14.5% percent to the
hit rate. Doubling the number of links examined during

VPRI Technical Report TR-2003-002



Table 5: Cache hit rates for various policies
Setting Hit Rate
1. Original policy 77.1%
2. Caching only 62.6%
3. Double prefetching 78.1%
4. Double cache, double prefetching 85.1%
5. Half-sized cache, no prefetching 52.1%

prefetching with the same cache size would not have im-
proved the hit rate significantly, but doubling both the cache
size and the prefetching (had we had the memory to do so)
could have improved the hitrate by 8%. Cutting the cache
size in half would have decreased performance significantly.
On the whole, our cache size and prefetching parameters
worked well for the amount of memory that was available.
We didn’t have any usage data when we set these parame-
ters; we were just lucky.

As showed earlier in section 3, reading and decoding a typi-
cal full-page asset takes more than 360 milliseconds, a delay
that feels noticeably sluggish. When the image for a page is
in the cache, as it is 77% of the time, the response time is
dominated by the display update time. At only 52.4 millisec-
onds, this feels quite snappy. Based on our surveys, users
were entirely happy with the performance of the Parks PDA.

7. RAPID DEVELOPMENT
All the media content and most of the software for the Parks
PDA was created by a team of 9 artists and two program-
mers in about three months. Considering the number of fea-
tures, the integration with hardware, and our lack of prior
experience developing software for handheld devices, this
was extremely fast. Some of that speed can be attributed to
the innate efficiency of the Smalltalk-80 programming envi-
ronment. However, key aspects of the development process
were enabled by features unique to Squeak. This section
explains how Squeak supported rapid development.

7.1 Put Artists in Control of Content
It was clear from the beginning that if the artists depended
on the programmers to assemble content then the program-
mers would be the bottleneck. One of the artists pointed out
that much of the desired system behavior could be mod-
eled as a stack of cards with links for navigating to other
cards. We thus implemented a simple card-stack editor
called “Stacker” that allowed artists to create cards, import
artwork as images attached to these cards, and add links
between cards. All artwork for cards, as well as the card list
itself, was stored using asset file format described in section
5.5.

A key point is that the software that ran in the guest’s
Parks PDA was exactly the same software that was used for
development, but with a flag set to disable editing. Thus, as
the artists used Stacker to develop content, they were also
testing the final software that would be used by guests.

7.2 Bit-Identical Cross-Platform Operation
We distributed the Stacker program as a Squeak virtual im-
age set up to run Stacker on startup. Because the Squeak

virtual machine had already been ported to Linux, Mac OS,
and Windows, this one virtual image could be run on the
artists’ desktop computers regardless of what kind of com-
puter and OS they had– and all three of these platforms
were used. The same Stacker image could also be run on
the Zaurus MI-C1, so artists could simply put Stacker and
their current stack on a Compact Flash card to preview their
artwork as it would be seen by guests. This was important
because contrast and color differences made artwork “read”
differently on the MI-C1.

While it didn’t surprise the artists, it’s actually unusual for
a program like Stacker to operate virtually bit-identically
across such a wide range of hardware and OS platforms.
Squeak achieves this feat as the result of a number of de-
sign decisions, especially the fact that Squeak’s class library
was built to be as self-sufficient and platform-independent
as possible.

Take fonts, for example. Many programming systems rely
on the fonts of the underlying operating system. When an
application is moved from one system to another, some font
may not be available, so a substitute is used. This causes
changes in the appearance and spacing of text, which ef-
fects the placement and layout of user interface elements.
Squeak, in contrast, implements its own text display and
every Squeak image carries it’s own fonts, so the appear-
ance and letter spacings are bit-identical on all platforms.

As another example, Squeak hides platform differences in
graphics output by defining its own virtual display screen.
All graphical operations on this virtual screen behave identi-
cally on all platforms right down to the pixel representation
and byte ordering. There is only one place that knows about
the native frame buffer representation: the C code in the vir-
tual machine that copies pixels from Squeak’s virtual screen
to the hardware frame buffer.

