
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

 Cooperating Languages - First Example

 Hesam Samimi

VPRI Memo M-2012-006

squeak
Typewritten Text
This material is based upon work supported in part
by the National Science Foundation under
Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

Cooperating Languages

First Example

Hesam Samimi

August 31, 2012

The goal of Cooperating Languages framework is to integrate a host of lan-
guages and constraint solvers within one environment, so that different comput-
ing tasks can be performed in an elegant, domain specific manner, all on top of
a single program model.

As a first demo, I adopted and extended the moving boxes demo that I think
Aran worked out a while ago to demonstrate the use of Cassowary solver for
laying out GUI components.

Moving Boxes Demo

As shown in Fig. 1, there are several GUI boxes on a canvas that can be moved
and resized by the user. The example is run by evaluating the following.

CoopLangMovingBoxesDemo new openInWorld.

Fig. 1. Moving boxes

Program Model

We start by designing a model to represent the objects involved in the program,
as seen in Fig. 2. Since boxes can be nested, other than position and size infor-
mation, each box stores its set of children boxes. Variables b1,...,b5 refer to
the five boxes, while p1,...,p5 keep their top-left corner points.

Class definitions implictly generate corresponding relations that store in-
stances (e.g. Box(a: Box)) and attributes (e.g. Point x(p: Point, x: Real),
Box contents(b: Box, a: Box)).

VPRI Memo M-2012-006

class Point : Thing
Attributes

x, y : Real
class Box : Thing

Attributes
corner : Point
width : Real
contents : Set (Box)

var b1, b2, b3, b4 , b5 : Box
var p1, p2, p3, p4 , p5 : Point
var padding : Real

Fig. 2. Moving boxes model

Task #1: Mouse Events

User mouse events are implemented using the listener pattern, so the appropriate
language for this task is Squeak. I copied this code from the original moving boxes
demo.

Task #2: Layout Constraints

The moving boxes have several constraints. They cannot be moved outside mar-
gins or overlap each other. More importantly, the x-coordinate layout ordering
of the boxes needs to be preserved. There are soft stay constraints that express
the inertia of these boxes. Thus when the user drags a box, other boxes may
have to be pushed along with it, as illustrated in Fig. 3.

Fig. 3. Box layout constraints forcing boxes to be pushed along

Cassowary is ideal for handling these linear hard and soft constraints, which
are stated in Fig. 41. In fact, we use its objective version called OCassowary to
directly express the constraints over the object attributes.

1 The padding variable defines the margins that limit how close to the edges of the
canvas and the neighboring box can these boxes be moved to.

VPRI Memo M-2012-006

env hostProgram:
p1.x, p2.x, p3.x, p4.x, p5.x stay
p1.x >= padding
p5.x <= 600 - b5.width - padding
p1.x + b1.width + padding <= p2.x
p2.x + b2.width + padding <= p3.x
p3.x + b3.width + padding <= p4.x
p4.x + b4.width + padding <= p5.x

in:
#OCassowary

modifiableAttributes:
#((Point x))

Fig. 4. Moving boxes layout constraints

Task #3: Which Boxes Move Along?

Fig. 5 demonstrates how the user can temporary disable the layout rules above
to drag boxes inside each other in order to build composite GUI components.

Fig. 5. Nested boxes

When a box is dragged by the user, we would like all the contained boxes
to move along as one composite GUI. For example in Fig. 5 if the yellow box is
moved, then the purple is moved along but the parent red box is not (Fig. 6).
On the other hand, when we moved the red box, the yellow, purple, and blue
boxes all were moved along (Fig. 7).

Since each box records only its child boxes, the task of computing what
boxes are dragged is essentially a transitive closure operation. This computation
is concisely expressed in Datalog, as seen in Fig. 8. The extensional DragBox

relation indicates the box currently dragged by the user, while the intensional
relation DragAlong computes the desired set.

Conclusion

The hope is that as we work out more examples, we can get more insights as
to how to evolve the cooperating solvers project into the cooperating languages
framework.

VPRI Memo M-2012-006

Fig. 6. Moving nested boxes. Parent box not moved.

Fig. 7. Moving nested boxes. All contained boxes moved.

relation DragBox(a: Box)
relation DragAlong(a: Box) <--

DragBox(a) ||
exists b : Box | (Box_contents(b, a) && DragAlong(b))

Fig. 8. Moving Rules

VPRI Memo M-2012-006

