
Viewpoints Research Institute, 1025 Westwood Blvd 2nd flr, Los Angeles, CA 90024 t: (310) 208-0524

The Design and Implementation of
Multilingualized Squeak

Yoshiki Ohshima, Kazuhiro Abe

Presented at The International Conference on
Creating, Connecting and Collaborating through
Computing ("C5") January 2003.

The Design and Implementation of
Multilingualized Squeak

Yoshiki Ohshima
Twin Sun, Inc.

360 N. Sepluveda Blvd. Suite 2055
El Segundo, CA USA 90245

Email: Yoshiki.Ohshima@acm.org

Kazuhiro Abe
ViewPoint Technology, Ltd.

3-8-3-205 Ozenji Nishi, Asao-ku
Kawasaki-shi, Kanagawa JAPAN 215-0017

Email: abee.abe@nifty.ne.jp

Abstract

This paper describes the design and implementation of
multilingualization (“m17n”) of a dynamic object-oriented
environment called Squeak. The goal of this project is to
provide a collaborative and late-bound environment where
the users can use many different natural languages and
characters.

Squeak is a highly portable implementation of a dynamic
objects environment and it is a good starting point toward
the future collaborative environment. However, its text re-
lated classes lack the ability to handle natural languages
that require extended character sets such as Arabic, Chi-
nese, Greek, Korean, and Japanese.

We have been implementing the multilingualization ex-
tension to Squeak. The extension we wrote can be classi-
fied as follows: 1) new character and string representations
for extended character sets, 2) keyboard input and the file
out of multilingual text mechanism, 3) flexible text compo-
sition mechanism, 4) extended font handling mechanisms
including dynamic font loading and outline font handling,
5) higher level application changes including a Japanese
version of SqueakToys.

The resulting environment has the following characteris-
tics: 1) various natural languages can be used in the same
context, 2) the pixels on screen, including the appearance
of characters can be completely controlled by the program,
3) decent word processing facility for a mixture of multi-
ple languages, 4) existing Squeak capability, such as remote
collaborative mechanism will be integrated with it, 5) small
memory footprint requirement.

1 Introduction

The more people who live in the networked and comput-
erized society, the more important the communication tools

become. We envision that, in near future, non-technical
people including kids will express and exchange their ideas
using such tools. They may such ideas collaboratively and
communicate them over the network [1].

The network and the tool are getting faster and ready for
creating such a collaborative environment. What we need
is good software that is usable by people all over the world.
Because the people will want to express their ideas in their
own natural languages, such software must be capable of
not only end-user accessible idea authoring, but also mul-
tiple natural languages. In the other words, it has to be a
multilingualizedsystem.

To achieve this goal, we started from a late-bound, dy-
namic object-oriented system called Squeak. Squeak is an
implementation of a dynamic objects environment. Most
notably, its virtual machine (VM) is written in itself and has
the ability to control every pixel displayed on the screen.
Squeak also provides various end-user collaborative facili-
ties. Such functionalities include an end-user programming
environment called SqueakToys, a web server, a GUI frame-
work that supports remote collaboration, etc.

However, Squeak has a weakness in its multilingual as-
pect; Squeak’s text handling classes lack the ability to han-
dle natural languages other than English. We think that
Squeak will be an ideal environment for network collabo-
ration once it is multilingualized.

There are three issues to consider when implementing a
multilingual system. Firstly, the displayed or printed result
from the system should be acceptable in terms of the ap-
pearance.

Secondly, the system should allow the user to use charac-
ters from different languages (scripts) without any burden.
For instance, the system should easily support applications
such as Arabic-English or Chinese-Japanese electric dictio-
naries in which different scripts are used together.

Thirdly, the system should be portable among the vari-
ety of platforms. A multilingualized system will be used

1

by people who use different hardware and software. The
system should be usable on all those platforms.

We aim to fulfill those three requirement in this project.
This is an on-going project, but the system is already being
used in several places. This fact proves that we are on the
right track toward our goal.