One might think that maintaining a virtual display screen
would adversely impact performance and memory footprint.
However, smooth animation requires the use of an off screen
display buffer to avoid flashing, and Squeak’s display serves
as that buffer. Thus, assuming the application uses double-
buffering, there is scarcely any additional cost.

7.3 Simulate Missing Hardware
In some cases, an application needs hardware that’s unique
to a given platform, such as the Zaurus camera and silk-
screened button strip. In this case, our approach was to
simulate these hardware features when running on other
platforms to support cross-platform development. For ex-
ample, when running on a desktop computer, the Zaurus
silk-screened buttons were simulated by a set of virtual but-
tons to the left of the virtual PDA screen.

We actually developed and tested most of the camera appli-
cation on a laptop computer. After all, none of the logic for
capturing and reviewing photos cares about the content of
those photos, so any image of the right size will work as well
as a real photo. However, the ZaurusCamera class uses prim-
itives specific to the Zaurus PDA platform that fail on any
other platform. So, for development purposes, we created a
subclass of ZaurusCamera called DummyZaurusCamera that

VPRI Technical Report TR-2003-002



replaces those primitives with methods that emulate camera
behavior in simple ways. For example, the shutter button
is emulated by the enter key and taking a picture with the
camera is emulated by grabbing a snapshot of the screen.

Using DummyZaurusCamera, we were able to exercise the
camera application on any desktop computer; we did not
need to download it to a PDA. This allowed us to iterate
through the testing cycle quickly, allowing us to work in tight
collaboration with a graphic designer, making and testing
changes together as we refined the look and feel of the user
interface.

Overall, the small investment of time required to simulate
the unique hardware features of the PDA paid off many
times over in saved development time. As a bonus, we can
demo the Parks PDA application to large groups using a
laptop computer and video projector.

7.4 Embedded Development Environment
Squeak, like other Smalltalk-80 systems, has a built-in de-
velopment environment that allows every method in the sys-
tem to be viewed, edited, and debugged at runtime. While
it is possible to jettison this programming environment to
recover several hundred kbytes of memory, we had sufficient
RAM to retain the development environment in the virtual
image we ran on the device – even when we deployed the ap-
plication for the user tests. That decision paid off in many
ways.

Having the development environment available on the device
had many uses during development. First, it was easy to
evaluate expressions to test pieces of code in isolation. This
was especially valuable for measuring performance, allowing
the programmer to quickly isolate performance bottlenecks
and compare the performance of alternate implementations.
It was also useful when debugging hardware specific VM
features, such as the camera support code and optimized
graphics primitives. For this, the PDA VM was connected
to a remote debugger running on a PC. Break points were
set in the C code of the camera support code and Smalltalk
expressions were evaluated one at a time to see what hap-
pened. The Smalltalk expressions could be edited to pass
different arguments to the new primitives to test different
cases and the results could be seen immediately. For exam-
ple, one could evaluate an expression to grab a frame from
the camera and display it on the screen. This interactive
testing was much faster than it would have been to write
and compile tests in C. Since we could use the results of
earlier tests to decide what to try next, we were able to
make quite a bit of progress in isolating problems before re-
compiling the VM. Since it took many minutes to build a
new VM and install it on the device, this technique saved a
great deal of time.

As mentioned, the Squeak development environment, in-
cluding the debugger, was so small that we decided not to
bother removing it from the final application. This turned
out to be an unexpected life-saver during user testing.

The day before the user test began, we tested the Parks PDA
on a group of park employees who had no prior exposure to
the project. This testing revealed only a few minor prob-

lems that were easy to fix. After making these changes and
loading them onto all 100 Parks PDA devices, we were con-
fident that the first day of user testing would go smoothly.
We were very wrong.

