
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

 Making Applications in KSWorld

 Yoshiki Ohshima, Aran Lunzer, Bert Freudenberg
 Ted Kaehler

VPRI Memo M-2013-003

squeak
Typewritten Text
This material is based upon work supported in part
by the National Science Foundation under
Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

Making Applications in KSWorld

Yoshiki Ohshima Aran Lunzer Bert Freudenberg Ted Kaehler
Viewpoints Research Institute

yoshiki@vpri.org, aran@acm.org, bert@freudenbergs.de, ted@vpri.org

Abstract
We report on our experiences in creating a GUI framework
called KSWorld, which supports an interactive and declara-
tive manner of application writing. The framework embod-
ies direct manipulation, a high degree of loose coupling, and
time-aware execution derived from Functional Reactive Pro-
gramming (FRP). We also describe how a universal docu-
ment editor was developed in this framework.

The fields, or slots, of graphical widgets in KSWorld are
reactive variables. Definitions of such variables can be added
or modified in a localized manner, allowing on-the-fly cus-
tomization of the visual and behavioral aspects of widgets
and entire applications. Thus the KSWorld environment sup-
ports highly exploratory application building: a user con-
structs the appearance interactively with direct manipula-
tion, then attaches and refines reactive-variable definitions
to achieve the desired overall behavior.

We also show that the system scales up sufficiently to sup-
port a universal document editor. About 10,000 lines of code
were needed to build the framework, the FRP evaluator, the
document model and the editor, including the implementa-
tion of the special language created for KSWorld.

1. Introduction
The software for today’s personal computing environments
has become so complex that no single person can understand
an entire system: a typical desktop OS and commonly used
application suite amount to over 100 million lines of code.
Our group’s early experiences with personal computing led
us to understand that much of this complexity is “acciden-
tal”, rather than inherent. In the STEPS project we therefore
explored how to reduce such accidental complexity in soft-
ware, setting as our domain of interest the entire personal
computing environment [1].

In this paper, we focus on the graphical user interface
(GUI) framework called KSWorld and the universal docu-
ment editor built on top of it. The document editor resembles
an Office application suite in its appearance and feature set,
but is powerful enough for users to build their own applica-
tions.

The document editor is called Frank. We had written
an earlier version of Frank in Smalltalk, using our own

Figure 1. The Frank Document Editor.

GUI framework called LWorld [2]. From that experience, we
identified that the code falls into three major categories:

• The connections between events and actions.
• The construction of graphical widgets.
• Specifying the layout of such widgets.

The first category is code for connecting input events
through to actions. In LWorld, we implemented and used
an event system derived from the Announcements Event
mechanism [3], which is essentially a traditional observer
pattern. A handler in LWorld that is installed to a graphi-
cal element (Box) to provide customized behavior for, say, a
button, defines distinct methods for each kind of user input
event (buttonDown, buttonUp, pointerMotion, etc.), and
each of these methods is invoked as a callback. The problem
was that each method ended up as a mix of code relating to
the button’s behavior and to its visual appearance, while the

VPRI Memo M-2013-003

code defining logical states of the button, such as pressed
or entered, was scattered across the callback methods mak-
ing it hard to discover how state transitions occur.

As described in an earlier report on KScript and KSWorld
[4], we decided to employ Functional Reactive Program-
ming (FRP) [5]. Among other issues, FRP provides a sim-
ple solution for the problem outlined above. In KSWorld
the states of a button, such as pressed, are manifested as
dataflow graph node specifications. A dataflow node can de-
pend on multiple sources, and KScript allows the node to
access its own previous value. With these features we can
express concisely the definition of each state variable. We
can also express, quite separately from the variable holding
logical state, streams such as for changing the appearance of
a button. The cleaner resulting code gave us roughly a 5 to 1
reduction in lines of code. Again, please refer to [4] for more
details.

With the first item on our list under control, the next is-
sue is how to construct the Boxes. Traditionally this tends
to involve writing code that instantiates Boxes, then speci-
fies their sizes, locations, colors and other properties. The
following is an example (in Smalltalk, for the old LWorld)
that creates a title bar for a window-like widget as shown in
Figure 2:
newTitleRow: ext named: titleString for: owner

| titleRow title nameWrap dismissButton |

titleRow := LBox extent: ext color: LBox themeColor.

title := LBox newLabel: titleString.

nameWrap := LBox extent: (ext x //2 @ ext y)

color: Color transparent.

nameWrap name: ’nameWrap’.

nameWrap clipping: true.

nameWrap add: title.

title translation: 2@4.

titleRow add: nameWrap.

dismissButton := LBox withShape: LBox dismissIcon.

dismissButton name: ’dismiss’.

titleRow add: dismissButton.

^ titleRow.

Here, #extent:color: and #withShape: are primitive
Box instantiation methods, while newLabel: is a conve-
nience method to set up more Boxes that represent the char-
acters in a one-line text-field Box.

Conceptually, all we want to do is to make a handful of
Boxes, setting up their properties and bringing them together.
However, if this is done by writing textual code, it requires
dozens of repetitive lines as shown above. As pointed out
by Bret Victor, trying to construct graphical entities by in-
directly manipulating symbols is in any case an unpleasant
way of interacting with a computer. It also makes it hard to
collaborate with designers who are good at using conven-
tional graphics tools but to whom code of this kind is alien.

For this problem, we take an approach that draws upon
our experiences from Etoys [6]: namely, we try to make an
environment where the user can interactively construct the
widgets and change their properties. Also, as an optional

feature, we make available an importer for graphics data that
has been created with external tools. This may appear to be
similar to modern GUI interface builders such as XCode,
but there is a major difference: in KSWorld, the application
being built is always alive; there is no need to go through
re-compilation, or to press any kind of “run” button.

Implementing such interactive authoring features adds to
the complexity of the entire system. Remember, however,
that we would like to have a system where the user can do
exploratory construction of graphical widgets and scripts.
We can utilize this characteristic to build the authoring tool
itself, thus leading to a smaller and cleaner system. Also
note that this concept of a highly dynamic environment may
sound at odds with the FRP model, which is sometimes
equated with hardware design, but—as the end-user spread-
sheet application shows—allowing dynamic change in the
reactive programming model can work well too.

