
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

 Glendale Project: Benchmarks

Hesam Samimi,Yoshiki Ohshima, Todd Millstein,
Alan Borning

VPRI Research Note RN-2013-001

Glendale Project:

Benchmarks

Hesam Samimi Yoshiki Ohshima Todd Millstein Alan Borning

Draft of 26 September 2013

1 Introduction

The Glendale language is a playground for exploring a variety of issues in language design. This document
provides a brief sketch of the approach we are pursuing along with a set of benchmark examples.

Goals for the Glendale language include the following:

Reactivity Objects should be continuously updated based on events of interest from other objects. Reac-
tivity is useful for interactive graphics among other applications.

Distribution Objects can interact with one another in the same manner regardless of whether they are on
the same machine or across the world from one another.

Dynamic Reconfiguration It should be easy to dynamically add, remove, and replace objects in the
system.

Dynamic Discovery It should be possible to dynamically discover and interact with other objects of
interest.

Strong Encapsulation It should be easy to isolate objects from one another in various ways when desired.

Glendale is being designed as an extension of KScript [4], an implementation of the functional reactive
programming (FRP) paradigm [2] in Javascript. The KScript programming model provides reactivity. We
augment this model with a publish-subscribe mechanism in order to explore the other goals listed above. Our
model is loosely inspired by an analogy with the way nodes in the internet communicate and interact.

2 KScript Overview

We augment the programming model of KScript [4], which is an implementation of functional-reactive
programming (FRP) paradigm [2, 3] in Javascript.

Each KScript object defines a set of local variables and listening IO events (mouse, keyboard, system timer,
etc.) and a set of formulas relating those. Whenever a relevant external IO event occurs the reactive
runtime (which keeps track of dependencies) triggers all expressions with transitively affected dependencies
to recompute. The new set of values of the local variables are obtained and stored representing the state of
the object in the new time step (old values are kept around and can be accessed in the formulas).

1
VPRI Research Note RN-2013-001

3 The Glendale Model

In Glendale we have a set of (KScript) objects distributed over the network. Communication among objects
only occurs through a publish-subscribe system (here referred to as the server) deployed over this network 1.

3.1 Publishing and Subscribing

Each object in Glendale can publish data to the server in the form of tuples in a relation (or in Bloom [1]’s
terminology a channel). The server and the channels don’t belong to anybody and are part of the infras-
tructure “plumbing” the same way internet routers are. Each tuple has a publisherID as an implicit first
argument, which is inserted by the server and records the object who published the tuple.

As in Bloom, channel relations can be restricted to be functions. So depending on the definition publishing
a new tuple may mean simply adding to the tupleset in the server, or in the case of a function, possibly
replacing an older tuple with the newly received one. Publishing can also involve just removing en existing
tuple from the tupleset in the server.

Each object can also subscribe to some published tuples by communicating with the server. A subscription
request includes the name of a channel and an implicit subscriberID inserted by the server.

For example, a triple of the form property〈publisherID, propertyID, value〉 could be used to represent the
value of the propertyID property of object publisherID; the value itself may be another object identifier.
The object denoted by publisherID would publish such tuples in order to provide values of its properties to
other objects, who would subscribe to receive them.

When declaring this channel, we can define it as a function: #property〈(publisherID, propertyID) -> value〉,
where the prefix “#” is used to denote a channel name. This ensures only one property value will be
published at a given time for an object and publishing a new property tuple will replace the old tuple having
(publisherID, propertyID) pair as the key, should it have been published earlier.

As another example, a tuple setProperty〈publisherID, objectID, propertyID, value〉 could be used to rep-
resent a desire by object publisherID to update another object’s property to a new value. In this case,
the object denoted by objectID would subscribe to receive such tuples, which would be published by other
objects in order to update objectID’s properties. This channel need not be a function since multiple parties
can be requesting to update the same object’s same property and that’s just fine.