Within half an hour, guests began bringing back PDA’s that
weren’t working. Oddly enough, other guests were having
no problems. The symptoms did not seem to be related to
anything we had changed. However, because the debugger
was still available, we were able to examine the execution
stack, look at variables, and evaluate expressions. After
examining about six units, a pattern emerged: one of the
asset files was corrupted. The essential clue was that the
same exact error appeared at the same file location in all
six units. This was clearly not a coincidence. We deduced
that one of the laptops we had used to copy asset files onto
Compact Flash cards had somehow corrupted the master
asset file and that error had been copied to all the Compact
Flash cards created on that laptop. We even knew which
computer was probably responsible, since one of us had had
trouble reading files from the master Compact Flash card.
We added some code to verify the structure of asset files at
startup time, and re-copied the master file set onto all 100
devices, this time avoiding the suspect laptop, and never
had this problem again for the remaining eight days of user
testing.

In most other programming languages, the error handler’s
capability is limited. When an unexpected error occurs dur-
ing execution, the best that may happen is that the call
stack is displayed or written to a file and the program quits.
Unfortunately, the call stack alone may not be enough to
diagnose a problem.

It is not exaggerating to say that having the full debugger
and development environment available at deployment time
saved the user test from disaster. The debugger allowed us
to find the crucial clues that pointed to a file corruption
problem during Compact Flash card duplication. The prob-
lem was not due to a bug in the software at all, but without
any hints about the real nature of the problem we might
have spent days fruitlessly trying to reproduce the “bug”
under laboratory conditions, rapidly using up our two-week
window of opportunity for the user test.

8. SEVEN KEYS TO PROJECT SUCCESS
A number of factors contributed to making Squeak an es-
pecially effective vehicle for the Parks PDA project. While
some of these factors are a consequence of Smalltalk-80’s
clean, object-oriented semantics, most of them have little to
do with the language; they stem from Squeak’s open imple-
mentation and flexible packaging. In practical applications,
such “details” can often make or break a project.

Pointer safety
Smalltalk-80 programmers take point-safety for granted, yet
this property of the language allowed us to fearlessly make
changes to the software in response to newly discovered
needs. For example, during the first week of the user test,
we added a clock to the home screen, a set of hardware
diagnostics, and a blinking reminder that a ride reserva-
tion was due, in addition to fixing a number of minor bugs.
We dared to do this because code changes had local effects.

VPRI Technical Report TR-2003-002



When adding a feature, we did not worry that we might in-
troduce a wild pointer bug or storage leak that would break
some completely unrelated–and perhaps critical– part of the
system.

Portable, open-source virtual machine
As we’ve shown, one key to our rapid development of both
software and content centered on our ability to do cross-
platform development. Squeak already ran on over a dozen
platforms, including Windows, MacOS, and Linux. But be-
cause our chosen device was new and ran the proprietary
Zaurus operating system, we needed to be able to do our
own port of Squeak to it. Fortunately, Squeak’s interpreter-
based virtual machine is extremely portable. It typically
takes only a few weeks to get it running on a new platform.

Small memory footprint
Squeak’s relatively modest memory footprint–roughly 500k
bytes for the virtual machine and about 800k bytes for the
base image, including the full development environment and
debugger–left us plenty of room for application code and
media. In fact, we were able to devote many megabytes of
RAM to a media cache and we were not even tempted to
remove the development environment.

Low-latency garbage collector
Predictable response times and smooth animations are es-
sential for a quality multimedia experience. Large garbage
collection pauses would significantly detract from the user
experience. Squeak has an efficient increment garbage col-
lector that runs often but usually takes under 20 millisec-
onds. Such short pauses are unnoticeable even during ani-
mation and user interaction. Although a full garbage collec-
tion can take a second or two, full-GC’s happen very rarely
in practice.

Platform independence
Cross-platform development could have been a disaster had
the application behaved differently on the target device.
Thanks to Squeak’s deep commitment to platform indepen-
dence, the operation of the software was bit-identical on all
platforms. The only differences were unavoidable ones, such
as processor performance and color/contrast differences be-
tween computer monitors and the reflective LCD screen.

System-level control and custom primitive support
Having complete control over the system as if Squeak were
it’s own operating system allowed us to manage interactions
with hardware devices, control system sleep mode, and use
knowledge of user activities to control the allocation of pro-
cessor cycles. In addition, Squeak’s open virtual machine al-
lowed us to add primitives to accelerate performance-critical
operations.

