
Viewpoints Research Institute, 1025 Westwood Blvd 2nd flr, Los Angeles, CA 90024 t: (310) 208-0524

Cauchy Timestep Adjustment in
End-User Simulations

Ted Kaehler

VPRI Research Note RN-2017-001

Cauchy Timestep Adjustment in End-User Simulations
April 2017
by Ted Kaehler

Abstract

This paper explains how Scratch, Etoys, or GP can have the Cauchy Criterion
built in. With minimal effort, the user can have control of the time stepsize in
simulations.

One of the problems in simulations is using a stepsize that is not correct. If the
stepsize is too small, the simulation takes too long and uses too much compute
time. If the stepsize is too big, the simulation does not capture detail. It skips
over times where unusual things are happening. When a ball approaches a wall,
a simulation of it has code to change the ball's velocity and direction when it
contacts the wall. If the stepsize is too big, the ball will go right through the wall.
The conditional that detects the wall will not run until the ball has already
passed through it.

Background

Numerical Integration in math -- finding the area under a curve -- has the same
problem. A curve is divided into segments, and the height in the middle of each
segment is used to compute the area under the curve. If there are too few
divisions, many wiggles and changes in the curve are missed. The computed
area is either too low or too high.

!
(Wikipedia, Numerical Integration)

If we choose divisions that are 2 units wide, height measurements will only be
made at x = -2, 0, and 2. Adding up those values will be quite different than the
true area under the curve.

VPRI Research Note RN-2017-001 1

One way to improve the accuracy is to make the divisions closer together. The
error e is the absolute value if the true area minus the computed area. Using
smaller and smaller divisions creates a series of error values, e(n). The distance
between divisions is the stepsize. We know that this converges to an error of
zero when there are infinitely many divisions.

!
(Wikipedia, Numerical Integration)

Here, the divisions are 0.25 wide, and the area under the curve is much more
accurate.

Intuitively, we can see that a smaller distance between divisions leads to a
smaller error. Not only does this work for the area under any segment of a given
curve, but it also works for any particular error calculation in a simulation.

"Given a desired error e, there is a stepsize S such that the answer using stepsize
S will have an error smaller than e."

This is a version of the Cauchy Criterion for the convergence of a numerical
series.

Controlling Errors in Simulations

Consider two balls bouncing between two walls in the Squeak Etoys system.

VPRI Research Note RN-2017-001 2

!

The author uses a stepsize of 20 pixels. There is a ticking script to move each ball
forward. Here is the script to make the blue ellipse move. The script says to
reverse direction when the ellipse's X gets to the black wall at x=1000.

!

Using this script, the blue ellipse overshoots the wall and hits the red rectangle,
which stops it. This is because the stepsize is too large. The X is incremented by
20 pixels at a time. The ellipse does not notice the wall until it has already gone
beyond it.

VPRI Research Note RN-2017-001 3

!

We'd like the Etoys simulation system to help manage the stepsize. Only a small
number of modifications to the system were needed to let the user easily get the
proper stepsize. The things the user needs to do to her simulation are very
simple and easy.

The first requirement is that the user write her motion script in terms of a
timeDelta. The amount to go forward is (Blue One's velocity * world's
timeDelta). The World object controls the increment in time for each step. When
the ellipse is moving at a constant velocity, its movement on the screen will be
the same, whether the timeDelta is large or small. Calling the moveALittle script
a few times with a large timeDelta is the same as calling it many times with a
small timeDelta. The system is free to choose any timeDelta to make the
simulation work best.

The green ellipse is a copy of the blue ellipse. Its motion scripts is the same as
before. But, the green ellipse has an additional script.

!

The script "cautionRight" measures how far the ellipse is from the turning point

VPRI Research Note RN-2017-001 4

at the right wall. It stores this quantity into the variable cautionNear0. That is a
variable of the World, and can be set inside of any script.

The user sets cautionNear0 to an expression that she wants to be careful around.
When cautionNear0 changes sign, the system reduces the time step. It forces the
user's stepping scripts to be evaluated at a time when cautionNear0's sign has
changed and is within "2" of zero.

If the number 2 is too big or small to be in the critical zone, the user can scale her
expression by multiplying by some number before storing into cautionNear0.

Caution scripts ensure that the user's other scripts are run at the right time, and
that important changes will be noticed.

!

Here is the green ellipse just touching the wall. The system has reduced the
timeDelta and retried the motion several times until cautionNear0 is at an
acceptable level.

How it Works

Every caution script that the user writes must have a name that begins with
'caution'. The system finds these scripts. At each time step, the system evaluates
every caution script and saves the value of cautionNear0 for each. It then runs
every ticking script using the current timeDelta. After that it runs every caution

VPRI Research Note RN-2017-001 5

script again to see if it changed sign. For the ones that did, is cautionNear0 < 2?
If any are not, set all variables back to their values at the start of the time step, cut
the timeDelta in half, and try again.

This procedure depends on both the caution scripts and the ticking scripts being
able to be re-evaluated many times. The system fills a dictionary with the values
of the variables at the start of a time step. After a trial evaluation, it uses the
dictionary to set all of the variables back. The X and Y of each moving object are
among the variables. To decide which variables to save, the system finds all
setter calls in all user scripts and notes the variables being set.

This is very general. Any variable, not just positions can be changed, or can be
used in a caution method. The system will apply the Cauchy Criterion to any
variable.

After a time step is completed, the timeDelta is set back to its default value.

What the User Does

As mentioned above, everything that depends on time, such as motion, must be
stated in terms of a timeDelta. In addition, the user must define caution scripts
that set cautionNear0 to an expression. The value must be zero when something
crucial is happening. That is all the user needs to do.

For a collision between two moving objects, a caution script needs to compute
the distance between the objects. If there is a special technique for detecting
collisions, a caution method can look at the output of it, and simply return the
smallest distance between any two objects.

The System

It would be quite easy to make the changes to Scratch or GP to support this
Cauchy-inspired control of time steps. The modifications to Etoys were minimal.

The changes are non-intrusive. If the user chooses not to define any caution
scripts, or not to write motion in terms of timeDelta, her simulation will work
exactly as before.

Conclusion

VPRI Research Note RN-2017-001 6

We have shown that an end-user system -- suitable for kids -- can incorporate the
Cauchy Criterion. Using it does not place very much of a burden on the user.

Video demo: "Cauchy Timestep Adjustment" by Ted Kaehler, https://
vimeo.com/214582477

VPRI Research Note RN-2017-001 7

