
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

 Lesserphic Tutorial

 Takashi Yamamiya

VPRI Memo M-2011-002

squeak
Typewritten Text
This material is based upon work supported in partby the National Science Foundation underGrant No. 0639876. Any opinions, findings, andconclusions or recommendations expressed in thismaterial are those of the author(s) and do notnecessarily reflect the views of the NationalScience Foundation.

Lesserphic Tutorial
Takashi Yamamiya

takashi@vpri.org

2011-07-11

Introduction
Our first Lesserphic program
Anatomy of LBox
LShape
Event Handling
Announcement
LObject
Layout
Text Field
LBox component design
Serialization
Acknowledgments
References

Introduction
Lesserphic is a GUI framework for the STEPS project written by Yoshiki Ohshima. The goal of
Lesserphic is to design a lightweight graphics and event model. Unlike Morphic in Squeak where a
graphical object is described in the Morphic class hierarchy, Lesserphic has only one type of graphical
object named LBox (there are a few exceptions such as LWindow for topmost box and LHand for the
cursor), and its behavior is described by adding components which specify aspects of a particular object.

Current Lesserphic is implemented in Squeak, but Lesserphic itself is intended as platform agnostic, and we
plan to make Lesserphic much less dependent on Squeak in the future.

This text is Takashi's note about how to make a Lesserphic application. As a Lesserphic beginner, I wrote
various useful tips and caveats as well as basic usage.

Our first Lesserphic program
This is a simple program in Lesserphic. A Lesserphic program is developed in the Morphic environment in
the Squeak Moshi image. If you run this code in a regular morphic workspace in Moshi, you will see a tiny
box inside a gradient-colored bigger box.

| world box |
world := LesserphicMorph new. "Create a new LesserphicMorph"
world openInWorld. "Show the morph"
box := LBox new. "Create a new LBox"
world window add: box. "Add the LBox to LesserphicMorph's window"

The outer box is a LesserphicMorph, which works as an interface between the Morphic world and the
Lesserphic world. The inner box is an instance of LBox. If you want to show a new LBox, you need to
add it to another container LBox which is already showing. In this case, world window is used as a
container. world (a LesserphicMorph) has a topmost LBox object that you can access by the window

VPRI Memo M-2011-002

method.

Like Morphic, you can interact with an LBox via its halo. In Lesserphic a halo appears when you control-
click on an object. This is a brief description of the halo's buttons.

Todo: Insert pictures of the icons.

Red button: A menu with various box-related functions
Orange button: A menu for debug
Rotate button (bottom left)
Resize button (bottom center and half-way up the right side)
Scale button (bottom right): Unlike morphic, Resize and Scale are different operations and must have
different buttons.

Todo: Explain in detail later?

Warning: If you see a black rectangle instead of gradient gray, you have to move the pointer on the
rectangle. Lesserphic doesn't draw anything until you move the mouse.

Warning: Unlike morphic, the first halo you see is on the innermost object. Shift-control-click to get the
halo of the next enclosing object.

Tip: You can find a lot of examples in the "examples" category of LesserphicMorph class.

Anatomy of LBox
You can inspect inside an LBox by clicking the orange halo button and choosing "inspect box - morphic"
from the menu. I will introduce some of an LBox's instance variables.

The first five variables are inherited from the super class LObject, and we will revisit them later in the
LObject section. In particular, updatedVector, whole and registry are for event handling; in most cases
you do not need to care about these variables. The only important variable inherited from LObject is the
properties dictionary. You can store any instance-specific information in properties. Other LBox
variables are:

container : The parent box
contents : Child boxes
parts : Child boxes
backgroundParts : Child boxes
transformation : Position and rotation of the box
shape : How the box is drawn.
pivotRatio : Scale and rotation center expressed as fractions of the extent (e.g., 0.5@0.5 to mean
the box's center).
fullDrawingBounds : is used to optimize drawing.

A graphical object is a tree structure made of a set of LBox objects. Each LBox has one parent box in
container, and it may have child objects in contents, parts or backgroundParts. parts and
backgroundParts are used to store child boxes for special purpose. In a case of scroll pane, control
widgets like the scroll bar are kept in the parts, and actual "contents" are stored in contents. An
announcement is propagated in order of parts, contents, and backgroundParts. These are also drawn
in the opposite order.

wholeContents is an array of contents, parts and backgroundParts, and it exists for optimization.

VPRI Memo M-2011-002

Unlike Morphic, LBox only specifies the structure but not visual shape. The shape is described as a
LShape object in shape instance variable.

Warning: Except for LSimpleLayout, the layout only works on contents, and not parts or
backgroundParts.