Say there’s an object identified by @p which likes to publish its "x" property, stored in its local variable x, onto
the #property channel. Fig. 1 introduces the publishing syntax in Glendale. As we can see the “<∼” left arrow
(borrowed from Bloom) is used instead of “<-” to denote a publish instead of the usual local assignment.
Note in the figure that we represent tuples using simple KScript dictionary objects and the publisherID

element in any published tuple stored at key "publisherID" is implicit and gets added automatically on the
server side.

The Glendale evaluator works as in KScript, recomputing formulas with updated dependencies at each
evaluation cycle. Publishing formulas, however, are left alone until the end of an evaluation cycle. At that
point the evaluator ships off any published values in the formulas to the server.

#property <∼ {propertyID: "x", value: x}

Figure 1: Publishing example

Another object may then subscribe to this channel to receive @p’s published data, as shown in Fig. 2. This
time the channel name appears on the right-hand side to denote a subscription. We use a receiveE combinator

1The publish-subscribe mechanism need not be a single global server assumed here for simplicity, but perhaps itself a network
of dedicated and distributed objects.

2
VPRI Research Note RN-2013-001

(same functionality as KScript’s mapE but specifically for receiving from channels) to receive each arrived
tuple from the #property channel, access the value element of that tuple, and store it in the local variable x.

x <- #property.receiveE ((t) -> t.value) where ((t) -> t.publisherID = @p && t.propertyID = "x")

Figure 2: Subscribing example

What follows the where keyword is a subscription filter—a predicate over the tuple that can accompany a
receiveE combinator in order to control which published tuples within the specified channel to receive from
the server. Because here we are only interested in object @p’s "x" property the predicate shown is used. The
publish-subscribe server has a mechanism to keep track of queries like above for each subscription in order
to push only the tuples of interest to subscribers.

In the examples below, we use the more familiar object-oriented notation @objectID.propertyID as a short-
hand for a request to subscribe to tuples of the form property〈@objectID, propertyID, value〉.

3.2 Object Identifiers

Object IDs that Glendale programs refer to are not object references in the traditional sense. Rather, they
are names that the server translates into a particular object in the network (not unlike the way a DNS
translates URLs). This approach allows for dynamic reconfiguration, since the target of an object ID may
change over time, thereby implicitly updating all clients of that object ID. To distinguish object identifiers
from regular variables, programs always prefix object identifiers with the “@” sign.

3.3 Execution Model

The server maintains a subscription list for each channel. Subscription lists change since subscribers can
change their set of subscriptions dynamically during each of their evaluation cycles 2.

When the server receives a subscription, it’ll forward any published tuples (should they exist) to the channel
as well as every subsequent update to the subscriber.

The server asynchronously receives updates from publishers and processes them one at a time. Upon each
new update, the server goes through the subscriptions to the associated channel from each subscriber and
pushes the updates to the subscriber. Each subscriber receives new updates to the subscribed channels and
reacts to them, one tuple at a time, in the same way it would react to an external IO event in KScript. That
is, dependent formulas are reevaluated transitively until quiescence.

3.4 Encapsulation

As described thus far, any object can subscribe to any published tuples. To enforce encapsulation require-
ments, publishers can put restrictions on who can subscribe to their tuples via an optional publication
filter—a predicate over a subscription request (s) and the published tuple (t). For example, if object @a

allows object @b, but no other objects, to access its properties, @a can provide a publication filter (s, t) ->

s.subscriberID = @b to its publication of property tuples. Filters can place restrictions on any aspect of a
tuple; for example we could modify our example filter to further require that the property being accessed by
@b must be named "x": (s, t) -> s.subscriberID = @b && t.propertyID = "x"

2Maintaining an object’s subscriptions done by the Glendale evaluator during its evaluation cycle for the object can be
complicated. For example, the expression @a.b.c corresponds to two subscriptions, and the object whose c property is being
subscribed to depends on the dynamic value of @a.b. Some details will be discussed in the example in Sec. 4.