In this paper, we discuss the design and implementation
of the multilingualization of Squeak.

The following sections are organized as follows. In sec-
tion 2, we discuss the overall design goals and the prereq-
uisites for understanding the issues of multilingualization.
From section 3 to section 9, we discuss the implementation
of the added features. Finally, in section 11, we conclude
the paper.

2 Overall Design

In this section, we discuss the overall design issues of the
multilingualized Squeak.

2.1 Universal Character Set

In the original Squeak, a character, represented as an in-
stance ofCharacter class, holds an 8-bit quantity (“octet”).
Obviously, that representation is not sufficient for the ex-
tended character set.

What kind of representation do we need for the extended
character set? One might think that a 16-bit fixed represen-
tation would be enough, but even the “industrial standard”,
Unicode version 3.2 [2] [3], now defines a character set that
needs as many as 21 bits per character.

The plain Unicode has another problem; “han-
unification”. The idea behind han-unification is that the
standard disregard the glyph difference of certain Kanji
characters and let the implementation choose the actual
glyph. This abstraction contradicts the philosophy of
Squeak; namely, it becomes impossible to ensure pixel
identical execution and layout across the platforms.

On the other hand, Unicode seems to be good enough for
scripts other than CJKV (in Unicode terminology, CJKV
refers to “Chinese, Japanese, Korean and Vietnamese, that
use the Chinese origin characters) unified characters. They
are well defined and contain many scripts.

Obviously, we need more than 16-bit for a character.
What is the upper limit? Actually we don’t have to decide
the upper limit. Thanks to the late-bound nature of Squeak,
we can always change the internal representation without
affecting the other parts of system much, even when what is
changed is as basic as theCharacter class. This decision let
us start with a 32-bit word for a character. We have added a
kind of “encoding tag” to each character to discriminate the
unified characters, and also to switch the underlying font
and scanner method implementation.

2.2 Memory Usage

To represent text in any form of extended character set,
there must be a character entity that can represent more
than an 8-bit quantity and a type of string that can store
these characters. One way to adapt this new representation
is to changeCharacter and String uniformly so that all
instances ofCharacter or String represent this new wide
character and string (uniform approach). One of the most
advanced multilingualized system, Emacs after version 20,
uses this approach [4]. Another way is to add new represen-
tations and let them co-exist with the exisiting default ones
(mixed approach).

The uniform wide character representation is cleaner, but
takes much space. In original version 3.2 image, The total
size of theString subinstances occupy is about 1.5MB. If
we use unsatisfying 16-bit uniform representation or 32-bit
representation, the image size would grow a few megabytes.

We decided to use the mixed approach. The best repre-
sentation is selected appropriately and implicitly converted
to another representation if necessary. In Smalltalk, this
kind of implicit conversion is easy to do. Also, migrating
from original Squeak to m17n Squeak is easier this way.

2.3 Text Scanning Performance and Flexibility

In the original Squeak, text scanning and displaying are
done by primitives if possible. The character to glyph map-
ping for a given size is one-to-one, so the program simply
can lay the glyphs out from left to right. In the other words,
text scanning doesn’t need much flexibility.

However, for scanning other scripts, we need more flex-
ibility to cope with the different layout rules in different
scripts. We thought that some performance help from a new
primitive would be necessary, but it turned out that an all
Squeak solution was feasible.

2.4 MacRoman vs. ISO-8859-1

For compatibility with the original Squeak, ideally the
definition of the one-octet characters and strings should not
be changed. However, to adapt to Unicode, it is cleaner if
the first 256 characters are identical with ISO-8859-1 char-
acter set, instead of the original Squeak’s MacRoman char-
acter set.

We decided to modify the upper half of the first 256 char-
acters to be ISO-8859-1 characters. Because the characters
in the upper half are not used much, this change was easy.
With this change, theCharacter class represents the ISO-
8859-1, which is equivalent to the first 256 characters in
Unicode standard.

