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An Initial Proposal

Before we move onto cooperative solving, I propose we initially design an exten-
sible multi-language paradigm, expressed in Alan B’s idea on dataflow regions
to connect different parts of a program. Here one program may be composed
of several sub-programs given in multiple languages, e.g. an imperative part, a
linear constraint solving part, and a 1st order constraint solving part, etc. (I
think even that would be impressive for demo purposes.)

– I use the term ’language’ instead of ’solver’, but a language can just be an
API to a solver, e.g. SAT/SMT, simplex.

– Events may trigger a region (and therefore everything downstream) to re-
execute.

– I propose we start by a framework that already embeds several languages,
but supports new language additions.

– What the base languages have in common is that they are all founded on
top of a set of primitives and relations. (Because the model of a program
isn’t tied to a specific language, and relations are good at modeling.)

– At the model level, relations (e.g. optional class hierarchies) can be given,
and invariants can be specified (rules on tuples in a relation, or invariants
for a class) using the usual relational operations.

– The base languages should include an imperative one (referred as Imp).
– I propose we also add linear solving, SMT and relational 1st order constraint

solving, and Datalog.
– Values are tuples, as member of a particular relation.
– Each relation is defined by a type tuple, e.g. link: Relation[Node,Node].
– Each class is just a unary relation. e.g. class Node: Relation[Node].
– Each field is just a binary relation. e.g. value: Relation[Node,Int].
– Each variable is a relation. e.g. myNode: Relation[Node], or myPoint:

Relation[Int,Int]. This way a variable can always store a collection of
tuples, including just one.

– Base languages share primitives and relations (thus variables).
– We then allow any new language to be added, as long as an abstraction

/ concretization function is provided to translate state between our base
relational language and this new language. E.g. javascript, prolog, etc.

– For each region it can be specified which relations are writable. Everything
else is read-only for that region.
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– Each tuple can have two implicit parts for specifying space and time. This
helps reasoning about distributed systems and temporal properties. Most
programs won’t care about space and time parts of tuples and just read the
stored values. For example a tuple just storing a real number 4 may look
like (#Node0, 23, 4), which gives value 4 at a certain node in a network
#Node0 and pseudo-time 23. Programs may use space and time information
directly as part of computation.

– For now we let each region explicitly specify its language.
– I propose Yoshiki to do the relational foundation, the dataflow lang, and the

imperative lang, Alan B to do linear solving lang, and I do the SMT and 1st
order relational constraint solving lang and Datalog.

Examples

Example 1: Integer Square Root

– Model:

var x: Relation[Int]
var y: Relation[Int]

– Program:

region1 ---> region2 ---> region3

– Regions:
region1:

language: Imp
modifies: x
program: { x = readInput }

region2:

language: SMT
modifies: y
program: { y >= 0 && y*y >= x && (y+1)*(y+1) < x }

region3:

language: Imp
program: { print y }

Example 2: Graph Reachability

– Model:

class Node: Relation[Node]
var edge: Relation[Node, Node]
var reachable: Relation[Node, Node]
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– Program:

region1 ---> region2 ---> region3

– Regions:
region1:

language: Imp
modifies: Node, edge
program: { var a = Node new

var b = Node new
var c = Node new
edge add List((a,b), (b,c)) }

region2:

language: Datalog
modifies: reachable
program: { reachable(p, q) := edge(p, q).

reachable(p, q) := reachable(p, r), edge(r, q). }

region3:

language: Imp
program: { print reachable }

Example 3: Hardwired Sample Circuit

– Model:

var supply: Relation[Real]
var meter: Relation[Real]
var current: Relation[Real]
var r1: Relation[Real]
var r2: Relation[Real]

– Program:

region1 ---\
---> region3 ---> region4

region2 ---/

– Regions:
region1:

language: Imp
modifies: r1, supply
program: { r1 = readInput

supply = readInput }

region2:
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Fig. 1. Example 3

language: Imp
modifies: r2
program: { r2 = readInput }

region3:

language: Linear
modifies: current, meter
program: { supply = (r1 + r2) * current

meter = current * r1 }

region4:

language: Imp
program: { redraw meter }

Example 4: Bridge Circuit from Generic Kit

– Model:

class Node: Relation[Node]
{
var v: Relation[Node,Real]
var devices: Relation[Node,Resistor]
invariant: sum(devices.i) = 0

}

class Resistor(n1: Node, n2: Node, r: Real): Relation[Resistor]
{
var n1, n2: Relation[Resistor,Node]
var r, i: Relation[Resistor,Real]
invariant: n1.v - n2.v = i * r

}
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class Meter(n1: Node, n2: Node, r: Real): Relation[Meter]
extends Resistor

{
invariant: i = 0

}

class Supply(n1: Node, n2: Node, r: Real, val: Real): Relation[Meter]
extends Resistor

{
var val: Relation[Supply,Real]
invariant: n1.v - v2.v = val

}

class Ground: Relation[Ground] extends Node
{
invariant: v = 0

}

– Program:

region1 ---> region2 ---> region3 ---> region4

Fig. 2. Example 4

– Regions:
region1:

language: Imp
modifies: Ground, Node, Supply, Resistor, Meter, devices
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program: { var n1 = Ground new
var n2 = Node new
var n3 = Node new
var n4 = Node new
var supply = Supply new (n1, n2, _, _)
var r1 = Resistor new (n4, n2, _)
var r2 = Resistor new (n2, n3, _)
var r3 = Resistor new (n3, n1, _)
var r4 = Resistor new (n1, n4, _)
var meter = Meter new (n4, n3, _)
devices add List((n1, supply), (n1, r3), (n1, r4),

(n2, supply), (n2, r1), (n2, r2),
(n3, meter), (n3, r2), (n3, r3),
(n4, r1), (n4, meter), (n4, r4)) }

region2: (*implicit?)

language: Imp
program: { <collect all invariants for region3 (how?)> }

region3:

language: Linear
modifies: v, i
program: { <solve invariants... (how?)> }

region4:

language: Imp
program: { redraw meter }
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