LShape
While you customize the graphics on a Morph by implementing a drawOn: method, you can draw graphics
in Lesserphic by constructing a LShape object. The next example shows how to make a LShape object and
assign to an LBox

| world box shape |
world := LesserphicMorph new openInWorld.

shape := LGenericShape new.
shape elements: {
 (GeziraStrokedPath polygon: {0@37. 100@37. 19@95. 50@0. 80@95. 0@37})
 fill: Color blue;
 stroke: (GeziraStroke round: 6)}.

box := LBox withShape: shape.

world window add: box.

In this case, I use LGenericShape to make a vector graphics. A LGenericShape object contains a series of
path elements which specify shapes. Lesserphic uses Dan Amelang's Gezira as its subsystem. Gezira
supports various kinds of stroke and fill styles.

Todo: Gezira reference

Event Handling

Installing a handler

So far, our examples didn't have any user interactions. Now we try to add a simple drag-and-drop feature.

| world box |
world := LesserphicMorph new openInWorld.
box := LBox new.
box install: LPickUpHandler new. "Install a LPickUpHandler"
world window add: box.

VPRI Memo M-2011-002

This example is almost the same as the first one but it installs LPickUpHandler in line 4. This allows you to
drag the tiny rectangle. In a Morphic program, we implement an event handler as a method of the Morphic
class, but in Lesserphic you can combine any number of event handlers by installing them in an object. The
object responds to all of its handlers, each with its own trigger event(s).

Designing a handler

To understand the behavior of install:, we will implement a simple handler by ourselves. The goal is to
handle a mouse event. When the pointer comes inside the LBox the box will color itself red, and when the
pointer leaves the color will be set to blue.

An event handler must be a subclass of LObject.

LObject subclass: #LEnterLeaveHandler
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'LObjects-Tutorial'

Lesserphic's event handler can handle a set of announcements (announcement means event or notification
in Lesserphic's terminology) in a handler. To define which events we want to handle, a listensTo method
is defined. LPointerEnter or LPointerLeave is sent when a mouse pointer enters or leaves respectively.
LMotionQuery is sent when you move the pointer, and is needed in order to handle enter and leave
announcements.

The method listensTo must return an array of class objects. The message asListensArray can be used
(for reasons of optimization) to convert an array of symbols to classes.

LEnterLeaveHandler >> listensTo
 ^ #(LPointerEnter LPointerLeave LMotionQuery) asListensArray

Once you specify listensTo, the body of the event handler follows. When an LObject receives an
announcement specified in listensTo, the receive:from: method is called. Once the handler is installed
into an LBox, the target LBox is accessible through the handler's whole variable. You can write anything
you want in receive:from:. Typically, the incoming announcement is tested using the isMemberOf:
method, and the appropriate code is run. We have three cases in this example.

LEnterLeaveHandler >> receive: ann from: obj
 ((ann isMemberOf: LMotionQuery)
 and: [whole containsPoint: (ann localPointFor: whole)])
 ifTrue: [^ ann handled: whole].

 (ann isMemberOf: LPointerEnter)
 ifTrue: [^ whole fill: Color red].

 (ann isMemberOf: LPointerLeave)
 ifTrue: [^ whole fill: Color blue]

VPRI Memo M-2011-002

LMotionQuery: sent when the user moves the pointer, wherever the pointer is. You typically need to
test (using containsPoint:) whether the event occurred inside the object ("whole") to decide
whether to handle it. To handle a subsequent LPointerEnter or LPointerLeave, you must set
whole as the handler of the LMotionQuery announcement.
LPointerEnter: sent when the pointer moves into the "whole" object. It makes the color red in this
case.
LPointerLeave: sent when the pointer leaves the "whole" object. It makes the color blue in this
case.

Finally, a good Smalltalk programmer alway writes "example" class methods to show how to use the class.
So let's write a method LEnterLeaveHandler example1 that will let us test the event handling.

example1
 "LEnterLeaveHandler example1"
 | world box |
 world := LesserphicMorph new openInWorld.
 box := LBox new.
 box install: LEnterLeaveHandler new.
 world window add: box

You can download the complete source code from LEnterLeaveHandler.st.

Tip: Once a handler is installed to the target object, the handler accesses the target as whole.

Tip: We call a user event like LPointerEnter an "announcement".

Tip: A notification like #contents in an old MVC Browser would be considered an "announcement" in
Lesserphic.

Tip: By convention, the name of any subclass of LObject is prefixed with the letter L.

Warning: You must specify all necessary announcements in both listensTo and receive:from:.

Warning: You must handle LMotionQuery when you want to use LPointerEnter and LPointerLeave.

Warning: Once you specify LMotionQuery in listensTo, LMotionQuery is sent regardless of the
pointer position.

Warning: Although, many receive:from: implementers return an Announcement, the return value
doesn't actually matter.

Announcement

Simple Announcement

In the previous example, we made the LEnterLeaveHandler class which handles three kinds of
announcement in a single object. But there is an altenative way: to handle announcements one by one. Also
bear in mind that announcements are used for notification as well as interaction events. We now learn how
to use announcement for notification in a fine-grained way.