2

2.5 Keyboard Input

At a layer from the OS to Squeak level code has to cre-
ate a character in the extended character set from the user
keyboard input sequence. One would imagine that modify-
ing VM to pass multi-octet characters to the Squeak level
would be a good solution. However, this is not desirable in
two reasons. One is that such VM will be incompatible with
the existing VMs installed to many computers. The other is
that the encoding of the multi octet character sent from the
OS is different from one platform to another.

In the current implementation of m17n Squeak, we de-
cide not to modify the VM. If the OS sends a multi octet
character to the Squeak VM, the VM treats the octets as if
they are separable characters and sent them to the Squeak
level code through theSensor object. TheSensor then in-
terprets the characters if necessary and generate appropriate
character.

2.6 Text File Export and Exchange

The requirement for the file out format is two fold.
Firstly, it should be understandable by the other non-Squeak
software. Secondly, the identity on the roundtrip conversion
from Squeak should be ensured. We don’t require that the
other way of round trip doesn’t have to be identical.

Because the original Squeak’s file out format already
uses the MacRoman format and uses all 8 bits of the octets
in a file out, we need to introduce a mechanism to let the
characters in the extended character set co-exist with the
original MacRoman characters in the file out. To satisfy
this goal, there are three feasible encoding schemes for this
external file format.

The first possible way is to adapt the X Compound Text
format of X Window System, or “ctext” [5]. The upside of
ctext is compatibility with existing file outs. The 8-bit char-
acters in the file out remain the same semantics. Also, many
existing software can read and write this format at least par-
tially. In fact, Japanese in ctext is essentially identical with
the standard internet email format for Japanese [6]. The
downside of using ctext is that not all scripts in Unicode
have a defined sequencer character.

The second way is to use UTF-8 format for file out. The
upside of this format is that all Unicode is representable in
UTF-8. One downside is that the CJKV characters need to
have an extra language tag for the round trip conversion, but
there is no standard encoding scheme for this language tag.
Another downside is that the encoding for the upper half of
the ISO-8859-1 is now different from the existing file out.

The third way is to mix the above two. The file out ac-
tually consists of indivisual “chunks” and each chunk can
be in different format. If the chunk should be represented
in UTF-8, the program puts a special prefix (“<utf-8> ”)

Table 1. Encoding Tag Assignment
encoding name encoding tag
Latin1 0
JISX0208 1
GB2312 2
KSX1001 3
JISX0208 4
Japanese (U) 5
Simp’d Cn (U) 6
Korean (U) 7
GB2312 8
Trad. Cn (U) 9
Vietnamese (U) 10
KSX1001 12
.
LatinExtended (U) 17
IPA (U) 18
.
MusicalSymbols (U) 89
MathAlnumSymbols (U) 90
Tags (U) 91
Generic (U) 255

and the string up to the terminator (“! ”) is interpreted as
UTF-8.

2.7 Conclusion on Design

Overall, the design choices strive to maximize compati-
bility, minimize memory footprint, and achieve pixel iden-
tical execution across platforms.

The following sections will discuss the details of imple-
mentation based on the above design.

3 Character Representation

As written in subsection 2.1, we have added a one word
per character representation to the original Squeak. In this
section, we describe the details of that implementation.

To represent this extended character, a class namedMul-
tiCharacter was added as a subclass ofCharacter. Be-
cause thevalue instance variable ofCharacter is already
a SmallInteger, MultiCharacter doesn’t have to have any
additional instance variable. While it is possible to assign
any object tovalue instance, so far we stick to the positive
value range ofSmallInteger to avoid large integer arith-
metic and confusion with negative value. Because one bit
is used for theSmallInteger tag and another is for the sign
bit, 30 bit out of 32 bit word is actually available for positive
integer character codes. Because most of the methods of

3

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1

Smal l I nt eger t ags i gn bi t New r epr esent at i on of
Mul t i Char act er bi t s f or $
�

i n J I S X 0208

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1

Smal l I nt eger t ags i gn bi t

code poi nt val ueencodi ng t ag

Ol d r epr esent at i on of
Mul t i Char act er bi t s f or $
�

i n J I S X 0208

Figure 1. The bit representations of charac-
ter あ of JIS X 0208 in old and new format of
MultiCharacter. The encoding tag bit bound-
ary has changed, but to keep old instances
usable, encoding tag = 4 is reserved for JIS X
0208.

