
Viewpoints Research Institute, 1025 Westwood Blvd 2nd flr, Los Angeles, CA 90024 t: (310) 208-0524

 A Model of J in OMeta2/Squeak

Yoshiki Ohshima, Ted Kaehler

VPRI Research Memo M-2014-001

VPRI Research Memo M-2014-001

A Model of J in OMeta2/Squeak

Yoshiki Ohshima Ted Kaehler
Communications Design Group

SAP Labs and Viewpoints Research Institute
yoshiki.ohshima@vpri.org, ted@vpri.org

August 6, 2014

1. Introduction
The APL language is flabbargasting for some learners. The
language is extremely terse, yet program written in it does a
lot. We can summarize the contributing factors to the design:

• have very powerful mathematical operators that manipu-
late multi-dimensional arrays.

• have higher-order operators that modify other operators.
• have syntax that facilitates highly context-dependent in-

terpretation of symbols and names to minimize syntacti-
cal noise.

We decided to build our own implementation of an APL
family language to have a better understanding of the rela-
tionship between mathematics and programming languages.
Because the language itself stays at a very high level, it al-
lows the implementors to have vastly different implementa-
tion strategies. In fact various optimization techniques were
proposed (such as “drag-along and beating” in [1], or a com-
piler [2]) and there exist a few industrial-strength implemen-
tations [3–5]. Our aim here, however, is to have a minimum
model of the language implemented so that we can under-
stand and play with it.

We decided to use OMeta2/Squeak [6] as the implemen-
tation language. We also decided to follow the syntax of J, a
variant of APL that only uses ASCII characters (and slightly
different semantics).

This memo gives an overview of the implementation. The
implementation consists of the parser, the interpreter, and
the set of primitives. In following sections, each of these is
explained.

2. The Parser
The parser is implemented as a subclass of OMeta2 and
named JParser. JParser reads a textual program in J and
produces a tree made of lists.

A unit of execution in J is called a sentence, which is sim-
ply a list of “elements”. In OMeta2, this could be described
as a production rule as follows:
sentence = element+

To produces results from the rule, we add a semantic
action:
sentence =

element+:s spaces -> [{#sentence}, s reversed]

With this semantic action, all elements recognized are
reversed, and a symbol #sentence is attached as the head
of the list.

How does the element rule look? It is simply:
element =

number number+

| number

| primitive

| name

| "(" sentence ")"

Namely, an element is either two or more numbers in
a row, a single number, a primitive (a symbol), a variable
name, or an inner sentence that is enclosed by a pair of
parentheses. Again, we would like to produce some results,
and not just recognized, we add semantic actions:
element =

number:f number+:s -> [{#array. f}, s]

| number

| primitive:p -> [{#primitive. p}]

| name:n -> [{#name. n}]

| "(" sentence:s ")" -> [s]

As you can see, for each case (except the single number
case), the result is a list with a head symbol that denote the
type of the result.

This is pretty much all it has. In the actual implementa-
tion, we define a few other rules like primitive, name, and
number, but they are all trivial.

We can now parse a J sentence. For example, when we
give it a string something like:
(2 3 $ 1 2 3) +/ 4 4 4

it produces:
{#sentence.

{#array. {#number. 4}. {#number. 4}. {#number. 4}}.

{#primitive. #/}.

{#primitive. #+}.

{#sentence.

{#array. {#number. 1}. {#number. 2}. {#number. 3}}.

{#primitive. #’$’}.

{#array. {#number. 2}. {#number. 3}}}}

VPRI Research Memo M-2014-001

Recall that the elements in a sentence are reversed. The
first element in the tree is “4 4 4”, and then / and then + and
then the inner sentence.

3. The Interpreter
We write the interpreter again in OMeta2. The interpreter is
called JInterpreter, and it is a subclass of OMeta2.

A model of the J interpreter is described on http://www.
jsoftware.com/help/dictionary/dicte.htm. The essence of eval-
uation is the following part:

Parsing proceeds by moving successive elements [...]
from the tail end of a queue [...] to the top of a stack
[...], and eventually executing some eligible portion
of the stack and replacing it by the result of the execu-
tion.

and the diagram below it:
b =: + / 2 * a

b =: + / 2 * 1 2 3 Move

b =: + / 2 * 1 2 3 Move

b =: + / 2 * 1 2 3 Move

b =: + / 2 * 1 2 3 Move

b =: + / 2 4 6 2 Dyad

b =: + / 2 4 6 Move

b =: + / 2 4 6 Move

b =: +/ 2 4 6 3 Adverb

b =: 12 0 Monad

b =: 12 Move

12 7 Is

12

We can just transliterate this model into an OMeta2 rule
for JInterpreter. We name the rule sentence:
sentence =

{#sentence (reduce(stack) | shift)+} reduce(stack)*

-> [stack last]

The main idea is that the sentence rule handles a list
that begins with the #sentence symbol, and the interpreter
repeatedly tries to “reduce” the contents on stack (which is
a state of the interpreter). When there is nothing to reduce
on the stack, then it tries to “shift” an element from the
input. After processing all input, there may be elements on
the stack, so it applies the reduce operation as many times as
it has to and then the stack top becomes the result.

The skeleton of the #shift rule is as follows:
shift =

({(#array

({#number _:n} [n])+:ns

[JArray new: {ns size} data: ns offset: 0]

| #number _:n [n]):n

} [n]

| _):n

[stack addLast: n]

When the incoming element is a list that begins with
#array, it creates a data structure called JArray. If it is a
#number, it extracts the actual value. Otherwise any item (a
primitive symbol) would be pushed on to the stack.