VPRI Memo M-2011-002

In this example, we will make a simple Fahrenheit Centigrade converter using Smalltalk tools. We don't use
any graphical objects. We make one model (LTemperature) and two views (LCentigrade and
LFahrenheit).

A model LTemperature has a variable value and its accessors. It represents temperature in
Centigrade.
A view LCentigrade has a variable value and its accessors. It is a copy of LTemperature.
A view LFahrenheit has a variable value and its accessors. It represents temperature in Fahrenheit.
Both a LFahrenheit and a LCentigrade depend on a LTemperature. When
LFahrenheit>>value: or LCentigrade>>value: is sent, LTemperature's value is updated, and
also LFahrenheit's value and LCentigrade's value are updated.
A LTemperatureChanged announcement is used to notify the update.
The variable whole is used by views to access the model.

LTemperatureChanged is just a subclass of LAnnouncement.

LAnnouncement subclass: #LTemperatureChanged
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'LObjects-Tutorial-Announcement'

The model LTemperature is also simple. It has only a variable value. The interesting part is value:
method. After a new value is set, LTemperatureChanged is announced by announce: method.

LObject subclass: #LTemperature
 instanceVariableNames: 'value'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'LObjects-Tutorial-Announcement'

LTemperature >> value
 ^ value

LTemperature >> value: aNumber
 value := aNumber.
 self announce: LTemperatureChanged new.

One of the views, LCentigrade, just copies the same value from the model. Variable whole is defined in
the superclass LObject, so you don't have to define it here. The tricky part is that value: doesn't assign the
number to the instance variable directly. Instead, it updates the model (whole in Lesserphic's convention),
and once the model is updated, the LCentigrade receives the LTemperatureChanged by receive:from:
and updates itself. This prevents circular dependency. Note that there are various way to prevent circular
dependency, but readers familiar with Smalltalk may recognize the approach taken here as being from
traditional MVC.

LObject subclass: #LCentigrade
 instanceVariableNames: 'value'
 classVariableNames: ''

VPRI Memo M-2011-002

 poolDictionaries: ''
 category: 'LObjects-Tutorial-Announcement'

LCentigrade >> value
 ^ value

LCentigrade >> value: aNumber
 whole value: aNumber

LCentigrade >> receive: anAnnouncement from: anObject
 (anAnnouncement isMemberOf: LTemperatureChanged)
 ifTrue: [value := whole value]

Another view LFahrenheit is more interesting. While LCentigrade was just a copy of LTemperature,
LFahrenheit actually converts numbers between Centigrade and Fahrenheit.

LObject subclass: #LFahrenheit
 instanceVariableNames: 'value'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'LObjects-Tutorial-Announcement'

LFahrenheit >> value
 ^ value

LFahrenheit >> value: aNumber
 whole value: (aNumber - 32) / 1.8

LFahrenheit >> receive: anAnnouncement from: anObject
 (anAnnouncement isMemberOf: LTemperatureChanged)
 ifTrue: [value := whole value * 1.8 + 32]

Finally, we can try our test code. In this example, on:to: is used to connect the model and the views. Also,
the views use whole: to remember the model. Once the relationship is established, the LCentigrade and
the LFahrenheit affect each other.

| c f model |
c := LCentigrade new.
f := LFahrenheit new.
model := LTemperature new.
model on: LTemperatureChanged to: c.
model on: LTemperatureChanged to: f.
c whole: model.
f whole: model.
f value: 86.
Transcript cr; show: f value; show: 'F = '; show: c value; show: 'C'.
c value: 20.
Transcript cr; show: f value; show: 'F = '; show: c value; show: 'C'.

If you run the code on the workspace, the output is shown in the Transcript

86.0F = 30.0C
68.0F = 20C

Tip: You can make a simple model/view relationship by on:to:, receive:from: and announce:.

Relationship between install: and on:to:

I introduced install: to add a behavior in an LBox at first, then I constructed a dependency by on:to: to
show a low-level update mechanism. Now we are going to rewrite the Fahrenheit/Centigrade converter in
terms of install: to show how install: works.

VPRI Memo M-2011-002

As we saw earlier in LEnterLeaveHandler, install: requires the listensTo method to specify which
events need to be handled.

LCentigrade >> listensTo
 ^ #(LTemperatureChanged) asListensArray

LFahrenheit >> listensTo
 ^ #(LTemperatureChanged) asListensArray

This is pretty much all we need. And the example script can be written with install:. The output is
identical to the previous case.

| model |
model := LTemperature new.
model install: LCentigrade new.
model install: LFahrenheit new.
(model \ #Fahrenheit) value: 86.
Transcript cr; show: '86F = '; show: (model \ #Centigrade) value; show: 'C'.
(model \ #Centigrade) value: 20.
Transcript cr; show: '20C = '; show: (model \ #Fahrenheit) value; show: 'F'.