The last item on our list is to describe the layout of
multiple Boxes. We provide a simple constraint-based lay-
out mechanism (called KSSimpleLayout), along with ver-
tical and horizontal layouts, to specify the locations and
sizes of Boxes. For example, the above-mentioned newTi-
tleRow:named:for: code in LWorld was actually intertwined
with the following code:
titleRow layout: (LSimpleLayout new

keep: #topLeft of: ’nameWrap’ to: #topLeft

offset: 4@0;

keep: #topRight of: ’dismiss’ to: #topRight

offset: -2@0; yourself).

The calls to #keep:of:to:offset: set up the constraints
among the Boxes mentioned by name, and the solver there-
after maintains their relative locations and sizes as specified.

Figure 2. An example of a title bar.

Of course, one could imagine setting up a layout in a
graphical manner, as one would do in Apple’s XCode en-
vironment. However, taking a quick stock-check of lines of
code used for constraints in LWorld we find just over 700.
While this would be enough to make an interactive constraint
editor in KSWorld, it is not clear that we would achieve any
great saving in lines of code, or reduction in accidental com-
plexity of the system. Therefore for now we regard the cre-
ation of such an interactive editor as a lower priority, and
continue to write constraints using textual code.

The remainder of this document is organized as follows.
In Section 2 we discuss the revised syntax of the KScript
language. Then in Section 3 we walk through a simple ex-
ample of building a widget in KSWorld, and in Section 4
illustrate the Shape Editor, which supports creation and edit-
ing of graphical shapes; this shows that suitably elaborate
graphical elements can be made interactively with the tools
available. In Section 5 we show that even the main command

VPRI Memo M-2013-003

interface in the Document Editor is based on simple widgets
that a user can build from scratch. Section 6 describes briefly
how we made a generic text field based on the idea that lay-
ing out text is just a matter of writing a layout. All these ele-
ments are brought together in the Document Editor (as seen
in Figure 1), described in Section 7. Finally, in Section 8 we
switch point of view, examining how much code was written
to implement each part of the system.

2. Revised KScript Language
Since our original presentation of the KScript language [4],
we have made some purely syntactic changes to the lan-
guage. Here we present KScript in its revised form.

2.1 Base language
The base object in KScript, called KSObject, is a simple
dictionary that stores values under keys. A KSObject can
understand a basic set of methods, and can inherit more
methods from its parent.

The surface syntax resembles CoffeeScript [7]. In our
search for a clean syntax we decided to try using the “off-
side rule”, in which level of indentation is used to define the
nesting of code blocks.

CoffeeScript inherits some problems from its ancestor
JavaScript, such as the fiddly distinction between arrow ->

and fat arrow => in defining a function, indicating alternative
ways to bind the this pseudo-variable. We simplified the
language and eliminated such issues.

Unlike some languages that require a syntactic marker
(such as @ in Ruby) to distinguish temporary variables from
objects’ instance variables (fields), for KScript we wanted
to favor a cleaner appearance. Both temporary variables and
the fields of the receiver are referred to just by specifying
a name. To distinguish the two, we require all temporary
variables to be declared explicitly with var.

We use := for the “common case” assignment operator
(the special case is described below). Here is a simple piece
of code:
aFunction := (a) ->

var c := a + b

return c

An anonymous function with a single argument called a

is created by the () -> syntax and bound to the variable
aFunction. In the body of the function, b is a reference to a
field in this (the object in which this definition is executed),
c is a temporary variable that is being assigned to, and the
value of c is returned.

This syntax, where the temporary variables and fields
are not distinguished syntactically, makes the compilation
of code context dependent. That is, the meaning of a line
of code can be different depending on the existence of lo-
cal bindings. However, although it is possible to refer to a
variable that is defined as an argument or temporary in a
containing scope, in our experience the need for such “free”
variables is rare: it is always possible to create a field in the

receiver to hold the needed value. A further reason to avoid
using free variables in definitions is that they cause problems
in serialization and deserialization.

2.2 FRP-style dataflow extension
On top of the base language we added an FRP-style dataflow
extension. As a dataflow definition is always stored into a
field, it takes the following form:
fieldName <- expression

The left hand side of the special assignment operator <- is a
field name, and the right hand side is a dataflow definition.
When such a line is executed, the right hand side is evaluated
to a kind of delayed object called a stream, and is assigned
into the specified field of this. For example, the code snip-
pet below uses a function called timerE() to create a stream
that updates itself with a new value every 200 milliseconds,
and this stream is assigned to a field called myTimer:
myTimer <- timerE(200)

Initially the stream created by timerE(200) has no value
(strictly, it has undefined as its value), and each 200 “log-
ical” milliseconds it acquires a new value corresponding to
the logical time of the system.

The stream can be used by other streams:
fractionalPart <- myTimer % 1000

sound <- FMSound.pitch_dur_loudness(fractionalPart,

0.2, 100)

player <- sound.play()

The operator % calculates the remainder, so the value in the
fractionalPart stream is the milliseconds part of the
myTimer stream (i.e., a sequence [..., 0, 200, 400,

600, 800, 0, 200, ..., 800, 0, ...]). This value
is used by the sound stream to create an FMSound object
with the specified pitch, 0.2 seconds duration, and 100 for
loudness. The new value of the sound stream is in turn sent
the play() message right away. The result is a stair-like
tune.

The expression on the right of a <- assignment has a
similar meaning to those quoted with {!...!} in Flapjax.
When the compiler reads the expression, it treats the vari-
able references as dependency sources (such as myTimer in
fractionalPart, and fractionalPart in sound). This
means that when a source changes, the expression will be
evaluated to compute a new value for the stream.

An important point is that such variable references are
loosely coupled. That is, the actual stream to be bound to the
variable is looked up in the owning KSObject each time the
referenced sources are checked for updates.

This scheme has some clear benefits. The order of the
stream definitions in a chunk of code does not affect the
program behavior (as in Compel, a single assignment lan-
guage [8]); changing the dependency graph requires no extra
bookkeeping effort; and the garbage collection works with-
out needing to unregister dependents from their sources, or
to detect finished streams.