Character are compatible with this new subclass, we only
needed to override about ten methods inMultiCharacter.

How do we use this 30 bit data? In the current m17n
Squeak implementation, 8 bits are used for the “encod-
ing tag”, which is often refered to as the “leading char”,
and remaining 22 bits represent the code point in the lan-
guage/script.

Basically, the 22 bit part is identical to the Unicode code
point and the encoding tag is based on the Unicode script
definition. Namely, characters in a script defined in Uni-
code has its own encoding tag value. However, there are
exceptions. A character in the unified han area can have
different encoding tags to denote its “source standard”.

The encoding tag is primaly used for switching the var-
ious fonts and implementations that depend on the script.
We describe this further in section 6.

Another exception is introduced to maintain the compat-
ibility with the previous m17n implementation. In the pre-
vious implementation, the 30 bits were devided into a 6 bit
encoding tag and a 24 bit code point. Also, CJK characters
are encoded as the domestic standard such as GB 2312, JIS
X 0208, and KS X 1001. To make it possible to use the
existing old instances in those representation, the encoding
tags for those old encodings retain the same bit pattern even
though the boundary between the code point and encoding
tags has changed.

Table 1 summerize the current encoding tag allocation.
In the table, “(U)” after the name represents the script
based on Unicode. Non-Unicode encodings appears twice
to make it possible to use existing non-Unicode instances
created before the boundary was shifted. Before this bound-

ary change, there were 4 encodings are defined, so the new
Unicode based encoding starts after 16.

As written in section 2, the definition ofCharacter was
changed to Latin-1 based encoding. While most of the char-
acters in Latin-1 were in MacRoman and glyphs were al-
ready available, there are several characters and symbols
missing from MacRoman. The glyphs for those characters
and symbols were bit editted and the existingStrikeFont
are modified to have such glyphs.

The encoding tag for a Latin-1 character asMultiChar-
acter is zero. This means that comparing two characters, no
matter they areCharacter or MultiCharacter, can be done
simply by comparing the value instance variables. Unicode
standard defines the equality conformance for composited
characters. While it can be done at the higher level, we
don’t provide the full composited character equality in ba-
sicMultiCharacter.

4 String and Symbol Representation

Similar to theCharacters in orginal version of Squeak,
a string of characters, represented as an instance ofString
class, is essentially an array of 8-bit values. We have added
new class calledMultiString that is a variable word class.

We change the class hierachy ofString to avoid re-
dundant method duplication. While most of the methods
in String should be compatible with an instance ofMul-
tiString, we can’t simply subclassMultiString from String
because a variable word class cannot be a subclass of a vari-
able bytes class. We have inserted an abstract class called
AbstractString aboveString and moved most of theString
methods to the class. In m17n Squeak image, bothString
andMultiString are the subclasses ofAbstractString and
they have specialized methods that depend on the actual
character size.

To make these changes, We modifiedSystemTracer2
[7] to produce an image with modifiedString class hier-
achy. Normally, such class hierarchy change can be simply
done by editing the class definitions in a browser. However,
this doesn’t work forString because the virtual machine
(VM) holds a pointer to theString class object.

To avoid the size change of the subclass array inAr-
rayedCollection, we first added an empty class calledAb-
stractString underArrayedCollection and added another
placeholder class calledDummyString under Abstract-
String. In the “post-process” phase of modifiedSystem-
Tracer2, the oop to forDummyString in the subclass array
of AbstractString and the oop to theString in the subclass
array ofArrayedCollection are swapped.