Basically, install:does three things.

The announcement relationship between the receiver and the argument is established.
The argument is set in the argument's components.
The receiver is set as the argument's whole.

One noticeable thing here is that the view is stored as the model's component, and can be accessed by name
using the \ (backslash) operator. The component's name is determined by the component's class name. By
default, the name is chosen from the class name by getting rid of the "L" prefix. Unlike the one-way
dependency made by on:to, install: makes an explicit double link between a whole and its component.
This is Ted Kaehler's basic idea of Membrane [1].

You can download the complete source code from LObjects-Tutorial-Announcement.st.

Tip: A component's default name is the class name without the "L" prefix.

Membrane

Not only LBox, but any LObject can be built from components. Unlike the ordinary relationship between
Smalltalk's objects and dependants where a dependant doesn't necessarily know about the model object, a
component always has access to the owner through the whole variable.

Todo: Short description of Membrane's goal.

Implicit announcement with LValueChanged

VPRI Memo M-2011-002

There are many cases where we want to receive an announcement when some instance variable is updated.
In our previous example, announce: is used to dispatch an announcement from the setter method. But by
using an LValueChanged (or its subclasses), you can avoid having to write announce: explicitly.

Typically, LValueChanged is used in a GUI program. In each rendering step, Lesserphic scans all modified
variables where an LValueChanged is needed as specified by listensTo. If a modified variable is found,
Lesserphic makes an announcement for it. This happens only once in a rendering cycle in LWorldState
>> processActions, even if some setter has been called many times since the previous cycle.

To learn about LValueChanged, let us rewrite our program. The model LTemperature is almost identical
but we don't need to use announce: any more. So value: becomes simpler.

LTemperature value: aNumber
 value := aNumber

Instead of LTemperatureChanged, we use predefined LValueChanged. So we rewrite listensTo: and
receive:from:.

LCentigrade >> listensTo
 ^ #(LValueChanged) asListensArray

LCentigrade >> receive: anAnnouncement from: anObject
 (anAnnouncement isMemberOf: LValueChanged)
 ifTrue: [value := whole value]

LFahrenheit >> listensTo
 ^ #(LValueChanged) asListensArray

LFahrenheit >> receive: anAnnouncement from: anObject
 (anAnnouncement isMemberOf: LValueChanged)
 ifTrue: [value := whole value * 1.8 + 32]

Finally, the example script must be rewritten. Note that LValueChanged is announced only in a GUI
process, so we need to create a Lesserphic window. And each time the value is modified, the step method
must be invoked to send announcements. This is done by the system automatically in normal cases, but we
did it by hand because we want to show the result in the same process. In other words, LValueChanged is
processed asynchronously.

| model world |

world := LesserphicMorph new openInWorld.

model := LTemperature new.
model install: LCentigrade new.
model install: LFahrenheit new.
(model \ #Fahrenheit) value: 86.
world step.
Transcript cr; show: '86F = '; show: (model \ #Centigrade) value; show: 'C'.

(model \ #Centigrade) value: 20.
world step.
Transcript cr; show: '20C = '; show: (model \ #Fahrenheit) value; show: 'F'.

world delete.

You can download the complete source code from .

Tip: LValueChanged is announced only once in a rendering cycle.

Warning: LValueChanged is processed asynchronously.

VPRI Memo M-2011-002

LObject
Now we are ready to examine all the instance variables in an LObject.

updatedVector : Used by LValueChanged mechanism to record all instance variables updated
between two rendering cycles.
properties : A dictionary to hold instance-specific data.
whole : Announcements come from the whole object.
registry : A dictonary to map from an announcement class to the receiver objects
components : A dictonary to keep components. As a convention, the default name is the class name
without the "L" prefix.

These instance variables are managed by the Lesserphic framework, so you must not touch them directly
except whole. There are plenty of accessors to handle an LObject's internal state. From a programmer's
point of view, there are three categories of memory slot in an LObject: instance variables, properties, and
components. Each category has its own character, so it is important to choose the most suitable one.

Components

Components are used if

the member is optional
the member has a reference to the owner (whole)
the member needs to receive announcements from the owner.

LObject has several methods to manage components.

LObject >> install: Add a component to the receiver.
LObject >> install:as: Add a component as the specified name.
LObject >> componentAt: Get the component at the name.
LObject >> \ A synonym of componentAt:.
LObject >> removeComponentAt: Remove a component at the name.
LObject >> uninstallComponentAt: Same as removeComponentAt:.
LObject >> removeComponent: Remove the component.

Properties

Properties are used if the member is optional. LObject has several methods to manage properties.