VPRI Memo M-2013-003

There is a way to filter changes and stop them from
propagating downstream, using the value undefined. In
KScript’s dataflow model, when the value computed for a
stream is undefined the system treats it not as a new value
for the stream but as a signal for not propagating changes
further. For example, the stream stopper below does not
update beyond 1,000, and the value in timerViewer stream
does not exceed 10 (1,000 divided by 100):
stopper <- if myTimer > 1000 then undefined else myTimer

timerViewer <- stopper / 100

2.3 Behaviors and events
In FRP, there is a distinction between “behaviors”, which
represent continuous values over time, and “events”, which
represent sequences of discrete values.

Under the pull-based, or sampling-based evaluation scheme
that KScript operates (explained in Section 2.5), a behavior
can easily be converted to events and vice versa (a behavior
is like a stream of events but the value of the last event is
cached to be used as the current value; an event is like a
behavior but each change in the current value is recorded as
an event).

However, they still need to be treated differently, and mix-
ing them in computation can cause semantic problems. Also,
whether to reinstate the value of a stream upon deserializing
is dictated by whether the stream is a behavior or not (we
discuss this in more detail in [9]).

In KScript, a behavior is defined with an initial value
and an expression that produces the values that follow. The
initial value is given either with the keyword fby (meaning
“followed by”, and borrowed from Lucid), or the function
startsWith() (borrowed from Flapjax). For example, a
behavior that represents a Point starting from (0, 0) and
moving to the right over time can be written as:
aPoint <- P(0, 0) fby P(timerE(100) / 10, 0)

A stream that has no stream references in its definition is
called a value stream. To create a value stream that acts as
a behavior, the function streamOf() is used. It takes one
argument and creates a constant stream with that argument
as the value. To create a value stream that acts as an event,
the function eventStream() is used.

2.4 Combinators
In addition to the basic expressions used in the examples
above, KScript offers several combinators that combine
other streams to make a sub-graph in a dependency network.
The combinators’ names and functionality are drawn from
FRP implementations, especially Flapjax.

2.4.1 Expressions and “when” constructs
As described above, when a stream reference appears in
the definition of another stream, the compiler marks it as
a source. Below, color is a source for the stream bound to
fillUpdater:

fillUpdater <- this.fill(color)

When the dependency specification is more complex, or
it would be convenient to bind the value of the trigger to
a temporary variable, one can use the when-then form to
specify the trigger and response:
fillUpdater <- when

Color.gray(timerE(100) % 100 / 100) :c

then

this.fill(c)

The timerE triggers the gray method of Color. The result-
ing color value is bound to a temporary variable c and used
in the then clause, which will be evaluated and becomes the
new value of the stream. As is the case here, it is sometimes
true that the side effects caused by the then clause are more
interesting than the actual value.

Internally, the when form is syntactic sugar for the more
traditional combinator mapE, and an argument-less variation
of it called doE. The following two lines are equivalent:
beeper <- when mouseDown then this.beep()

beeper <- mouseDown.doE(() -> this.beep())

2.4.2 mergeE

The mergeE combinator takes multiple stream expressions
as its arguments, and updates itself whenever the value of
any of those expressions changes.

The value of the mergeE is the value of the expression
that most recently changed. However, again it is sometimes
the case that the actual value of mergeE is not used in the
triggered computation; what is important is just the fact that
something is to be updated. For example, imagine you have
a line segment object (called a Connector) in an interactive
sketch application, and it has to update its graphical appear-
ance in response to movement of either of its end points
(bound to start and end), or to a change in the width or
fill of its line style. We watch for any of these changes with
a single mergeE, then invoke a method with side-effects
(updateConnector()) to recompute the graphical appear-
ance:
updateLine <-

when

mergeE(

start.transformation,

end.transformation,

fill,

width)

then

this.updateConnector()

2.4.3 anyE

In GUI programming, there is often a need to watch a collec-
tion of homogeneous objects and detect when any of those
objects changes. For example, a menu can be defined as a
collection of buttons, that reacts when the fire stream of
any of the buttons is updated due to a click from the user.
The anyE combinator takes as arguments a collection of ob-
jects and the name of the stream to watch. For example:

VPRI Memo M-2013-003

Evaluator.addStreamsFrom = (anObject) ->

for stream in anObject

// add stream to the list of streams

Evaluator.sortAndEvaluateAt = (logicalTime) ->

var sorted = this.topologicallySortedStreams()

for stream in sorted

stream.updateIfNecessary(logicalTime)

Figure 3. The evaluation method of KSObject in pseudo-
code

items := col // a collection of buttons

fire <- anyE(items, "fire")

The items field is holding the button collection. The anyE

stream looks for a new value in the fire stream of any item,
and updates itself with that value.

2.4.4 timerE

This was already used in Section 2.2. It takes a numeric
argument (in fact it could be a stream expression, but we
have not yet found a use case for this) and creates a stream
that updates itself after each passing of the specified number
of milliseconds.

2.4.5 delayE

delayE delays the propagation of events for a specified
length of time. The syntax of delayE looks like a mes-
sage send. It takes a numeric argument, and delays upstream
events by the specified number of milliseconds before prop-
agating them. For example, compare these two stream defi-
nitions:
beeper <- buttonDown.doE(() -> this.beep())

beeper <- buttonDown.delayE(500).doE(() -> this.beep())

In effect, the first definition of beeper creates a pipeline that
has two nodes (buttonDown and doE), and that makes a
beep noise when the mouse button is pressed. The second
definition has delayE(500) inserted into the pipeline; this
causes each event from buttonDown to be delayed for 500
milliseconds before triggering the doE.

2.5 Evaluation scheme
The basic strategy of the evaluation scheme in KScript

can be considered a pull-based implementation of FRP with
all streams being looked at. The evaluation cycle is tied to
the display update cycle; at each cycle, the streams involved
in the system are sorted into their dependency order and
evaluated if necessary.