Thanks to the late-bound and generic nature of Squeak
and Squeak VM, the modified image runs on the unmodified
VM. After using the system tracer to change the hierarchy,

4

a b c d e f

a b
�

d e f

at : 3 put : $
�

a b c d e f

pr i mi t i ve f ai l s

a b c d e f

cr eat e a Mul t i St r i ng
and becomeFor war d:

: St r i ng

: Mul t i St r i ng

Figure 2. #at:put: is being sent to a String with
a MultiCharacter as the argument. The #at:put:
primitive fails because of type mismatch. The
backup code creates an equivalent copy of
MultiString and then becomeForward itself to
the newly created instance.

moving the methods and the class variables fromString to
AbstractString, could be done in the live image.

We also added a subclass ofMultiString called Multi-
Symbol which is essentially a copy ofSymbol. This class
holds symbol tables similar to the ones inSymbol. Again,
MultiSymbol implements the same protocol asSymbol and
since the VM only uses the oop of a symbol as the lookup
key in MethodDictionaries, an image withMultiSymbol
class names and method namesruns on the unmodified VM.

5 Implicit Conversion

In the m17n image, there are two classses for kinds of
characters and two concrete classes for strings. How are
they used?

Similar to the implicit conversions betweenSmallInte-
gers and the large integers,Character and MultiChar-
acter, String and MultiString are chosen appropriately.
Namely, if a created instance is representable as an instance
of “smaller” class, usually the instance of that class is cre-
ated.

For MultiCharacters, we potentially create multiple in-
stances that share the same code point. The originalChar-
acter uses the “flyweight pattern” [8] which create 256 im-
mutable instances beforehand and all subsequent “instance
creation” method returns the pointer to those instances.
However, forMultiCharacters, pre-creating all instances
would not use memory efficiently. This sounds as though
the system may end up with another space problem by cre-

a ’
�

d e t ext

pr esent at i on

Composi t i onScanner

Di spl ayScanner

a’
�

de

a’
�

d e

gr aphi cal appear ance

Figure 3. The presentation text for an internal
text is created by a CompositionScanner. Then
the result, not the original text, is displayed
by DisplayScanner.

ating unnecessaryMultiCharacter instances. However, in
practice, there are not manyMultiCharacter instances in
the system at any given time.

The conversion betweenString andMultiString is not as
easy as for characters. When you want to put aMultiChar-
acter into a String, theString instance firstbecomeFor-
ward:s itself into a newly created instance ofMultiString
whose elements are equal to the string, and then the value
of MultiCharacter is stored into theMultiString instance.
See the figure 2.

Down converting toString from MultiString can’t be
“optimal.” Usually, aMultiString will remain aMultiString
indefinitely. However, when theCompiler parses a string
literal in aMultiString and finds that it can be representable
asString, it creates aString instance. Thus, aString liter-
als can be created in code that was edited as aMultiString.

6 Text Composition

The basic concept of text composition stays the same for
other scripts. A loop traverses an instance ofString or Mul-
tiString, decides where to break lines and decides where
each graphical representation of character is to be placed.

However, the original Squeak’s text composition rou-
tines must be extended for multilingualized system. In
many scripts, more than one conceptual character consis-
tiutes one graphical representation.

For this problem, we separate the conceptual text and
its composited result called “presentation”. Namely, a sub-
class of NewParagraph, MultiNewParagraph adds in-
stance variables that represent the “lines” of the presenta-
tion. In the original Squeak, the task ofCompositionScan-
ner is to decide the line breaks for a text and line width

5

and stores the result intolines instance variable. In m17n
Squeak, the scanner creates anotherText and sets up line
breaks for thisText. Figure 3 depicts the simple example
of combining a character “a” and an apostrophe (accute ac-
cent) character.

To represent the presentation text, we use the Unicode
presentation character code point. This approach simplifies
the handling of complex composition but only accepts com-
binations that have defined code points in Unicode. In the
future, a more powerful rendering engine should be present
to allow arbitrary glyph combinations.