However, the actual implementation is slightly more
complicated. See the description on the above mentioned

web page: “Adverbs and conjunctions are executed before
verbs;”. This means that not everything can be simply shifted
in the same manner. Instead, when an adverb or a conjunc-
tion is being shifted, it has to look ahead to make a com-
pound verb before shifting. Also, if the element being shifted
is an inner sentence, it needs to be evaluated. For these mod-
ifications another version of #shift is:
shift =

(

parseVerb

| {

(#array

({#number _:n} [n])+:ns

[JArray new: {ns size} data: ns offset: 0]

| #number _:n [n]):n

} [n]

| _):n

(

innerSentence(n):n

| [stack addLast: n])

The parseVerb rule attempts to match more input when
it sees an adverb or a conjunction. Another modification
is that when the element being shifted is an inner sen-
tence, it applies the sentence rule recursively (from within
the #innerSentence rule). The actual implementation has
some more details but we omit the explanation for them for
brevity.

The rule for reducing stack, called #reduce can be writ-
ten also by translitering the diagram shown on the J page:
EDGE VERB NOUN ANY 0 Monad

EDGE+AVN VERB VERB NOUN 1 Monad

EDGE+AVN NOUN VERB NOUN 2 Dyad

EDGE+AVN VERB+NOUN ADV ANY 3 Adverb

EDGE+AVN VERB+NOUN CONJ VERB+NOUN 4 Conj

...
Legend:

AVN denotes ADV+VERB+NOUN

...

into a rule called reduce:
reduce =

{(

arg:n conjunctions:c

-> [self pop: 4 andPush: c andPush: n]

| arg:r dyadOp:o ~verb arg:l

-> [self pop: 3 andPush: (o value: l value: r)]

| arg:r monadOp:o (end | (~arg ~conjunction _))

-> [self pop: 2 andPush: (o value: r)]

):n _*}

[n]

where #conjunctions matches three elements that con-
stitute a compound verb with a conjunction. When any of the
cases matches at the “bottom” of stack, it computes a value
by sending #value: or #value:value: to the operation
represented as a Squeak closure and replaces the involved
elements with the result. (Note that they are not pushed onto
the top of stack; rather, replacement happens at the bottom
of the stack.)

VPRI Research Memo M-2014-001

Again, the actual interpreter has some more details (such
as the implementaiton of dyadOp, monadOp, etc.), but these
three rules are the core of the interpreter.

4. Operators
If the language is simple enough that it does not involve
multi-dimensional arrays as first class data, making the inter-
preter and parser could have been the end of the story. Here,
however, we need to supply enough features for simple (and
complex) mathematical operators.

Let us take dyadic operators (i.e., one that takes two
arguments). We would like to have a generic implementation
to perform the operation given as a parameter. Since such
an implementation needs to handle the rank information for
each argument (with the rank operator (”) in J), the signature
of the generic method written in Squeak to compute the
result is:
doDyad: op with: l with: r lRank: lr rRank: rr

where op is either a closure that provides the bottom
case (for example,[:x :y | x + y], for addition), or an
object of class called JOp, which mimics such a closure but
has some extra infomation to support compound operations.
The arguments l and r are left and right arguments and
lr and rr are the rank that the operator use to operate on
left and right arguments, respectively. The implemtation of
#doDyad:... is about 30 lines of Smalltalk code to handle
the rank information correctly. (Which could be shorter but
it is left as an exercise for readers.)

As we need to combine such an operator with another
via adverbs and conjunctions, we naturally represent them as
closures. For example, the + operator is stored in a dictionary
called Dyad in the following manner:
Dyad at: #’+’ put: [:a :b :ar :br |

self doDyad: [:x :y | x + y]

with: a with: b lRank: ar rRank: br].

(Note that self here is the interpreter and not a JArray. An
operator does not belong to an array.)

When an adverb or a conjunction is combined with an-
other opeartors, it creates a compound operator. In other
words, an adverb or a conjunction is a higher order func-
tion that takes a function and create another. Naturally, you
can represent these operators as closures. For example, the
adverb & for the monadic use is defined and stored into a
dictionary named DConj as:
DConj at: #’&’ put: [:left :right |

[:l :r :lr :rr |

left

value: (right value: l)

value: (right value: r)]].

Namely, it takes two opeartors (left and right, and returns
another closure.

5. J Workspace
Because the implementation is on top of Squeak, one cannot
finish without making a Workspace where you can evaluate
J expressions.

6. Conclusion
This memo outlines the implementation of the J-like lan-
guage in OMeta2/Squeak. Implementing the parser in OMeta
was definitely a big plus; it gives us concise description. The
experience in writing this interpreter in OMeta2 was mixed.
It certainly was good to be able to write a parser with pattern
matching, but the interpreter requires operating on the both
ends of a list, while OMeta2 has good support only to do
pattern matching at the beginning of the input stream. For
this reason, we flip the order of elements in the parsed result,
and have the “stack” data structre that is still manipulated at
both ends.

References
[1] Philip Samuel Abrams. An Apl Machine. PhD thesis, Stanford

University, Stanford, CA, USA, 1970. AAI7022146.

[2] Timothy Budd. An APL Compiler. Springer, 1988.

[3] Dyalog. http://dyalog.com/.

[4] The j programming language. http://jsoftware.com/.

[5] The k programming language. http://kparc.com/.

[6] Alessandro Warth and Ian Piumarta. OMeta: an object-oriented
language for pattern matching. In Proceedings of the 2007
symposium on Dynamic languages, DLS ’07, pages 11–19,
New York, NY, USA, 2007. ACM.

VPRI Research Memo M-2014-001