Self-contained development tool and debugger
The ability to evaluate expressions and do small amounts
of programming directly on the device saves development
time. The programmer can get much more testing and de-
bugging done before having to perform the time-consuming
process of copying a new version of the application from the
development machine to the device. Bugs that arise during
such testing can be tracked down using Squeak’s built-in
debugger. In fact, having Squeak’s built-in debugger avail-

able even after we’d deployed the “finished” application may
have saved the entire project. Having the debugger on board
is like using a seatbelt; you hardly ever need it, but putting
it on after a collision does no good at all.

9. BUILDING A PARKS PDA TODAY
Mobile computing technology has evolved rapidly since our
Parks PDA user test in November 2000. This section dis-
cusses recent innovations and how we might use them if we
were to create a new Parks PDA today.

First, PDA processors and displays have improved dramati-
cally. While a few handheld devices such as the Apple New-
ton and the Palm Pilot were available in 2000, practically
none of them had outdoor-viewable color screens. In fact, we
believe that the Sharp MI-C1 was probably the only prod-
uct then available that combined a reflective LCD screen,
a camera, a compact and lightweight form factor, and sup-
port for an external memory card. Today, many PDA’s
have outdoor-viewable color displays, and most of them also
boast high performance/low-power processors such as the
Intel XScale chip. These devices would make it much easier
to achieve acceptable performance.

Cellular telephones have become powerful computing de-
vices. Some high-end cellphones sold in Japan have a two-
inch QVGA color screen, a mega-pixel digital camera, and
a faster processor than the MI-C1. As a hardware plat-
form, such a cellphone is a good candidate. Unfortunately,
the software environment available on cellphones is closed,
making it difficult or impossible to control cellphone periph-
erals such as the digital camera or to write primitives in a
low-level language to enhance performance. This situation
may change as cellphones and PDA’s converge.

At the time of our test, GPS was available, but not in a
small form factor. It has now become much smaller and less
power-hungry, but typical GPS systems still don’t provide
resolutions down to the one to five meters that would be
ideal for theme park applications. Furthermore, GPS often
doesn’t work well when the sky is partially obscured by fo-
liage or buildings, and it can take minutes to get enough
data for an accurate fix. Thus, we believe that our pro-
prietary, IR-based system remains the cheapest and most
reliable location-sensing solution for theme parks. Several
other mobile guide efforts such as Active Badge[3] and Cy-
berguide[8] are based on an IR system similar to ours.

What about wireless? The Parks PDA did not have wire-
less communications, although we pretended that it did to
simulate the user-experience of ride and restaurant reserva-
tions. While the 50 to 200 kbits/sec bandwidth available
through current cellphone networks could be used to pro-
vide informational updates, instance messaging, and ride
reservations, it would require significantly more bandwidth
to retrieve all the Parks PDA graphical content wirelessly.
Today, we might consider using an 802.11 network for this
purpose, although it is not entirely clear how well this would
scale. Theme parks pack many people into a small area and
even if only few percent of them carry Parks PDA’s, the
numbers can get large. Meanwhile, Flash memory has fallen
in price so it may still be best for graphical content to be
pre-loaded onto the PDA.

VPRI Technical Report TR-2003-002



We might need to consider alternatives to Squeak for the
software platform. For devices with insufficient memory to
use Squeak (under 1.5 megabytes) such as PalmOS devices
and a cell phones, options include Java J2ME[11] or Pock-
etSmalltalk[1]. However, since many of the success factors
discussed in section 8 do not apply to these languages, we
would have to budget more time for development.

Actually, Java J2ME is the only way to program most pro-
grammable cell phones. Unfortunately, the J2ME virtual
machines for cell phones are not open, so we would not be
able to add primitives to access camera hardware or perform
high-performance graphic operations.