As described in Section 2.2, a stream holds the names
of its sources. These symbolic references are resolved at
the beginning of each evaluation cycle, and the dependency
information is used to topologically sort the stream into a
list. Each stream in the list is then checked to see if any of
its sources has been updated since the last cycle. If so, the

Figure 4. The File List.

expression for the stream is evaluated immediately and the
value updated, possibly affecting streams later in the list.

3. Example: The File List
For interacting with files, we would like to have a standard
dialog to show the files that are available and allow the user
to choose one. In this section we illustrate how we can make
a File List, shown in Figure 4, from a set of rudimentary
tools. It needs to show a list of directories, a list of files in the
selected directory, and the full path and name of the selected
file. Pressing the Accept button will make the selected file’s
details available to client code, while pressing the Cancel
button will just close the File List.

The steps in making a tool in KSWorld are as follows:
1) Make a compound widget. 2) Edit the properties and
styles with the Inspector and the Shape Editor, if necessary.
3) Write code to specify the layout, if necessary. 4) Write
code to connect the events and actions. This can be done
either in the Inspector or in the code editor of the hosting
environment. And, 5) Write code to set up the widget with
its layout and behavior.

We start from an empty Box, then use its halo menu to
add child Boxes within it:

Making a new child Box from the halo menu.

In all, we need eight such Boxes. We use the halo to resize
and roughly place each one to get a feel for the eventual
layout. Note that KSWorld initializes each new Box with

VPRI Memo M-2013-003

a random color, which helps ensure that they are visually
distinct at this stage:

A rough sketch of Boxes for the File List.

All these Boxes have only the most basic behaviors, so
the next step is to assign appropriate additional standard
behaviors as needed. For example, using the “be something”
halo sub-menu we can give a Box the behavior of a button.

Attach behaviors to some Boxes.

At this point we realize that the directory list and file list
are likely to be taller than the tool, so their respective fields
need to be scrollable. For edits and actions beyond those
available through the halo menu we can use the rudimentary
Inspector tool, that lets us inspect the slot values of an object
and execute KScript expressions in the object’s context. Here
we evaluate a line of code to turn a list into a vertical scroller:

Make each list Box scrollable.

The Inspector can also be used to set all the Boxes’ fills
and border styles as desired:

Set fills and border widths.

In the same manner we assign each Box into a slot in the
overall widget so it can be referred to in the KScript dataflow
defining the File List’s behavior (shown in Appendix B), and
give it a name by which it will be referenced for the layout:

Set names for components.

VPRI Memo M-2013-003

Note that these Boxes are live and already reacting to user
input. Buttons highlight when the pointer enters them.

A new button, reacting to the pointer.

The code for the layout of the File List is written in
an external text editor. It is about 25 lines of constraints
specifying the relationships among 8 widgets; it appears in
its entirety in Appendix A.

There is a small piece of code to set up the File List. It
will install the layout, modify the label of the Accept button
as supplied by the client, and set up client-supplied defaults
for the file-name wildcard patterns and the browsing start-
points referred to as shortcuts:
setup := (title, acceptLabel, fileName, patterns,

extent, theShortcuts) ->

acceptButton.textContents(acceptLabel)

this.layout(this.fileListLayout())

patterns <- streamOf(patterns.findTokens(","))

shortcuts <- streamOf(theShortcuts)

this.behavior(fileName)

return this

The third line installs the layout into the Box. As we write
and adjust the code for the layout, we could execute this line
on its own to check the overall appearance of the composite.

The File List also needs a definition of the behavior

method that is called from setup, specifying the actions
that should be performed in response to relevant events such
as choosing (clicking) in the lists. The full listing of the
behavior method is given in Appendix B. One highlight
is this stream definition:
fire <- when

acceptButton.fire

then

{ dir: selectedShortcut,

file: nameField.textContents()}

where selectedShortcut is the currently selected short-
cut and nameField is a Box that is showing the currently
selected file name. This definition specifies that when the
acceptButton’s fire stream is updated, the fire stream
of the File List itself will acquire a new value that is an ob-

ject with two fields. The client of the File List sets up its own
stream that watches this fire stream to trigger a response to
the chosen file.

Because of the loose coupling of stream names, the File
List does not need to contain any knowledge of the client (or
potentially multiple clients); its sole job is to set a new value
into the fire stream. Thus developing the File List and its
clients can be done independently.

In total, about 25 lines of layout specification, 40 lines of
stream definitions and 10 lines of setup code was enough to
implement a usable File List. This compares to roughly 250
lines of Smalltalk code used to implement a comparable File
List for LWorld.

4. Example: Making an Icon
To build up from a bare-bones system to an end-user oriented
application, we need a way to create more visually pleasing
graphics. Again we would like to do this directly, rather than
by manipulating symbols in textual code. We have therefore
built a vector-graphics Shape Editor sufficient for simple
graphics (for more elaborate compositions, such as the Frank
cartoon character, we provide an importer for reading SVG
files built outside the system).

Let’s see if we can build the icon used in the halo to resize
the target Box horizontally.

The Resize icon.

We start with a small white square Box, and invoke the
Shape Editor from the halo menu.

Invoking the Shape Editor.

This opens up an editor for the Shape of this Box. A
Shape comprises multiple paths, that can be considered as
layers. In the editor, the layers appear in a scrollable list on
the right, the currently selected layer in an edit view at bot-
tom left, and the composite view of all layers at top left. In
the middle are controls for toggling whether the path is open
or closed, and whether filled or unfilled (stroked). There are
also buttons for launching pickers for a solid fill color or for
a gradient fill. When editing a stroked path, sliders appear for

VPRI Memo M-2013-003

setting its width, and its join and cap shapes. The individual
segments within a path (each a quadratic Bézier curve) are
shown using colored manipulation handles: blue for segment
end points, green for control points. The user edits segments
by dragging these handles, with movements that are usually
constrained to a grid of integer coordinates. When editing an
open path, segments can be added and deleted.

Initial shape, with a single filled path.

Our first task is to round the Box’s corners. We change
the path from filled to stroked, then break it open and move
the end points to add corner segments.

Rebuild the path with rounded corners.

Once the path is complete we close it again, then dupli-
cate the current layer and fill the path in one of the two re-
sulting layers.

Duplicate the layer, and fill one copy.