LObject >> valueOfProperty: Get the property at the name.
LObject >> valueOfProperty:ifAbsent: Get the property at the name. If it doesn't exist, the
second argument is evaluated.
LObject >> valueOfProperty:ifAbsentPut: Get the property at the name. If it doesn't exist, the
second argument is evaluated and written as the property value.
LObject >> setProperty:toValue: Add a property value under the given name.
LObject >> removeProperty: Remove the property.
LObject >> removeKey:ifAbsent: Remove the property. Evaluate the second argument if the
property does not exist.
LObject >> hasProperty: Return true if the property exists, otherwise false.
LObject >> keyAtValue:ifAbsent: Return the key (i.e., property name) that has the argument as
its value. Evaluate the second argument if no such key exists.

Instance variables

VPRI Memo M-2011-002

Instance variables are used if all instances of the class has the member.

Layout
Lesserphic has a layout management system to arrange LBoxes according to a set of rules. This mechanism
is powerful enough that even the characters in a text editor are laid out using this system. We are going to
see a few examples to learn how layout works. The first example shows the simplest way to arrange
LBoxes horizontally.

Basic layout

| world box1 box2 |
world := LesserphicMorph new openInWorld.
world window layout: LHorizontalLayout new.

box1 := LBox new.
box2 := LBox new.
box1 pivotRatio: 0 @ 0.
box2 pivotRatio: 0 @ 0.

world window add: box1; add: box2.

This program shows two boxes in the world. When you modify the extent using the halo, these two boxes
maintain their horizontal relationship. LHorizontalLayout is a key element of the program. Once a layout
object is installed by layout: method into the container, the child objects are arranged by the layout object.
In an LHorizontalLayout, new coordinates are calculated based on pivotRatio in a box. In this case,
each child box is given a pivotRatio of 0@0 (the top left corner). If you replace LHorizontalLayout
with LVerticalLayout, the child boxes are arranged vertically.

Simple layout

LSimpleLayout provides a more flexible way to arrange boxes. Using LSimpleLayout, you can specify
constraints between the positions of boxes in terms of pixels or of ratios relative to the container's size. To
use LSimpleLayout, you need to name each box. In the next example, we make three boxes named "title",
"menu", and "body".

| world layout |
world := LesserphicMorph new openInWorld.

"LSimpleLayout requires that each box has unique name."
world window add: (LBox new name: 'title').
world window add: (LBox new name: 'menu').
world window add: (LBox new name: 'body').

VPRI Memo M-2011-002

layout := LSimpleLayout new.
world window layout: layout.

layout keep: #top of: 'title' to: 10.
layout keep: #left of: 'title' to: 10.
layout keep: #height of: 'title' to: 30.
layout keep: #right of: 'title' to: #right offset: -10.

layout keep: #topLeft of: 'menu' to: #bottomLeft of: 'title' offset: 0@10.
layout keep: #width of: 'menu' to: #width scale: 0.3.
layout keep: #bottom of: 'menu' to: #bottom offset: -10.

layout keep: #topRight of: 'body' to: #bottomRight of: 'title' offset: 0@10.
layout keep: #bottomLeft of: 'body' to: #bottomRight of: 'menu' offset: 10@0.

When layout is necessary, a LSimpleLayout recalculates each bounding box to satisfy all constraints. In the
basic case, each constraint describes the subject box's attribute in terms of a reference box's attribute with
distance parameters specified either in pixels (offset) or as a ratio (scale). Constraints are constructed by the
LSimpleLayout >> keep: method family. The most generic form is LSimpleLayout >>
keep:of:to:of:scale:offset:.

layout
 keep: subjectAttr
 of: subject
 to: referenceAttr
 of: reference
 scale: refScale
 offset: refOffset

subjectAttr : The attribute name used by the constraint. Possible values are #top, #bottom,
#left, #right, #height, #width, #extent, #hcenter, #vcenter, and these combinations
(see decomposing category in LSimpleLayout).
subject : The name of the subject box.
referenceAttr : The attribute name of the reference. Possible values are same as subjectAttr.
subjectAttr is used as the default value.
reference : The name of the reference box. The container box is used as the default value.
refScale : A point or a number. Relative scale to the reference box. The default value is 1.
refOffset : A point or a number. Relative offset to the reference box. The default value is 0.

But you can use other variations if you don't need some parameters: for example, LSimpleLayout >>
keep:of:to:offset: is used when you don't need reference nor refScale. For example:

VPRI Memo M-2011-002

layout keep: #right of: 'title' to: #right offset: -10.

is equivalent to:

layout keep: #right of: 'title' to: #right of: nil scale: 1 offset: -10.

It makes the right side of the "title" box be 10 pixels left of the right side of the container.

Make a layout by yourself

It is not too difficult to implement your own layout manager. The essential method required in a layout class
is layOut:. It is called with the container object as the argument when layout is neccesary. The most easy
way to implement a layout class is to make a subclass of LLayout.