3
VPRI Research Note RN-2013-001

Figure 3: Example 1: The rectangles and points

Analogously, as introduced earlier subscribers can provide an optional subscription filter. However, unlike
publication filters, subscription filters are merely a convenience: an object can instead receive all tuples
pushed into a given channel and then throw away the ones that are not of interest.

4 Example 1: Rectangle Objects and Internal Point Objects

We’ll use a simple example that is inherently point-to-point and has nothing to do with publish-subscribe.
Although it’ll feel unnecessarily complicated, we’ll use it to show the model is more general and therefore
handles the traditional examples just fine 3.

Consider the example shown in Fig 3. There are two rectangles (IDs @left and @right) each internally
represented by two points (one at top-left, other at bottom-right). Here we have six independent objects:
two rectangles and four points.

4.1 Accessing Other Objects

Let’s assume that @left’s objective is to compute the X coordinate of the mid-point of the line connecting
the centers of the two rectangles.

For simplicity, let’s say all objects have opted to publish all their properties without any restrictions on who
can subscribe. That means points push updates to their x and y attributes and rectangles their topLeft and
bottomRight attributes to the server in the form of new tuples for the #property channel. So the current
tupleset of published values on the server may look like shown in Fig. 4

property〈@left , "topLeft", @l1〉, property〈@left , "bottomRight", @l2〉,
property〈@right , "topLeft", @r1〉, property〈@right ,"bottomRight", @r2〉,
property〈@l1 , "x", 0〉, property〈@l1 , "y", 0〉, property〈@l2 , "x", 1〉,
property〈@l2 , "y", 5〉, property〈@r1 , "x", 1〉, property〈@l1 , "y", 1〉,
property〈@r2 , "x", 3〉, property〈@r2 , "y", 6〉

Figure 4: Example 1 - Published property values

Now let’s look inside the formulas for the @left object, given in Fig. 5. Since object @left is aware of its
point objects @l1 and @l2 it directly subscribes to their x attributes (lines 1 and 2). Assume, however, that
this object is not aware of the object IDs for the two points belonging to the other rectangle object @right,
but it knows about @right object itself. Thus it subscribes to @right.topLeft and @right.bottomRight to
obtain these points (lines 3 and 4), and subsequently subscribes to the x attribute of each such point (lines
5 and 6). Once all x coordinates are obtained the mid-point x can be easily computed (as done in lines 7-9).

3For example, for local computations what’s described in this paper can be only happening “under the hood” and on the
surface the programmer may just use traditional message sending.

4
VPRI Research Note RN-2013-001

1 x1 <- @l1.x

2 x2 <- @l2.x

3 p3 <- @right.topLeft

4 p4 <- @right.bottomRight

5 x3 <- p3.x

6 x4 <- p4.x

7 xm1 <- (x1 + x2) / 2

8 xm2 <- (x3 + x4) / 2

9 xm <- (xm1 + xm2) / 2

Figure 5: Formulas in @left to compute the mid-point’s x value

The above program is reactive. Any time an update for any of the subscribed values is received from the
server, all the affected formulas are reevaluated and the object will move into a new time.

4.1.1 Details

How does evaluation of formulas containing subscriptions to the #property channel (the “.” symbol) work?
First, Fig. 6 shows the desugared versions of the program above, showing explicit subscriptions to the
#property channel. There are six subscriptions there.

1 x1 <- #property.receiveE ((t) -> t.value) where ((t) -> t.publisherID = @l1 && t.propertyID = "x")

2 x2 <- #property.receiveE ((t) -> t.value) where ((t) -> t.publisherID = @l2 && t.propertyID = "x")

3 p3 <- #property.receiveE ((t) -> t.value)

4 where ((t) -> t.publisherID = @right && t.propertyID = "topLeft")

5 p4 <- #property.receiveE ((t) -> t.value)

6 where ((t) -> t.publisherID = @right && t.propertyID = "bottomRight")

7 x3 <- #property.receiveE ((t) -> t.value) where ((t) -> t.publisherID = p3 && t.propertyID = "x")

8 x4 <- #property.receiveE ((t) -> t.value) where ((t) -> t.publisherID = p4 && t.propertyID = "x")

9 xm1 <- (x1 + x2) / 2

10 xm2 <- (x3 + x4) / 2

11 xm <- (xm1 + xm2) / 2

Figure 6: Refactored formulas in @left show explicit subscriptions

Note that four of the subscriptions have concrete where-clauses (namely those assigned to x1, x2, p3, p4),
but the other two (x3, x4) have where-clauses that depend on the dynamic value of local variables which
themselves come from other subscriptions. Because of this, the evaluator has to do multiple passes of
subscribing actions to fully process one evaluation cycle, as explained below.

