
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

 Cooperating Languages - Spreadsheet Example

 Hesam Samimi

VPRI Memo M-2012-007

squeak
Typewritten Text
This material is based upon work supported in partby the National Science Foundation underGrant No. 0639876. Any opinions, findings, andconclusions or recommendations expressed in thismaterial are those of the author(s) and do notnecessarily reflect the views of the NationalScience Foundation.

Cooperating Languages

Spreadsheet Example

Hesam Samimi

September 13, 2012

Our current strategy is to look at more examples to examine the opportunities
for cooperative work (between languages) and determine the limits of the current
cooperating languages framework. To this end, we look at a super simplistic
spreadsheet.

Spreadsheet Demo

We start by a table where cells can contain expressions involving real constants
and/or references to other cells, as shown in Fig. 1.

Fig. 1. Spreadsheet table

As usual we start by defining any class / relations, a sketch of which is shown
in Fig. 2.

Task #1: Table Layout

Columns and rows can be resized subject to a maximum window size. As usual
OCassowary is a suitable language for this purpose (see Fig. 3).

Task #2: Which Cells To Recompute When Updating A
Cell

Once the user makes a change to a cell, we need to figure out what other cells need
to change value due to a dependency upon the updated cell. This is essentially
a reachability operation and so Datalog is used as shown in Fig. 4.

VPRI Memo M-2012-007

class Expr : Thing
Attributes

dependedUponCells : Set(Cell)
vars : Set(Symbol)
value : Real

class CellSequence : Thing
Attributes

index : Int
cells : List(Cell)

class Column : CellSequence
Attributes

width : Real
class Row : Thing

Attributes
height : Real

class Cell : Thing
Attributes

row : Row
columm : Column
expr : Expr

class Table : Thing
Attributes

rows : List(Row)
columns : List(Column)
cells : List(Cell)
maxTableWidth , maxTableHeigth : Real
minColumnWidth , minRowHeight : Real

Fig. 2. Sketch of spreadsheet model.

sum(columns.width) <= maxTableWidth
sum(rows.height) <= maxTableHeight
all c : Column | c.width >= minColumnWidth
all r : Row | r.height >= minRowHeight
all c : Column | c.width stay
all c : Row | r.height stay

Fig. 3. Enforcing layout with Cassowary.

relation UpdatedCell(a: Cell)
relation UpdatableCells(a: Cell) <--

UpdatedCell(a) ||
exists b : Cell | (Expr_dependedUponCells(b.expr , a) && UpdatableCells(b))

Fig. 4. Determining which cells should be recomputed using Datalog.

VPRI Memo M-2012-007

Task #3: Updating Cells

Now that we have determined the set of cells that should be recomputed, we
would like to determine the new values. A constraint solver is suitable for this
task, because it allows us to have two-way dependencies.

For the sample table of Fig. 1, we have the following constraints as shown in
Fig. 5, where we employ Z3 for the task.

env hostProgram:
A1 = 5.0
B1 = A1 + 1.0
C1 = 0.0
A2 = C1
B2 = C2 - B1
C2 = 1.0

in:
#Z3

modifiableVariables:
ModifiableVars tuples

Fig. 5. Constraints for table in Fig. 1.

Task #4: Frame Conditions for Constraint Solving

And finally we use Datalog again to determine which are the modifiable variables
need updating and which should not change when solving the constraints. See
Fig. 6 below.

relation ModifiableVars(v: Symbol) <--
exists b : Cell | (UpdatableCells(b) && !UpdatedCell(b) && Expr_vars(b.expr , v))

Fig. 6. Determining set of modifiable variables for the purpose of constraint solving
with Z3.

VPRI Memo M-2012-007