The stroked layer is to become the border, so we bring up
a color picker to give it a solid fill.

Set a gray fill for the border.

We repeat the addition and editing of layers to construct
the parts of the icon, as seen in the growing list on the right
of the editor. While manipulating the final segment to form
the line through the middle, we might find that it looks like
an elephant moving its trunk:

Move the final path into place.

Recovering from this distraction, we move the path seg-
ment into its proper position and press the save button to
store the completed composition as the new Shape for the
original white Box. We can then save the Box to a file for
later use.

5. Example: A Panel for the Tool Bar
We now demonstrate how we make a panel, also known as a
bubble, containing commands for the Document Editor.

A box-editing bubble, as it appears when no box is
selected.

The first step is to create a Box to be the bubble, give
it rounded corners and a border just as for the icon in the
previous section, and an appropriate gradient fill. In general
the Shape Editor can be used to create a fill for each layer of
a shape, but in this case the entire shape only needs a single
linear gradient, so it can be added using the gradient tool
invoked directly from the halo:

VPRI Memo M-2013-003

Using the halo’s gradient tool.

Then, as seen before, we can add a number of Boxes to
become the bubble’s buttons, labels and so forth. In this ex-
ample we are building a bubble that supports manipulation
of whichever Box within the document the user has high-
lighted with the halo. This bubble needs an editable text field
to hold the name of the selected Box. We first customize a
Box to turn it into a one-line text editor:

Customizing a part within the bubble.

Then we add the following stream to make the text field
update according to the selected Box’s name:
selectionWatcher <-

when

DocEditor.selectedDocBox :b

then

this.textContents(if b then b.printString() else "")

where the virtual field DocEditor always refers to the Doc-
ument Editor handler, so DocEditor.selectedDocBox

refers to the selected Box, and the result is converted to a
string and shown in this Box (see Section 7.2 for more ex-
planation of selectedDocBox).

The bubble contains buttons to trigger editing commands
on the selected Box. Each button is to change its fill when
the pointer rolls over it, to provide feedback. In this case we
have pre-built a gradient fill and made it accessible through
a convenience method, so we can just run a short script to
set up this enteredFill along with the button’s label and
action identifier:

Setting up one of the bubble’s command buttons.

Each of the buttons has a stream called fire, which ac-
quires a new value when the button is clicked. The bubble
consolidates the fire streams of its buttons into a single
fire stream of its own, using the following stream defini-
tion:
fire <- anyE(contents, "fire")

The entire tool bar of the Document Editor, in turn, consoli-
dates the fire streams of its constituent bubbles. This form
of implementation allows largely independent development
of the bubbles’ clients, the bubbles themselves, and even of
the tool bar. The developer of the client can make progress
without the tool bar being available yet, knowing that the
client code will just need to watch the fire stream of an
object that will be looked up through a named field. The in-
ternal structure of the tool bar is also hidden from the client,
so the developer of the bubbles is free to explore alternative
organizations of commands.

To finish this bubble we create the other command but-
tons as duplicates of the first, giving them appropriate lo-
cations, labels and action identifiers. The finished bubble is
stored in a file directory for later use.

6. Text Fields

Figure 5. A Text Field. Each letter is a Box with vector
graphics data representing the contour of a glyph.

In KSWorld, we have a handler that makes a Box behave
as a text field. The handler interprets keyStroke events for
typing in new characters and invoking command key short-
cuts. A pointer click is interpreted as setting the position of
the insertion point, and dragging the pointer defines a selec-
tion, highlighting part of the text. The handler also serves
as the layout object for the Box, arranging its contents with
suitable wrapping at word boundaries.

Note that each character in text is represented by a Box,
like any other in a KSWorld composition. The Shape for
each such Box is generated from the contour data for the rel-
evant character in the chosen TrueType font. Each Box has

VPRI Memo M-2013-003

an additional parameter called pivotPosition that repre-
sents the origin for the TrueType geometry.

Through iterative design we have arrived at a set of con-
cise declarative rules that together specify left-to-right word
layout with wrapping. The current implementation of a text
field’s layout object is a transcription of these rules.

There is also a mechanism to support more elaborate text
layout, such as justifying text at the left and/or right, and
centering it. The heights of the Boxes making up a line in
a text field can vary; the layout finds the tallest Box in each
line in order to set the positions of all Boxes in the line.

7. Putting It All Together: the Document
Editor

In this section we show how a Document Editor resembling
a productivity-suite application can be created out of the
KSWorld Boxes presented up to now. One important obser-
vation is that the editor itself does not have to have much
functionality, because in our design each Box that would be-
come part of a document already embodies features for being
customized not only in terms of appearance but also with ac-
tions and behaviors. A large part of the Document Editor’s
job is simply to provide a convenient user interface to these
features.

The overall design of the Document Editor borrows from
Microsoft Office’s ribbon interface [10]. Each command
bubble, as described above, contains a set of commands that
are closely related. When a Box in the editing area is high-
lighted with the halo, the tool bar will show only bubbles
that are relevant to that Box (or to the document as a whole).
There are too many bubbles for all of them to be seen at
once, so we group them into tabs such that the most fre-
quently used bubbles appear by default, and we let the user
access the rest by selecting other tabs. Managing this tool bar
structure is one of the Document Editor’s responsibilities.

The Document Editor also provides the UI for navigating
to a document and to a page within it, starting from a set of
directory shortcuts and ending with a list of thumbnails for
the document’s pages. We call this interface the directory
browser (see Section 7.3).

Buttons within the Document Editor allow the user to
hide the tool bar and directory browser selectively, for ex-
ample to give priority to the document itself when giving a
presentation. The document can also be zoomed to a range
of viewing scales.

Finally, the Tile Scripting area (see Section 7.4) supports
“presentation builds” for each page of a document, in which
the visibility of individual Boxes on the page can be con-
trolled through a tile-based scripting language.

7.1 The Document Model
While the basic model of a document is simply homoge-
neous Boxes embedded into each other, we wanted to have

a higher-level structure allowing end-users to organize doc-
ument contents.