The evaluator sends subscription requests only for formulas containing concrete subscription filters. It then
waits until those values are received. Once the dynamic values of variables p3 and p4 are known (for that time
step), the subscription filter for the other two formulas become concrete and the evaluator sends subscription
requests for them. The process continues until all formulas have been fully evaluated. That marks the end
of the evaluation cycle and the object moves into the new time step.

Given a new update to an object property published onto the server side, the server will forward it to
subscribers who have signed up to receive the data. For example, let’s assume new update property〈@r3,
"x", 4〉 arrives at the server. This is a new object and obviously not in @left’s subscription list, so nothing
is forwarded to @left. Next, the server receives a new update property〈@right, "bottomRight", @r3〉. This
property is subscribed by @left so it is sent by the server to @left.

At the subscribing object end, the evaluator notices that this update affects the subscription assigned to
x4 (corresponding to expression @right.bottomRight.x) and thus sends a subscription request for #property

channel where publisherID = @r3 and propertyID = "x", canceling the previous subscription pertaining to
the old value of @right.bottomRight.x. This causes the server to also forward the update property〈@r3, "x",

4〉 to @left.

5
VPRI Research Note RN-2013-001

4.2 Restricting Getting and Setting Properties of Other Objects

Now let us assume @l1 and l2 points would like to prevent anybody other than their parent @left rectangle
to subscribe to their properties. In that case, they can place a restriction (s, t) -> s.subscriberID = @left

along with their publication to the #property channel.

Furthermore, assume @right rectangle is allowed to modify the x and y coordinates of it’s internal points @r1

and @r2. But how can these two points prevent any updates from any other objects, including @left.

To receive updates from the outside world, @r1 can subscribe to the channel #setProperty〈publisherID,
objectID, propertyID, value〉 adding the filter (t) -> t.objectID = @r1. It then can prevent anybody other
than @right to send it anything by adding the clause t.publisherID = @right to its subscription filter 4.

5 Example 2: Multi Chat

The previous example was awkward, since it was really point-to-point communication simulated with the
publish-subscribe model. Let’s now consider a multi-way chat program to better demonstrate the usefulness
of the model.

In the previous example we used the sugar “.” to imply an implicit subscription to a channel named
#property. Now, we’ll use the explicit way of publishing and subscribing.

Let us start with a simple case of a broadcast. Say an object @b is broadcasting messages in the form of
a string, by publishing to a binary channel #broadcast〈publisherID, message〉. Assuming the object has
a variable outText holding the outgoing message, Fig. 7 illustrates how every change to the text can be
explicitly published into the #broadcast channel.

Therefore, the published data in this case should the current value of outText variable be "lol" will be the
object {publisherID: @b, message: "lol"} representing the tuple broadcast〈@b, "lol"〉.

#broadcast <∼ {message: outText}

Figure 7: Example 2 - Broadcaster publishing to #broadcast channel

Now any number of objects on the network can subscribe to the #broadcast channel to receive every message
sent by object @b. An example is given in Fig. 8. Thus the variable inText will hold every string message
sent by the broadcasting object @b. Note in this example that the subscriber has no idea from which objects
it is going to receive messages.

inText <- #broadcast.receiveE ((t) -> t.message)

Figure 8: Example 2 - A receiver of #broadcast channel

Finally, to turn this program into a multi-chat where every user both can send and receive messages, we can
simply combine the previous two programs above (see Fig. 9). The only caveat is that an object should add
a subscription filter to the #broadcast channel to avoid receiving messages sent by itself. This can be done
using the where-clause as seen in the second line.