LLayout subclass: #LDiagonalLayout
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'LObjects-Tutorial-Layout'

LDiagonalLayout >> layOut: container
 container contents
 inject: 0 @ 0
 into: [:topLeft :anLBox |
 anLBox topLeft: topLeft.
 anLBox bottomRight]

This layout arranges child boxes so that each box's bottom right corner touches next box's top left corner.
You can download the complete source code from LDiagonalLayout.st.

Text Field
A text editor is also one of the layouts in Lesserphic. A simple way to display a text is with the
LWordWrapLayoutF layout and textContents: method. This example shows "Hello, World!" in a box on
the window.

| world text |
world := LesserphicMorph new openInWorld.

text := LBox new.
text layout: LWordWrapLayoutF new.
text textContents: 'Hello, World!'.

world window add: text.

VPRI Memo M-2011-002

Different text layout classes allow for different types of text field. Using LLineEditor, you can make a
one-line text field which triggers an action. The next example responds with the text that you type into such
a text field.

| world text |
world := LesserphicMorph new openInWorld.

text := LBox new.
text layout: LLineEditor new.
text textContents: '<INPUT HERE>'.
text on: LContentAccepted
 send: #value:value:
 to: [:ann :box | Transcript cr; show: box textContents].

world window add: text.

In this example, LObject >> on:send:to: configures the event handler to receive the text input. The
method on:send:to: is a variation of on:to:, and sends a message specified by the second argument to
the third argument. The message's first argument is the announcement itself. In this case, we send
#value:value to a block given as the third argument. It turns out that the text box object is passed to the
block through the temporary variable box when you type something, and the Transcript shows the content.

Warning: Sometime text layout becomes broken. Try LFamily initialize to fix it.

LBox component design
We have covered pretty much all techniques needed to make a Lesserphic application. As a summary, we
shall implement yet another temperature converter with a graphical user interface. Before getting into the
implementation, take a moment to examine a typical Lesserphic application design.

VPRI Memo M-2011-002

This diagram shows the relationships between the objects we need. It has three layers of object: model,
view, and box. A solid line shows an explicit reference (an instance variable), and a dotted line shows an
announcement. An LTemperature is a model which keeps the actual state: in this case, a temperature in
Centigrade. LCentigrade and LFahrenheit are views of different perspectives of the model. Each view
has its own LBox.

When you hit the Enter key within the text box, an LContentAccepted is dispatched from the LBox to the
components, and one of views receives the announcement and sets the value to the model. When the value
is changed on the LTemperature model, it dispatches a LTemperatureChanged, and then, these two views
receive the announcement and interpret the model's value according to the type of the view. Finally, the
boxes are updated with the new value.

Model

The implementation is quite straightforward. The model is the same as in the former example.

LObject subclass: #LTemperature
 instanceVariableNames: 'value'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'LObjects-Tutorial-GUI'

LTemperature >> value
 ^ value

LTemperature >> value: aNumber
 value := aNumber.
 self announce: LTemperatureChanged new.

View

The implementations of LCentigrade and LFahrenheit share many common methods, so we implement
a common superclass named LTemperatureView. It has an instance variable model to point to the model.

LObject subclass: #LTemperatureView
 instanceVariableNames: 'model'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'LObjects-Tutorial-GUI'

VPRI Memo M-2011-002

The actual behavior of the view is defined by the accessors value and value:. They must be implemented
by its subclasses.

LTemperatureView >> value
 self subclassResponsibility

LTemperatureView >> value: aNumber
 self subclassResponsibility

To establish a relationship to the model, the model: method is configured to accept an
LTemperatureChanged using on:to:.

LTemperatureView >> model: anLTemperature
 anLTemperature on: LTemperatureChanged to: self.
 model := anLTemperature

Also, to establish a relationship to the box, LContentAccepted is accepted. In this case, listensTo is used
to make a whole-component (membrane) relationship.

LTemperatureView >> listensTo
 ^ #(LContentAccepted) asListensArray

A LTemperatureView >> receive:from: accepts two kinds of announcement. When an
LContentAccepted is dispatched from the box, the value of the model is set by LTemperatureView >>
value: which is implemented by the subclass

When an LTemperatureChanged is dispatched, the text content of the box is set using LTemperatureView
>> value which is also implemented by the subclass.

LTemperatureView >> receive: anAnnouncement from: anObject
 (anAnnouncement isMemberOf: LContentAccepted)
 ifTrue: [self value: anAnnouncement content asNumber].
 ((anAnnouncement isMemberOf: LTemperatureChanged)
 and: [whole notNil])
 ifTrue: [whole textContents: self value printString]

The concrete classes are simple. LCentigrade uses just the same value as the model because the model
keeps its temperature value in Centigrade.