Many scripts and languages have very distinct text com-
position and line break rules. Hebrew, Arabic and certain
other languages are written from right to left. Japanese
users often want to customize the line ending (“kinsoku”)
rules, etc. Because it is hard to write one universal text
scanner for all possible scripts, we have implemented sepa-
rate methods forMultiCharacterScanner and switch them
according to the language tag bits of the character. While
a sequence of scanned characters shares the same encod-
ing tag, the inner loop of the same scanning method keeps
scanning the text. When the loop encounters a different en-
coding tag, it returns as if an imaginary stop condition was
met. Subsequently, other scanner methods are called appro-
priately.

7 Fonts

TheStrikeFont class is used for the glyphs of the char-
acters in a group of characters with a few modifications. In
the following, we describe these modifications.

Firstly, there are special “xTable” objects for the ISO
2022 multi octet character sets and Unicode based charac-
ter sets. The ISO 2022 multi octet characters, namely GB
2312, JIS X 0208, KS X 1001 have only “fixed width” char-
acters so we can avoid storing an array of character offsets;
these are calculable by a simple expression.

We have implemented a simple class calledXTableFor-
FixedFont. This class mimics an array by implementing
at:. It returns the calculated x position in the glyphForm.
The glyphs bitmap in theStrikeFont can be relatively large
for those fonts, but the mechanism simply works.

Unicode character set are split into groups based on the
scripts. In the other words, the characters that share the
same encoding tag are treated as if a distinct font. We
refer to this split font as a “Unicode-based font”. For
a Unicode-based font, we attach another object of class
XTableForUnicodeFont. The character codes in a Uni-
code based font may start at a, possibly large, non-zero
value. To compact the xTable indexing, the xTable object
subtracts the “base offset” from the start value and returns
the x table value in the array.

In general, multiple encoding tags may be used in a

MultiString, so the fonts for different encoding tags are
switched transparently while scanning the string. To imple-
ment this mechanism, there is a class calledStrikeFontSet
added. This class implements all protocols thatStrikeFont
does but actually hold an array ofStrikeFont that repre-
sent a same “family” of font for different scripts. When a
message is sent to aStrikeFontSet with a string and/or a
character as arguments, the appropriateStrikeFont in it is
selected based on the leading char of the character in ques-
tion and the message is delegated to theStrikeFont.

One of the useful by-product of this project is the
TextStyle that can now handle TrueType fonts, via what
we call TrueTypeTextStyle. By taking advantage of an ex-
isting TrueType rendering feature, TrueTypeTextStyle ren-
ders the bezier data extracted from TrueType fonts, stores
the rendered bitmap in a cache and lays the bitmap out on
a Form. For best anti-aliasing, the cached bitmap is stored
as a 32bppForm and rendered onto the destination form
by combination rule 34 (pre-scaled alpha-blending). When
the scanner sees the TextColor change, the cache is flushed.
The cache is also flushed at a full garbage collect occurs.

There is a subclass ofAbstractFont calledTTCFont and
MultiTTCFont that represents this TrueType based font.
The difference ofTTCFont and MultiTTCFont is in the
cache algorithm they use. For a “large” character set, which
has more than 256 characters, aMultiTTCFont that em-
ploys simple LRU based cache algorithm is used. For a
small character set, aTTCFont that employs fixed table of
bitmap, is used. Similar toStrikeFontSet, there is aTTC-
FontSet to implement the font switching mechanism.

8 Keyboard Input

To input a script that uses thousands of characters, there
must be a process that composes the input from a keyboard,
which has less than 100 keys into an appropriate character
in the extended character set. The software component that
takes responsibility of this composition is often called an
“Input Method” or a “Front End Processor”. Ideally, this
input method would be written in Squeak, but today we rely
on the underlying OS.

Some methods inInputSensor are modified so that the
keyboard input data from the VM is converted to the appro-
priateCharacter or MultiCharacter instance. The default
behavior ofInputSensor andEventSensor is to pass the
each octet to theHandMorph as a character, but for multi-
octet characters, the sensor has to combine more than one
octets and create a multi-octet character. The correct trans-
lation varies depending on the default encoding scheme of
the underlying OS.