4A reasonable default behavior can be that objects only allow updates by whoever instantiated them but nobody else.

6
VPRI Research Note RN-2013-001

#broadcast <∼ {message: outText}

inText <- #broadcast.receiveE ((t) -> t.message) where ((t) -> t.publisherID != this)

Figure 9: Example 2 - Multi chat program

6 Example 3: The Car and the Wheel

Consider this basic Etoy example. We have a @car object that moves forward by 5 units every 1 second in the
direction told by another object called @wheel. That object’s heading property is a real value representing
the wheel’s heading in degrees. The requirement is that another object—the @user—should be able to send
a message to @wheel to set its heading, thereby controlling the direction of the car.

The example is illustrated by Fig. 10. Line 3 uses the syntactic sugar to subscribe to the heading property
published by an object by the name of @wheel. Note that this constitutes two subscriptions: In either
case of (1) the actual object that the name @wheel resolves to, or (2) the heading property of the current
@wheel undergo change, this should trigger an update to wHeading on line 3. On line 5 the displacement is
recalculated on every tick of the timer, and the next line computes the new position for the car 5.

1 timer <- timerE (1000)

2 speed <- 5

3 wHeading <- @wheel.heading

4 heading <- heading’ + wHeading

5 displacement <- P(0, speed) fby speed * P(cos(heading), sin(heading)) on timer

6 position <- P(0, 0) fby position’ + displacement

Figure 10: Example 3 - car’s movement controlled by the user by setting to a @wheel object’s heading

property

7 Example 4: Bank Account

The next example concerns a bank account object. Multiple users (objects) should be able to view and
modify the account concurrently and without atomicity violations.

Let’s say the account @acc publishes its balance property, allowing a subscription only by users @u1 and @u2

(see Fig. 11). The two users can then simply subscribe to and access the balance with @acc.balance syntax.
Alternatively they can do so explicitly, as shown in Fig. 12.

#property <∼ {propertyID: "balance", value: balance}

where ((s, t) -> (s.subscriberID = @u1 || s.subscriberID = @u2))

Figure 11: Example 4 - Bank account publishing its balance property

balance <- #property.receiveE ((t) -> t.value)

where ((t) -> t.publisherID = @acc && t.propertyID = "balance")

Figure 12: Example 4 - Users accessing the bank account’s balance using the explicit subscribing syntax

Given this setup, any time @acc internally modifies its balance property the change is pushed to the server
and the server forwards it to the two subscribers.

5Representing points as primitive values for simplicity.

7
VPRI Research Note RN-2013-001

@acc now wants to add a withdrawal service. We’ll set up a channel #withdraw〈publisherID -> amount〉 for
this purpose (making it a function to specify that only a single withdraw amount can be requested). @acc

subscribes to this channel but adds a filter to only receive data from publishers @u1 and @u2. See Fig. 13.

The example involves some concepts from KScript worth noting. The notation v’ denotes the previous value
of variable v. Also note that the definition of balance starts with 0 fby. Since this variable is not a discrete
event but a continuous value, it needs to be always defined. What is given to the left of fby (“followed by”)
is the initial value and the expression to the right is the value thereafter. Finally in the else branch of the
conditional expression we have the special value undefined. This has special semantics for the evaluator: the
occurrence of undefined cuts the flow of changes downstream in the dependency graph of variables. So if we
visit undefined during the evaluation of balance, reevaluation of any expressions in other variables depending
on balance will not be triggered, nor will the current value of balance variable itself be affected 6.

amount <- #withdraw.receiveE ((t) -> t.amount)

where ((t) -> t.publisherID = @u1 || t.publisherID = @u2)

balance <- 0 fby (amount <= balance’) ? (balance’ - amount) : undefined

Figure 13: Example 4 - bank account handling withdrawal requests

The above rules along with the publishing of the balance property (Fig. 11) will push the new balance to
all subscribers upon a withdrawal. Also the semantics prevent overdrafts caused by concurrent withdrawal
requests, as the account object processes one message (i.e. received withdraw tuple) at a time.