LTemperatureView subclass: #LCentigrade
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'LObjects-Tutorial-GUI'

LCentigrade >> value
 ^ model value

LCentigrade >> value: aNumber
 model value: aNumber

And LFahrenheit's accessors are implemented as conversion functions.

LTemperatureView subclass: #LFahrenheit
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'LObjects-Tutorial-GUI'

LFahrenheit >> value

VPRI Memo M-2011-002

 ^ model value * 1.8 + 32

LFahrenheit >> value: aNumber
 model value: (aNumber - 32) / 1.8

Announcement

LTemperatureChanged is identical as former examples.

LAnnouncement subclass: #LTemperatureChanged
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'LObjects-Tutorial-GUI'

Box

Finally, we implement GUI elements in LTemperature's class side.

LTemperature class >> newTextFieldAt: builds a text field at the specified place. It uses
LLineEditor as the layout so it can handle the enter key.

LTemperature class >> newTextFieldAt: aPoint
 | text |
 text := LBox new.
 text layout: LLineEditor new.
 text textContents: '(input)'.
 text fill: Color white.
 text extent: 140 @ 20.
 text borderWidth: 1.
 text topLeft: aPoint.
 ^ text

LTemperature class >> example3 is the test script to show two text fields for both Centigrade and
Fahrenheit. LBox >> newLabel: is used to show a non-editable text label.

LTemperature class >> example3
 "A temperature converter GUI version"
 "LTemperature example3"
 | world cLabel fLabel cField fField model cView fView box |
 world := LesserphicMorph new openInWorld.
 box := LBox new name: 'FCconverter'.

 model := LTemperature new.
 cView := LCentigrade new model: model.
 fView := LFahrenheit new model: model.

 cLabel := LBox newLabel: 'Centigrade'.
 cLabel topLeft: 10 @ 10.
 fLabel := LBox newLabel: 'Fahrenheit'.
 fLabel topLeft: 160 @ 10.

 cField := self newTextFieldAt: 10 @ 30.
 cField install: cView.

 fField := self newTextFieldAt: 160 @ 30.
 fField install: fView.

 box add: cLabel.
 box add: fLabel.
 box add: cField.
 box add: fField.

VPRI Memo M-2011-002

 box bounds: (10@10 extent: 300 @ 60).
 world window add: box.

This is the screen shot of the program. You can download the complete source code from LObjects-
Tutorial-GUI.st.

Serialization

Simple usage

Lesserphic has a serialization mechanism named SISS to save a snapshot of an object on a storage device.
The format is based on S-expressions. Let me show you a simple example. If you run Time now
sissScanObjects prettyString in a workspace, you will see the result:

(objects :root "1"
 (Time :idref "1"
 (slot :class "SmallInteger" :value "34167" :name "seconds")
 (slot :class "SmallInteger" :value "0" :name "nanos")))

The format is simple. The top, or first level node objects shows where the root object is. This value is
always "1". The second level node Time represents a Time object which has two instance variables named
seconds and nanos. As you see, the default behavior of SISS is to write all of the instance variables.

Although an S-expression can represent any data in general, SISS uses it in a more restricted way. The
generic form of a SISS element is:

(Tag :Key1 Value1 :Key2 Value2 :Key3 Value3 ...
 Child1
 Child2
 Child3 ...)

where Values are always String. If you see the form carefully, you will notice that SISS is just another
form of XML.

You can restore the original value by asSExpElement sissReadObjects :

Time now sissScanObjects prettyString asSExpElement sissReadObjects
=> 9:37:52 am

Now we have used four methods to serialize and de-serialize by SISS. These methods are used for
debugging purposes; I will explain a real use case later.

VPRI Memo M-2011-002

Object >> sissScanObjects : Serialize the receiver and create a SExpElement.
SExpElement >> prettyString : Write easy to read representation.
String >> asSExpElement : Create a SExpElement from the string.
SExpElement >> sissReadObjects : Restore the original value.

Various SISS forms

An object is serialized to various forms by SISS. Try this expression:

(Array with: 1
 with: 'hello'
 with: Time now) sissScanObjects prettyStringWithSorting

The output shows various kinds of SISS representations. The first Array object has indexed slots, and the
second ByteString has no slot but the value is represented by the :value property, and the third Time
object has key-value slots.

 (objects :root "1"
 (Array :idref "1" :basicSize "3"
 (slot :class "SmallInteger" :value "1" :name "1")
 (slot :idref "2" :name "2")
 (slot :idref "3" :name "3"))
 (ByteString :idref "2" :value "hello" :basicSize "5")
 (Time :idref "3"
 (slot :class "SmallInteger" :value "43195" :name "seconds")
 (slot :class "SmallInteger" :value "0" :name "nanos")))

The output has three second level nodes. The form of the second level is:

(Class :idref idref properties ...
 slots ...)

where idref is a serial identifier which is refered by other objects, and slots shows contents of the object.
The third level is slot descriptions:

(slot properties ... :name name)

where name is either a slot name or an index number. The property of slot description is different
depending on the type. A slot is either literal or non-literal. If it is literal, the value is described as inline in
the slot e.g. the first element of the array (slot :class "SmallInteger" :value "1" :name "1"), but
if it is non-literal, idref is used to point to other second level element e.g. (slot :idref "2" :name "2").