From our past experiments, we adopted a HyperCard-like
model of multiple cards (or pages) gathered into a stack.
Conceptually, a KSWorld stack is an ordered collection of
Boxes that each represent one page. Additional properties
control which child Boxes are specific to a single page, and
which are shared among many (e.g., to act as a background
or template). When the user turns or jumps to a different
page, any changes made to the current page are stored into
the data structure before the new page’s data are brought in
and displayed.

The model’s combination of uniform object embedding
and pages in a stack covers a variety of document types.
A slide in a presentation maps naturally to a page, while a
lengthy body of text can either appear in a scrolling field on
one page or be split automatically across many.

7.2 Bubble selection
The current target of the halo is held in a stream called
haloTarget belonging to the top-level Box in a KSWorld
application. To customize the editor interface depending on
the highlighted Box, the Document Editor needs a stream
that depends on haloTarget of the top-level Window Box,
which is accessible via the TopContainer virtual field. One
could start to define the reaction logic as follows:
bubbleWatcher <-

when

mergeE(TopContainer.haloTarget,

textSelection, whole.extent)

then

this.checkBubbleVisibility()

where checkBubbleVisibility() decides the set of bub-
bles to be shown, based not only on the halo highlight but
also the existence of a text selection, and the size of the Doc-
ument Editor as a whole (which determines how many bub-
bles will fit on the tool bar).

However, remember that the Document Editor interface
itself is made up of Boxes, that a user might want to examine
or customize. It would be bad if attempting to put the halo
on a Box within a bubble, for example, caused that bubble
itself to be categorized as irrelevant and removed from the
display. This is a case for filtering the haloTarget stream
by inserting the value undefined to suppress unwanted
responses. We define a stream that checks whether the halo
target is within the document or not:
selectedDocBox <-

when

TopContainer.haloTarget :box

then

if box && this.boxBelongsToDoc(box) || box == nil

box

else

undefined

This stream updates itself to undefined when the high-
lighted Box is not part of the document (note that nil is also
a valid value for haloTarget, meaning that no Box is high-

VPRI Memo M-2013-003

Figure 6. The Directory Browser on the left.

Figure 7. The Tile Scripting area on the right.

lighted). If the bubbleWatcher uses this filtered stream in
place of haloTarget, it will only respond to halo placement
within the document:
bubbleWatcher <-

when

mergeE(selectedDocBox,

textSelection, whole.extent)

then

this.checkBubbleVisibility()

7.3 Directory Browser
On the left side of the Document Editor are three lists sup-
porting navigation among documents and the pages within
a document. From left to right, the lists hold a pre-defined
set of “short cuts” to local or remote directories, a list of
documents in the currently selected directory, and a list of
thumbnails for the pages in the selected document.

These lists can be hidden selectively to open up more
screen space for the document. Taking advantage of the
highly dynamic nature of Box compositions, of which the
Document Editor as a whole is one instance, this hiding and
showing is achieved simply by replacing the layout object
that arranges the sub-components of the interface.

7.4 Tile Scripting
In the retractable pane on the right side of the Document
Editor is a simple tile-based scripting system that is designed
to control the “presentation build” of a document page, for
example in which some of the page’s Boxes are hidden to
start with then progressively revealed as the keyboard space
bar is pressed.

Figure 7 shows a page with document Boxes named id1,
id2, etc. When the page is loaded the sequence of tiles will
be executed from the top, so the objects with a hide tile
attached will initially be hidden. The script then waits at the
first line that has a space trigger attached. When the user
hits the space bar, this trigger is satisfied and the tiles down
to the next trigger will be executed.

The scripting area has its own interpreter, which simply
visits the Box structure of the script and installs a keystroke
or button-down event stream on each trigger Box it finds.

As well as allowing such scripts to be edited manually, we
support building them programatically. For example, Frank’s
ODF importer converts the visual effects specifications in an
ODP file into KSWorld scripting tiles.

8. Line Counts
One of the goals of the STEPS project is to reduce the
accidental complexity of software systems. The number of
lines of code needed to write a system is one way to get a
feel for such complexity.

As demonstrated above, KSWorld is already more than a
single-purpose, minimal GUI framework: it supports direct-
manipulation construction and authoring of new user docu-
ments and applications, and saving and loading documents.

Table 1 shows a breakdown of the lines of code in the
system at the time of writing this report. The parts of the
system summarized in the first subtotal (10,055) are consid-
ered to be those essential for implementing the Document
Editor. The next entry, “Gezira Bindings”, is semi-essential.
The remaining parts are not essential, but help generally with
application development and optimization.

Below we briefly discuss each of the table entries. Before
doing so, we should point out that KSWorld is currently
hosted in the Squeak Smalltalk development environment.
While most of KSWorld’s features are written in KScript,
some optional or lower-level features are for the time being
written in Smalltalk.

Also note that KScript itself can be considered a hybrid
of two languages: a JavaScript-like basic object-oriented
language, and a dataflow extension. From our experience,
the number of lines of code required to implement in KScript
a feature that does not make use of dataflow is comparable
to implementing it in Smalltalk. Dataflow-based features are
considerably more compact.

VPRI Memo M-2013-003

LOC Total description
753 KScript Compiler
291 Basic Object Model
654 FRP implementation

2,133 Basic Model of Box
548 Box Support
962 Text Support for Box
760 Common Handlers for Box
716 Layout
209 Stack

1,769 Document Editor
1,260 Serialization

10,055 Sub Total
2,330 Gezira Bindings

2,330 Subtotal of above.
288 OpenGL Rendering
95 Spreadsheet Table

492 SVG Importing
1,140 ODF Importing
1,110 Development Support
1,848 Tests

4,973 Subtotal of above.
17,358 Total

Table 1. The lines of code in the KSWorld and the Docu-
ment Editor.

8.1 KScript compiler (753 lines)
The compiler reads KScript code and translates it to Squeak
Smalltalk. The basic parts are a parser that generates a parse
tree and a backend that generates Smalltalk from this tree. It
is similar to our past experiments on a one-pass JavaScript
compiler [11], but the separation of parser and back end
resulted in a somewhat larger OMeta2/Squeak description,
of around 450 lines.

In addition to the basic translation scheme, we need a
translator to expand dataflow expressions into stream defi-
nitions. This expander is about 170 lines.