For fun, let’s consider now a transfer between two accounts. There are two account objects @acc1 and @acc2.
@acc1 initiates a transfer of some amount to account @acc2. The requirement is that the sum of the two
account balances should never change from the outside world’s point of view.

This example requires an inter-object synchronization. @acc1 and @acc2 should agree on going into a transfer
protocol, during which they should not proceed on processing new messages (thereby preventing a view of
“inconsistent” state).

Let’s start by noting that this requirement is impossible to ensure in a purely asynchronous system without
global synchronization, since messages can be reordered and indefinitely delayed. But even if we assume
published messages are instantaneously pushed to the server and instantaneously received on the subscriber’s
side, it is possible to view an inconsistent state without some kind of inter-object synchronization, which
we’ll implement as follows.

We set up two binary channels #transfer〈publisherID -> amount〉 and #transferAck〈publisherID -> amount〉
for this purpose, which @acc1 and @acc2 will both publish and subscribe to. Each object also defines a property
named block. The objects don’t react to any incoming messages other than transferAck tuples when block is
set to true. @acc1 initiates the process (see Fig. 14) by updating its property named transferRequestAmount

(lines 2, 3) and setting block to true (line 5) 7. Once @acc2 receives the transfer request from @acc1 (see
Fig. 15, line 3) it sets its block to property to true (line 5), adds the amount to its balance (line 7), and
publishes a transferAck tuple of the same amount for @acc1 (line 9). Upon receiving that, @acc1 subtracts
the amount from its balance (back in Fig. 14, line 11), sets block back to false (line 5), and publishes a
transferAck tuple for @acc2 (line 13). When @acc2 receives that, it can set its block property back to false
(back in Fig. 15, line 5).

Note that in a case when an ack gets lost and never resent, the target object continues in blocking mode,
thus the inconsistent state can never be observed from the outside world.

6This is not unlike the cut operator “!” in Prolog. In this case, we could have just replaced undefined with balance’ and
that would reassigned the old value of balance to it, yet it still registers as a “change” and therefore can trigger reevaluation
downstream. We may or may not want this to happen. It’s a domain specific choice, and irrelevant for this specific example.

7In KScript we use the mergeE combinator to assign different values to a variable based on which depended upon variable
is changed. In this case either change of amount variable or a receive event from #transferAck channel triggers the update
in line 5.

8
VPRI Research Note RN-2013-001

1 // sanity check transfer amount

2 OKTransferAmount <- (!block’ && balance’ >= transferRequestAmount) ?

3 transferRequestAmount : undefined

4 // block when starting transfer process , or stop blocking when received ack

5 block <- false fby mergeE(OKTransferAmount.doE(() -> true), #transferAck.receiveE ((t) -> false))

6 // publish transfer request only to @acc2

7 #transfer <∼ {amount: OKTransferAmount} where ((s, t) -> s.subscriberID = @acc2)

8 // subscribe to receiving ack from target account

9 amount <- #transferAck.receiveE ((t) -> t.amount) where ((t) -> t.publisherID = @acc2)

10 // update balance once we have received ack

11 balance <- 0 fby balance’ - amount

12 // send an ack for the ack to @acc2

13 #transferAck <∼ {amount: amount} where ((s, t) -> s.subscriberID = @acc2)

Figure 14: Example 4 - bank account transfer - @acc1’s side

1 // subscribe to receiving transfer request from @acc1

2 amount <- block’ ? undefined :

3 #transfer.receiveE ((t) -> t.amount) where ((t) -> t.publisherID = @acc1)

4 // start blocking when amount request received , stop when received ack

5 block <- false fby mergeE(amount.doE(() -> true), #transferAck.receiveE ((t) -> false))

6 // update balance

7 balance <- 0 fby balance’ + amount

8 // send a transfer ack to @acc1

9 #transferAck <∼ {amount: amount} where ((s, t) -> s.subscriberID = @acc1)

Figure 15: Example 4 - bank account transfer - @acc2’s side

8 Example 5: Linked List of Nodes

There’s an object @list representing a linked list of nodes, with each node being its own separate object.
An object from the outside world knows about (has the address of) @list but not its internal nodes. Let’s
say the goal is to compute the sum of the value property stored at each node. We should be able to iterate
through the nodes of the list, but should not be allowed to modify it.

