
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

 On Serializing and Deserializing FRP-style
 Interactive Programs

Yoshiki Ohshima

VPRI Memo M-2013-001

squeak
Typewritten Text
This material is based upon work supported in part
by the National Science Foundation under
Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

On Serializing and Deserializing FRP-style
Interactive Programs

Yoshiki Ohshima

February 15, 2013

1 Introduction

Our group has been developing a GUI framework called KSWorld [7] that draws
upon Functional Reactive Programming (FRP) [3]. The core idea is to describe
the application logic in terms of the graph of data dependency in a time-aware
manner. As in other GUI frameworks, there is a type of basic graphical object,
which is called the “Box”. A Box has fields that represent its characteristics
such as its location, its graphical appearance (called a shape) etc., and also its
dynamic actions. What separates the KSWorld from more conventional GUI
framework is that these fields are nodes, or streams, in the dependency graph.

The KSWorld is designed to support end-user authoring in the spirit of
Etoys [1]. The user can add and remove Boxes and streams into his project at
any time while the system/application is running. When the user is satisfied, a
set of Boxes that the user is interested in will be serialized to be stored or sent
over the network, and deserialized at the other end of the pipe. The deserialized
project may be merged into the environment that may be quite different from
where it was created.

Upon serializing a project made in this manner, which elements in the project
to export and how to import them is an interesting question. (But, here is the
short answer: “behaviors” should be saved with their current values while the
“events” should not be saved with their current values. The behaviors should
be re-evaluated upon loading.)

In the following sections, we explain the idea more deeply.

2 Events and Behaviors

In FRP, there are two types of time-varying variables. One is called the “behav-
ior”, which represents a continuous value over time whose time domain stretches
from −∞ to ∞. In other words, a behavior has always a value at any given
time, including at the “current time”, which denotes the logical time where the
system is. (The value of the behavior at the current time is “current value”.)
Another type is called the “event”, which represents a discrete sequence of values

1

VPRI Memo M-2013-001

that spread over time, but until the first value in the event arrives, the “current
value” is undefined. (The terms “behaviors” and “events” can be confusing
because these have other meanings.)

As often suggested in discussions [4] [5], the distinction is rather subtle in
the implementation; a behavior can be implemented as an event with the latest
value cached as the current value. They are connected in the dependency graph,
and a change in one triggers the changes in its dependents. The events and
behaviors in the KSWorld is implemented thusly; there is a single kind of type
called EventStream.

3 What to Save?

As described above, the fields of a Box are all EventStreams. Upon saving a Box
into the external form, some values, such as the location of the Box, the shape
of the Box, etc. should be saved so that they can be reconstructed when loaded.
On the other hand, events do not retain their current values, as the value of the
event is useful only at the time when the event occurs.

4 Examples

Let us take an example. Imagine that there is a Box who is reacting to click
events, and moving to right by 20 pixels for each click:

this.myMover = $$(@click.doE(() -> this.translateBy(P(20, 0))))

There are three streams involved; click, that is an event and receives a
new value when the box is clicked. The @myMover stream describes a reaction
to click; it uses the side-effecting method translateBy. In the translateBy
method, there is a stream that represents the transformation (called @transformation)
of the box from its container. The double-dollar quote (“$$”) serves as a macro
and the expression enclosed in it is expanded to an expression that creates an
EventStream.

(As described in [7], one could write the same effect without using the side-
effecting method but more directly, even the presence of self-referencing stream
such as in this case. Explaining this is out of scope of this memo.)

The Box always has a valid value in transformation. When this Box is
exported and later imported, the position of the Box should be as it was, and
the next click should move the box by 20 pixels from that location.

But what if a behavior is dependent on another behavior? Let us imagine
that a Box is monitoring the color of the extent of top-level Box (also known as
the “window”) and showing its textual representation:

this.extentPrinter =
$$(this.textContents(@__topContainer__.extent.asString()))

2

VPRI Memo M-2013-001

The topContainer .extent notation retrieves the reference to the extent
stream of the window. It is symbolically referenced so that exporting and im-
porting it does not break the reference. The value of extent (in Point) is con-
verted to a string by the asString() method and the textContents() method
puts characters in itself. Again, extent is a behavior and something that always
has a valid value.

When this Box is exported and imported to a new session with a new window,
the Box should not wait until the next change to the extent of the new top-level
window (which happens to be a relatively rare-event). Rather, all behaviors in
the imported Boxes that depend on behaviors should be “synchronized” with
the logical time of the current system regardless of the original logical time when
they were exported. So, upon loading the extentPrinter, the stream needs to
be evaluated and the user sees the extent of the window in the box as soon as
it appears on the screen.

5 Implementation

To ensure this, an EventStream has a flag to denote whether it is a behavior or
an event. Any stream that is created as a “value stream” (c.f. [7]) is a behavior,
as well as a stream that has received startsWith() call.

An EventStream has a (non-stream) field called currentValue to hold the
current value of the stream. It also has lastUpdateTime, which denotes the log-
ical time when the stream acquired a new value. The value of lastUpdateTime
is compared against the lastUpdateTime of the dependencies to determine
whether it needs to be updated.

One might think that the lastUpdateTime field is not necessary in an imple-
mentation of FRP, especially for a push-based one. In the KSWorld implemen-
tation, this turned out to be useful. For instance, the field can have a special
value (-1, which never be a valid logical time) that denotes that the stream has
to be re-evaluated. The behavior going through serialization uses this to trigger
the update.

All such data are stored in a restricted form of S-expressions.

6 Conclusions

The Frank document editor [2] is being written in KScript. The Frank edi-
tor is made to edit such end-user projects, but the editor itself is built in the
KSWorld and uses the FRP-style code. Parts of Frank have been saved and
loaded for making further revisions during the development, and the external-
ization scheme seems to be working well for our purpose.

References

[1] Etoys. http://squeakland.org.

3

VPRI Memo M-2013-001

[2] D. Amelang, B. Freudenberg, T. Kaehler, A. Kay, S. Murrell, Y. Ohshima,
I. Piumarta, K. Rose, S. Wallace, A. Warth, and T. Yamamiya. STEPS
Toward Expressive Programming Systems, 2011 progress report. Technical
report, Viewpoints Research Institute, 2011. Submitted to the National
Science Foundation (NSF) October 2011.

[3] C. Elliott and P. Hudak. Functional reactive animation. In International
Conference on Functional Programming, 1997.

[4] A. Guha. On the Flapjax[6] mailing list:
https://groups.google.com/forum/#!topic/flapjax/oKPYa68Dhas.

[5] A. Kay. Personal communication on variables being spreadsheet cells with
their current values cached.

[6] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi. Flapjax: a programming language
for Ajax applications. SIGPLAN Not., 44(10):1–20, Oct. 2009.

[7] Y. Ohshima, B. Freudenberg, A. Lunzer, and T. Kaehler. A Report on
KScript and KSWorld. Technical report, Viewpoints Research Institute,
2012. VPRI Research Note RN-2012-001.

4

VPRI Memo M-2013-001