8.2 The basic object model (291 lines)
The basic object model is implemented on top of Squeak’s
dictionary class. The lines in this category are for additional
behaviors such as equality tests and customized field access.

Note that this entry does not include the implementation
of the execution engine, primitive objects or primitive data
types. KScript uses numbers, strings, sequenceable collec-
tions and keyed collections from the hosting language, and
relies on Squeak’s execution engine. However, we made ef-
forts to keep such dependencies to a minimum; it should be
possible to port KScript to any common object-oriented lan-
guage without needing large amounts of extra code.

8.3 The FRP implementation (654 lines)
The FRP implementation consists of a dependency sorter
that does a topological sort of dependencies, and the (non-
optimized, somewhat repetitive) implementation of around a
dozen combinators.

8.4 The Box model (2,133 lines)
In addition to the very basic code needed to manage and
draw the Box display tree, this count includes the code for
direct manipulation features such as resizing a Box’s Shape,
and the specialized behaviors of the top-level Box and of a
“hand” Box that implements pointer-related facilities.

8.5 Box support (548 lines)
For the Box model to be functional and usable, it has to have
access to the frame buffer for displaying graphics, and to
the incoming raw user events. Currently these are provided
by the Squeak environment in which KSWorld is hosted,
through a custom Morph called KSMorph. We also include
at this level the implementation of a WorldState object that
manages the evaluation of the KSWorld.

8.6 Common handlers for boxes (760 lines)
A typical application requires common widgets, realized
as Boxes with particular behaviors. This includes buttons,
menus (which we implement as lists of buttons), scroll bars,
connectors, and more elaborate widgets such as the color
picker and gradient editor. We believe the dataflow approach
has helped to keep this code compact: recall that a button is
about 50 lines of code, as described in [4].

8.7 Layout (716 lines)
There are currently three kinds of layout, the simplest being
VerticalLayout and HorizontalLayout, which arrange
Boxes in a container vertically or horizontally. These layouts
support flags to configure the spacing between Boxes, and
how to behave when the Boxes overflow the available size.

The third kind of layout object is KSSimpleLayout,
which was briefly mentioned in the Introduction. The pro-
grammer can specify Boxes’ relative locations and extents in
terms of constraints between them, and a solver ensures that
these constraints are satisfied.

8.8 Text support (962 lines)
As discussed in Section 6, KSWorld text fields are imple-
mented as flows of Boxes holding one letter each (this is a
design decision inherited from LWorld and its predecessors
such as Lessphic). The layout object for a text field therefore
performs a job similar to that of HorizontalLayout, except
that it must take into account word boundaries as opportuni-
ties to wrap the layout onto successive lines. The line count
for this item includes the text handler’s support for keyboard
input and various text-editing command shortcuts.

Each character Box has a Shape that is generated from
the specified TrueType font’s contour data for the character,

VPRI Memo M-2013-003

taking into account settings for font size, emphasis and fill
color.

8.9 Stack (209 lines)
As discussed in Section 7.1, the Frank Document Editor
supports a “stack” multi-page document model inspired by
HyperCard, though unlike HyperCard we allow unlimited
embedding of Boxes.

8.10 Document Editor and associated controls (1,769
lines)

The biggest application in the current system is the Docu-
ment Editor itself. It has various UI elements such as the
selection-sensitive tool bar and its component bubbles, and
controls for controlling the document display area and zoom
ratio.

This category also includes the code for specialized con-
trols such as the Shape Editor, and the Tile Scripting support
for presentation builds (see Section 7.4).

8.11 Gezira bindings (2,330 lines)
The rendering of graphics to a virtual frame buffer is done
by the Gezira graphics engine. To use this engine (which
amounts to about 450 lines of Nile code), we have a set of
classes that represent available fill styles and stroke types,
and one class to represent a path: computing its bounds,
supporting hit detection, etc. These bindings are written in
Smalltalk.

8.12 Texture composition by OpenGL (288 lines)
Optionally, we can utilize a substantial speedup of graphics
rendering by using OpenGL to compose the textures that
Gezira generates. The line count for this category does not
include the OpenGL binding code that Squeak provides, nor
of course the OpenGL code itself.

8.13 Spreadsheet table (95 lines)
As the basic dataflow formalism supported by FRP is very
close to the calculation model for a simple spreadsheet,
making a spreadsheet widget was straightforward. Each cell
is logically represented as a stream slot within a KSObject
for the whole table, and for each stream we create a Box to
display the appropriate value string.

8.14 ODF and SVG readers (1,632 lines)
We have fairly complete ODF and SVG readers, which read
in data in XML format and generate a corresponding Box

structure. Both can be considered non-essential convenience
features.

8.15 Serialization and deserialization (1,260 lines)
This category includes code for generating and parsing S-
expressions, and a simple compressor/decompressor for text
data.

8.16 Development tools in Morphic (1,110 lines)
This category represents an intermediate stage in the boot-
strapping process towards a KSWorld independent of its
Squeak hosting environment. In Squeak Smalltalk we wrote
various tools for inspecting, editing and adding code to
KScript objects, specialized to the stream-based behavior
of these objects.

8.17 Tests (1,848 lines)
We have generated many test cases to exercise the compiler,
the behavior of KScript FRP streams, and the facilities of
KSWorld. While there is no honor in stinting on test cases,
the line count here could certainly be made lower by paying
more attention to redundancy and repetition.

Acknowledgments
We would like to thank Arjun Guha for fruitful discus-
sion on the design; Alan Borning for giving us insights
from Kaleidoscope and other work; Dan Amelang for de-
sign discussions and for creating the Gezira graphics en-
gine; Ian Piumarta for some key designs in the Lessphic and
Quiche work; Hesam Samimi and Alan Borning for testing
the KScript environment; Takashi Yamamiya for the imple-
mentation of the KSObject inspector and early design dis-
cussions; Alex Warth for the language-building ideas and
creating OMeta; and Alan Kay for the ideas of loose cou-
pling and time-based execution. Also, we would like to thank
our late friend Andreas Raab for long-lasting ideas on build-
ing frameworks.