We can model this example in several ways. Here is one such way. We can think each node itself main-
tains a link to the next node, and the @list object plays the role of the head node. We’ll use a channel
#list links〈srcNodeID -> dstNodeID〉 to represent the list. As before, the value property for each node is
assumed to be published to the #property channel. For instance, let’s assume the current set of published
tuples are as shown in Fig. 16, representing a three element list [@list, @n1, @n2] whose sum of value

properties is 43.

property〈@list , "value", 4〉, property〈@n1 , "value", 30〉, property〈@n2 , "value", 9〉,
list_links〈@list , @n1〉, list_links〈@n1 , @n2〉

Figure 16: Example 5 - Representation of the linked list on the server

A client object can then subscribe to these channels to get the linked list of nodes and iterate through them.
Let’s walk through the steps to compute the sum, as demonstrated in Fig. 17.

The node variable in line 1 represents the current node we are visiting. If we have haven’t previously visited
any node, then node is the @list object, otherwise, the client subscribes to #list links channel (in line 2) to
receive the node next to the previous one (dstNodeID element in the link lists link relation). Once the node
is known the client obtains its value by subscribing to the #property channel where publisherID = node (line
3), and and add it to the previous sum amount (line 4). Once all tuples have been received, the sum variable
should reflect the desired sum.

9
VPRI Research Note RN-2013-001

Note that this is another example where the evaluator has to do careful, extra work to handle subscriptions
dynamically. Once the node variable has a value (line 1), the subscription filter on the next formula (line 3)
becomes concrete and has to be sent to the server, in order to compute the new value for the variable value.

1 node <- @list fby

2 #list_links.receiveE ((t) -> t.dstNodeID) where ((t) -> t.srcNodeID = node’)

3 value <- #property.receiveE ((t) -> t.value) where ((t) -> t.publisherID = node)

4 sum <- 0 fby sum’ + value

Figure 17: Example 5 - Linked list client code to compute the sum of node values

9 Example 6: Car with Two Controllers

Let’s consider another Etoy example. We have a @car and two users @user1 and @user2. The car’s speed is
controlled by @user1, while its heading is set by @user2. At each tick of clock, @user1 publishes a speed while
@user2 publishes a heading, which car subscribes to in order to determine its displacement. This example
involves coordination between the two users, and seems best programmed in a synchronous setting. Since
we have not yet come up with any synchronous semantics here, we skip this benchmark at the moment.

10
VPRI Research Note RN-2013-001

References

[1] Peter Alvaro, Neil Conway, Joseph Hellerstein, and William Marczak. Consistency analysis in Bloom:
a CALM and collected approach. In Proceedings 5th Biennial Conference on Innovative Data Systems
Research, pages 249–260, 2011.

[2] Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of the second ACM SIG-
PLAN international conference on Functional programming, ICFP ’97, pages 263–273, New York, NY,
USA, 1997. ACM.

[3] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Greenberg, Aleks Bromfield,
and Shriram Krishnamurthi. Flapjax: a programming language for ajax applications. In Proceedings of
the 24th ACM SIGPLAN conference on Object oriented programming systems languages and applications,
OOPSLA ’09, pages 1–20, New York, NY, USA, 2009. ACM.

[4] Yoshiki Ohshima, Aran Lunzer, Bert Freudenberg, and Ted Kaehler. KScript and KSWorld: A time-
aware and mostly declarative language and interactive gui framework. In Onward! ’13. ACM, 2013.

11
VPRI Research Note RN-2013-001