A literal object must be immutable and it can be described inline. But a non-literal object is mutable and can
be shared by multiple objects, and idref is necessary to point the object.

Warning: Class name is described as a tag in the second level e.g. (Array ...), but as a value in the
third level e.g. (slot :class "SmallInteger" ...).

Warning: Idref in the second level is used to define the identifier, but idref in the third level is used to refer
to the identifier.

Warning: A second-level element is always a non-literal object.

Save a Lesserphic object by SISS

Lesserphic provides a way to save your Lesserphic object using SISS. To save a Lesserphic object, open

VPRI Memo M-2011-002

the halo (control+click on the object), click the red button, and select the "save to disk" item on the menu.
You will be asked to enter the file name. The file name must end with ".lbox"

To show a saved object on the screen, evaluate the following expression:

LesserphicMorph openURL: 'name.lbox'

Note that our temperature converter doesn't work in this way yet. To work with SISS mechanism properly,
we need to customize the serializing methods.

Customize SISS

Although the default SISS serializer does its best to save your object, what SISS does might not be what
you want. SISS tries to save all of the instance variables in the object, but there are various cases where this
behavior is not desirable:

Some instance variables act as cache, and are not supposed to be serialized.
Announcement handlers must be installed.
The object has a reference to some global object e.g. world state.

Above all, saving all instance variables breaks encapsulation, so you are encouraged to implement your
own serializing methods. There are three major methods that allow you to customize the behavior of SISS.

Object >> sissContentsInto:context: Customize serializing object.
Behavior >> sissCreateInstanceFromSexp:idref:from:to: Customize de-serializing object.
Object >> sissComeFullyUpOnReloadFrom:to: A hook called after all objects are de-serialized.

To see how those methods work, we implement them for the model class LTemperature. It is simple
because LTemperature has only one number.

LTemperature >> sissContentsInto: sexp context: ctx
 sexp attributeAt: #value put: value printString

LTemperature class >> sissCreateInstanceFromSexp: sexp idref: idref from: from to: to
 | model |
 model := self new.
 to at: idref put: model.
 model value: (sexp attributeAt: #value) asNumber.
 ^ model

VPRI Memo M-2011-002

sissContentsInto:context: serializes a LTemperature object and the member is stored as a property
named value. A created form looks like this:

 (LTemperature :idref "76" :value "10")

And the class side method sissCreateInstanceFromSexp:idref:from:to: is for the de-serializer. The
method makes a new instance of LTemperature and registers idref to to object which is a dictionary
mapping idref and the value.

The next example is for LTemperatureView. It shows more complicated object which includes non-literal
object.

LTemperatureView >> sissContentsInto: sexp context: ctx
 sexp
 addElementKeyValues: {
 #whole -> self whole.
 #model -> self model}
 context: ctx

LTemperatureView class >> sissCreateInstanceFromSexp: sexp idref: idref from: from to: to
 | view child |
 view := self new.
 to at: idref put: view.
 sexp elementsDo: [:each |
 child := self fromSexp: each from: from to: to.
 (each attributeAt: #name) = 'whole' ifTrue: [view whole: child].
 (each attributeAt: #name) = 'model' ifTrue: [view model: child]].
 ^ view

In this example, sissContentsInto:context: uses SExpElement >>
addElementKeyValues:context: to make slots for members both whole and model. Because it uses
public accessors, the file format is not changed even when you modify the internal representation of
LTemperatureView. A created form looks like this:

 (LCentigrade :idref "75"
 (slot :idref "73" :name "whole")
 (slot :idref "76" :name "model"))

The class side sissCreateInstanceFromSexp:idref:from:to: emulates all the slots by SExpElement
>> elementsDo: and store by whole: and model:. Again, because it uses the public setters, the
announcement handler is properly installed in the setter.

Now we have a Fahrenheit Centigrade converter with GUI, and it can be saved in a document by SISS.
You can download the complete source code from LObjects-Tutorial-GUI.st.

Warning: You can use arbitrary slot names in SISS, but you can't customize tag (class) names in the
current framework.

Acknowledgments
I would like to thank Aran Lunzer and Ted Kaehler to correct many technical and grammatical mistakes,
and Yoshiki Ohshima to give useful feedback!

References
1. A Membrane with Parts: A new object model, Ted Kaehler

VPRI Memo M-2011-002