References
[1] Alan Kay, Dan Ingalls, Yoshiki Ohshima, Ian Piumarta, and

Andreas Raab. Steps Toward the Reinvention of Program-
ming. Technical report, Viewpoints Research Institute, 2006.
Proposal to NSF; Granted on August 31st 2006.

[2] Viewpoints Research Insitute. STEPS Toward Expressive Pro-
gramming Systems, 2010 Progress Report. Technical report,
Viewpoints Research Institute, 2010. Submitted to the Na-
tional Science Foundation (NSF) October 2010.

[3] Vassili Bykov and Cincom Smalltalk. Announcements
Framework. A series of blog entries at: http://www.

cincomsmalltalk.com/userblogs/vbykov.

[4] Yoshiki Ohshima, Bert Freudenberg, Aran Lunzer, and Ted
Kaehler. A Report on KScript and KSWorld. Technical report,
Viewpoints Research Institute, 2012. VPRI Research Note
RN-2012-001.

[5] Conal Elliott and Paul Hudak. Functional reactive anima-
tion. In International Conference on Functional Program-
ming, 1997.

[6] The Squeakland Foundation. Etoys. http://squeakland.

org.

[7] Jeremy Ashkenas. Coffeescript. coffeescript.org.

[8] Larry G. Tesler and Horace J. Enea. A language design for
concurrent processes. In Proceedings of the April 30–May 2,

VPRI Memo M-2013-003

1968, spring joint computer conference, AFIPS ’68 (Spring),
pages 403–408, New York, NY, USA, 1968. ACM.

[9] Yoshiki Ohshima. On Serializing and Deserializing FRP-style
Interactive Programs. Technical report, Viewpoints Research
Institute, 2013. VPRI Memo M-2013-001.

[10] Jensen Harris. The Story of the Ribbon. Movies and
blogs at: http://blogs.msdn.com/b/jensenh/archive

/2008/03/12/the-story-of-the-ribbon.aspx.

[11] Alessandro Warth. OMeta/JS 2.0. http://tinlizzie.org/
ometa-js, also reported in [12].

[12] Alan Kay, Ian Piumarta, Kim Rose, Dan Ingalls, Dan Ame-
lang, Ted Kaehler, Yoshiki Ohshima, Hesam Samimi, Chuck
Thacker, Scott Wallace, Alessandro Warth, and Takashi Ya-
mamiya. STEPS Toward Expressive Programming Systems,
2008 Progress Report. Technical report, Viewpoints Research
Institute, 2008. Submitted to the National Science Foundation
(NSF) October 2008.

VPRI Memo M-2013-003

A. The layout of the FileList
This is the layout of the File List.

layout

^ KSSimpleLayout new

keep: #topLeft of: ’titleBar’ to: 0@0;

keep: #right of: ’titleBar’ to: #right offset: 0;

keep: #height of: ’titleBar’ to: 25;

keep: #topLeft of: ’directoryField’ to: #bottomLeft of: ’titleBar’ offset: 10@5;

keep: #right of: ’directoryField’ to: #right offset: -10;

keep: #height of: ’directoryField’ to: 20;

keep: #topLeft of: ’shortcutListScroller’ to: #bottomLeft of: ’directoryField’ offset: 0@5;

keep: #width of: ’shortcutListScroller’ to: 80;

keep: #bottom of: ’shortcutListScroller’ to: #bottom offset: -35;

keep: #topLeft of: ’fileListScroller’ to: #topRight of: ’shortcutListScroller’ offset: 5@0;

keep: #right of: ’fileListScroller’ to: #right offset: -10;

keep: #bottom of: ’fileListScroller’ to: #bottom offset: -35;

keep: #bottomLeft of: ’nameField’ to: #bottomLeft offset: 10@ -10;

keep: #height of: ’nameField’ to: 20;

keep: #right of: ’nameField’ to: #left of: ’accept’ offset: -5;

keep: #bottomRight of: ’cancel’ to: #bottomRight offset: -10@ -10;

keep: #extent of: ’cancel’ to: 60@20;

keep: #bottomRight of: ’accept’ to: #bottomLeft of: ’cancel’ offset: -5@0;

keep: #extent of: ’accept’ to: 60@20;

yourself

B. File List Actions
The code to attach expected behavior to the File List.

behavior := (initialFileName) ->

// shortcuts holds the list of default directories.

// We don’t have a way to add or remove them right now.

// So it is computed at the start up time.

shortcutList.setItems(([x.value(), x.key()] for x in shortcuts))

// When an item in shortcutList is selected, selectedShortcut will be updated.

selectedShortcut <- shortcuts.first() fby

when

shortcutList.itemSelected :ev

then

(e in shortcuts when ev.handler.textContents() == e.key())

// The following programatically triggers the list

// selection action for the first item in shortcutList.

shortcutList.first().fireRequest.set(true)

// fileName is a field that contains the selected file name. It uses "startsWith" construct

// so it is a stream with an initial value. When itemSelected happens, the string representation

// of the box (in handler) will become the new value for fileName.

fileName <- when fileList.itemSelected :ev

then ev.handler.textContents()

VPRI Memo M-2013-003

startsWith initialFileName

// When the current selection in shortcutList is updated,

// the fileList gets the new items based on the entries in the directory.

fileUpdater <- when selectedShortcut :s

then

var dir := s.value()

var entries := ([{directory: dir, entry: entry}, entry.name()]

for entry in dir.entries() when patterns.findFirst((p) ->

p.match(entry.name())) > 0)

entries := entries.sort((a,b) ->

a.first().entry.modificationTime() > b.first().entry.modificationTime())

// update the list in fileList

fileList.setItems(entries)

// nameField gets a new string when fileName is changed.

updateNameField <- when fileName :name

then nameField.textContents(name)

// The contents of the directoryField is connected to shortcut

updateDirectoryField <- directoryField.textContents(selectedShortcut.value().asString())

// fire on this handler and the Box are bound to the fire of the accept button.

fire <- when acceptButton.fire then {dir: selectedShortcut, file: nameField.textContents()}

// Allows the File List to be dragged by the title bar.

label.beDraggerFor(this)

VPRI Memo M-2013-003