One option for more open platforms would be to port the
virtual machine for Python[9] or Ruby[13]. To support mul-
timedia, we would write our own cross-platform graphics
library, possibly using a portable GUI library such as Qt or
Qt/Embedded[10]. Our goal would be to create a tool with
bit-identical operation across platforms as good as Squeak.
Of course, it would be much easier to just use Squeak!

10. CONCLUSIONS
The Parks PDA project was an ambitious undertaking. Part
of the challenge involved creating a production-quality mul-
timedia experience on a new device while interfacing to a
camera and other special hardware. Cross-platform develop-
ment of both software and content was essential for rapid de-
velopment. Squeak supported cross-platform development
with essentially bit-identical operation between three differ-
ent desktop platforms and the device itself.

One of the big lessons from this project is that using a byte-
code interpreter need not result in low performance, even
in a performance-hungry multimedia application. Most of
the time is spent in a few key operations, such as reading,
decompressing, and displaying images. It is easy to write
primitives in C to perform these operations at maximum
speed. In fact, Squeak made it so easy to pinpoint and fix
performance bottlenecks that we’re confident that the per-
formance of the Parks PDA software is very close to the
maximum performance limits of the hardware for the key
operations.

We were fortunate that we had already ported Squeak to the
Zaurus platform before the project began. Yet, if we had
to do a similar project again, we would be glad to invest
the two to four weeks necessary to port Squeak to a new
platform, knowing that this investment would pay off many
times over for the rest of the project. If we had to use a
different language, we believe that most of the key success
factors that we discovered using Squeak could be available
in Python, Ruby, or Java J2ME, assuming that one could
extend the virtual machine. We’d avoid C++ due to its lack
of pointer safety and true garbage collection.

Squeak turned out to be the perfect tool for the Parks PDA
project. It allowed us to move quickly and to explore com-
pletely new territory on a handheld device. What’s more,
Squeak made the Parks PDA as much fun to develop as it
is to use.

Acknowledgements

We thank all the team members of Parks PDA project, the
engineers at Sharp Corporation, and all cast members at
Disney’s Animal Kingdom�. We especially thank Alan Kay
and his team for creating Squeak and Squeak’s open source
community for their ongoing contributions to it.

11. REFERENCES
[1] E. Arseneau. Pocketsmalltalk. http://www.

pocketsmalltalk.com.

[2] AXE, Inc. XTAL. http://www.xtal.org.

[3] A. Harter and A. Hopper. A distributed location
system for the active office. In IEEE Network,
volume 8, 1 1994.

[4] Ian Piumarta. Porting Squeak, chapter 8, pages
215–262. Prentice Hall, 2002.

[5] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the future – the story of Squeak, a
practical Smalltalk written in itself. In
Object-Oriented Programming, Systems, Languages,
and Applications, pages 318–326, 1997.

[6] Intel Corporation. Intel Integrated Performance
Primitives.
http://www.intel.com/software/products/ipp/.

[7] John Maloney. An Introduction to Morphic: The
Squeak User Interface Framework. In Squeak: Open
Personal Computing and Multimedia, chapter 2, pages
39–68. Prentice Hall, 2002.

[8] S. Long, R. Kooper, G. D. Abowd, and C. G. Atkeson.
Rapid prototyping of mobile context-aware
applications: The cyberguide case study. In Mobile
Computing and Networking, pages 97–107, 1996.

[9] M. Lutz. Programming Python. O’Reilly & Associates,
1996.

[10] Mathias Kalle Dalheimer. Programming with Qt, 2nd
Edition. O’Reilly & Associates, 2002.

[11] Roger Riggs and Antero Taivalsaari and Mark
VandenBrink. Programming Wireless Devices with the
Java 2 Platform, Micro Edition.

[12] R. B. Smith, J. Maloney, and D. Ungar. The Self-4.0
user interface: Manifesting a system-wide vision of
concreteness, uniformity, and flexibility. In
Object-Oriented Programming, Systems, Languages,
and Applications, pages 47–60, 10 1995.

[13] Yukihiro Matsumoto. Ruby in a Nutshell. O’Reilly &
Associates, 2001.

VPRI Technical Report TR-2003-002