For the Japanese version of Windows and Mac, the en-
coding scheme is called Shift-JIS. a Shift-JIS character con-
sists of two octets and the first octet’s 8-th bit denotes that

6

(A) (B)

(C)

Figure 4. Placement of Composition Window.

it and the subsequent octet are the part of the same charac-
ter. When thekeyboard method sees an octet with 8th bit
set passed from the VM, it “peeks” at the next octet. If the
OS passed a Shift-JIS character, this peek attempt always
succeeds so that the method can combine those two octets.

The current implementation ofInputSensor treats the
Shift-JIS encoding specially, but we are planning to add a
generic way to switch the encoding.

The other convenient function on a Japanese system is
so-called “inline composition.” Typically, the input method
shows its own separate window to display the characters
being input. To indicate where the string being input goes,
the composition window should be placed at the exact po-
sition where the string will eventually appear. This sensible
composition window placement is called “inline composi-
tion”. The figure 4 shows the screenshot where the inline
composition is not enabled (A) and enabled (B). In (A), the
compositing window is placed at0@0 regardless of the po-
sition of theFillInTheBlank window where the user wants
to input the text. When the user confirms the intermediate
string, the result is passed to the VM and eventually shows
up in the FillInTheBlank (C).

The more desirable behavior is shown in figure (B). The
compositing window is already shown over theFillInThe-
Blank and once the user confirm the intermediate string, the
string is already in its final position resulting in less surprise
and eye-movement.

We have implemented a Windows .dll (plugin) to en-
able inline composition. To tell the keyboard focus posi-

tion to the OS,HandMorph>>newKeyboardFocus: is
modified and the morph that gets the keyboard focus tells
the “composition manager” where to place the composi-
tion window. Then the composition manager calls a prim-
itive in the plugin and the primitive eventually calls the
ImmSetCompositionWindow() Windows API.

9 Reading and Writing Various File Format

The m17n Squeak supports a number of text file for-
mats. TheMultiByteFileStream extends the feature of
StandardFileStream, and has capability to switch the file
format it reads and writes.

MultiByteFileStream has a instance variable called
“converter.” The family of methods for writing charac-
ters and strings eventually callsnextPut: of MultiByte-
FileStream and that method delegates the request to the
converter’snextPut:toStream: method. Similarly, the ker-
nel of reading characters is thenext method and this method
delegates the request to the converter’snextFromStream:
method.

Conceptually, all the converter object has to implement
is those two methods. However, for properpeek implemen-
tation, the stream has to be able to push back “a character”
regardless the its actual size in the file.currentCharSize
of the converter returns the octet size for the last character
read.

Currently, X Compound Text, GB2312, EUC-jp, EUC-
kr, Shift-JIS, UTF-8 are supported.

10 SqueakToys

The most important application written in Squeak to “in-
ternationalize” is the SqueakToys system. The SqueakToys
already have a mechanism for switching the language in the
tiles. A language representable in MacRoman or Latin-1
character set can be used for the tiles in the SqueakToys,
once the mapping from the default English keyword to the
language is supplied.

Once the multilingualization, or handling the extended
character sets, is done, this is also true for the languages
that require more than MacRoman or Latin-1 characters.
After we have added the capability to handle the multi octet
characters, to make the basics of the SqueakToys work in
Japanese was not a hard task.

However, there are a lot of details to be imple-
mented. Firstly, the “template” for adding new languages,
EToyVocabulary>>templateForLanguageTranslation
method, doesn’t contain all necessary mapping for strings
used in the application. The template method tends to be be
left out from the update for the tile system. Secondly, for
kids who don’t understand English, the strings other than

7

on tiles must be translated. Such strings include buttons
in the navigator bar and the paint tool and the menu items
and sub-items in the red halo of Morphs. We ended up with
translating about 900 entries to make the Japanese version
of SqueakToys ready for Japanese kids.

To enable the translation for the menu items that were
not originally the scope of SqueakToys vocabulary trans-
lation mechanism, we modified certain call sites for menu
creation,StringMorph creation, and alike. At a such call
site, the translation mapping dictionary is searched by the
original English word as the key and the resulting value is
passed to the menu or StringMorph creation method.

The other possible approach to translate the menu is the
“callee” side translation approach: namely, the menu cre-
ation method translates the passed arguments internally de-
pending on a setting or something. We will consider the
upside and downside of those approaches.

11 Conclusion

We have presented the design and implementation of
multilingualization (“m17n”) effort of Squeak program-
ming system.

The newly added character and string representation are
used to hold the extended characters. An object in this new
representation is implicitly converted from/to the 8-bit char-
acter and string one if possible. The character set for the
default 8-bit characters were changed to the Latin-1 and the
codes for the extended character sets roughly follows the
Unicode definition with encoding tags attached.

The keyboard input is interpreted by theInputSensor. If
the multiple octets need to be combined to make a charac-
ter, the sensor generates the combined multi-octet character
accordingly.

Extended text composition routine handles the different
composition layout rules. The encoding tag for a character
is used to switch the actual implementation of the scanner
method to be called. To handle a case where a text contains
a sequence of characters that represents a single visual rep-
resentation, a separated visual presentation text is created.

The glyphs for the entire code space are broken down
into separated fonts. Such a font covers a script in the
Unicode definition. A font is represented as aStrikeFont
object, and the set of fonts that share the same height and
family are grouped as an instance of a class calledStrike-
FontSet. Again, the actual font in aStrikeFontSet is se-
lected based on the encoding tag of a character.

The SqueakToys system is now capable to handle the ex-
tended character sets. Because the original language switch
mechanism doesn’t provide all necessary translation for the
end users. We modified the menu and string morph creation
sites so that the arguments for them are translated and pro-
vide about 900 word mapping rules.

The resulting software has been used by many users. We
believe that we are on the right track toward the our goal,
which is to provide the collaborative environment for ev-
eryone over the network.

12 Acknowledgment

The authors want to thank the Squeak Central team for
making the Squeak available public. The open nature of
the language was the key to implement this multilingual
environment. The subscribers of Squeak mailing list and
Japanese Smalltalker’s salon mailing list have been giving
valuable suggestions and comments. Finally, the experience
with the members of ALAN-K Project was crucial to make
the project more practical.

References

[1] A. Kay and A. Goldberg, “Personal Dynamic Media,”
IEEE Computer, vol. 10, no. 3, pp. 31–41, 3 1977.

[2] The Unicode Consortium,The Unicode Standard,
Version 3.0. Reading, MA, USA: Addison-Wes-
ley, 2000, includes CD-ROM. The principal authors
and editors ofThe Unicode Standard, Version 3.0
are Joan Aliprand, Julie Allen, Joe Becker, Mark
Davis, Michael Everson, Asmus Freytag, John Jenkins,
Mike Ksar, Rick McGowan, Lisa Moore, Michel
Suignard, and Ken Whistler. [Online]. Available:
http://www.unicode.org/unicode/standard/versions/

[3] ——, “The unicode standard, version 3.2,”
http://www.unicode.org/reports/tr28/.

[4] K. Handa and A. Tanaka, “personal communication.”

[5] X Consortium Standard, “Compound text encoding,”
http://www.x-docs.org/CTEXT/ctext.pdf.

[6] J. Murai, M. Crispin, and E. van der Poel, “RFC
1468: Japanese character encoding for Internet mes-
sages,” June 1993, status: INFORMATIONAL. [On-
line]. Available: ftp://ftp.internic.net/rfc/rfc1468.txt,
ftp://ftp.math.utah.edu/pub/rfc/rfc1468.txt

[7] Anthony Hannan, “Systemtracer2,”
http://spair.swiki.net/34.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Massachusetts: Addison Wesley, 1995.

8

