A Text Field Specification

Ted Kaehler

This material is based upon work supported in
part by the National Science Foundation under
Grant No. 0639876. Any opinions, findings,
and conclusions or recommendations expressed
in this material are those of the author(s) and do
not necessarily reflect the views of the

V P RI M emo M '2 0 1 0 '0 02 National Science Foundation.

A Text Field Specification

Ted Kaehler
March 2010

Abstract

This active essay describes how to build a text editor from a
series of simple rules in the Lesserphic2 LBox system. Each rule
is 'live' and was created within the essay. A rule is a sequence of
guarded clauses in a scripting language. Each clause is of the
form When ... Do ..., a construction that is understandable by end
users. Rules are converted to Smalltalk code and runs in the
Lesserphic2 LBox (LObject) model in Squeak. Many text editor
features are defined by one rule apiece. A text field with word
wrap layout and a working text editor are defined in 37 rules.

Introduction

This is a printout of an active essay that describes a text editor.
The essay includes both a written narrative and live code. The
code is in the form of rules, with each rule shown in a rule editor
window. The rules were constructed inside the essay. Once all of
the rules have been accepted, the text editor is defined and can
run.

This LBox Text Field Specification is one of a series of prototypes
by Ted Kaehler and Alan Kay to find an expressive and
understandable end user scripting language. We have chosen
the example of word wrap and a text editor because non-
programmers can easily picture what these must do. The text
layout is expressed from the point of view of a single letter.

To do word wrap, each letter follows the letter before it, and it
sometimes needs to go down to the next line. Often (but not in
this essay) we include "wandering letters" in our layout rules.
When each letter moves incrementally, with a communications
delay, a very interesting wandering pattern can be seen.

The essay itself is a Dynabook Junior (DBJr) "stack". DBJris a
HyperCard-like application builder with pages and backgrounds.
It is implemented in Morphic in Squeak. Each rule editing window
is a live object embedded in a page of the stack. The stack was
built with drag-and-drop from a parts bin, and using menu
commands.

The right hand column of each rule is a series of guarded actions
in the form of When ... Do These clauses only execute when
the rule in explicitly invoked. The rule 'place' is invoked with (rule
tell aLetter to place). Inside the rule, aLetter is bound to all three
pseudo-variables, I, me, and my. Method names that have
multiple keyword parts (at least one argument in addition to the
receiver) are shown in gray bold text. Keyword parts do not have
colons. When a 'return' is executed, we exit the rule and ignore
subsequent When-Do clauses. See page 3 of the essay for more
about how rules work.

Inside Squeak is Lesserphic2 LObject system built by Yoshiki
Ohshima. It has a graphical canvas and nested display objects.
It runs inside a Morphic window in Squeak. The compiled rules
form the methods of a layout mixin (LWordWrapLayout) that
allows a simple box containing letters to become a text editor.

We are proud to be able to express word wrap and a text editor in
understandable rules. The first working version of this essay was
in October 2009.

VPRI Memo M-2010-002

Text Field Spec ‘ 1 b

Building a Texl Field

The goal is to create a text field and arrange
its letters in an area of the screen. The letters
e e o Tt b e i When the text extends ove
this in the LObject system, also known as
Lesserphic2.

The main problem is to do "word wrap" so
that each word is entirely on one line. We don't

want half the word at the end of one line and the
other half on the next line.

In the most general case, each letter can he
any costume that has shape, color, and a
bounding rectangle, Any costume that has those
properties can be placed in text, even if it is not
really a letter. A letter object is rendered into
the composition area on the screen using the
system's normal costume rendering programs.

With such a general notion of a letter, we are
freed from dealing with the details of families of
fonts, emphasis (bald, italic), construction of a
letter of the desired size, or text color. When a
glyph arrives at the layout stage, it already has
the proper shape, style, size and color.

Lellers in a Box

The letters in a text field have an order from
first to last.

To see the default situation with no layout
rules, press the blue button "Create Text Field".
Since there are no rules, all of the letters pile up
at the upper left of the field. A mouse click or
drag on a letter does nothing.

(To close the demo, Command-click to get a
halo on the gray rectangle and Close it using the
X in the pink handle on the upper left of the halo.)

Create Text Field

Rules

The behavior of the letters is defined by a set

of rules. Each rule is in a rule editor at the right.
In the left column, the top pane has the name of

the set of rules and the name of this rule. The
next two panes are an explanation of the rule. In
the right column is the rule itself. The clauses
are executed from top to bottom. Some clauses
have a guard after the When. If the guard is true,
execute the Do part.

"return" means evaluate the expression and
hand it back to the place where the rule was
called. We exit the rule at the return and do not
do the later clauses,

Exlremely Simple Layoul Melhods
Random Layoul

As a simple first experiment, we will put each
letter in a random place in the text field.

Press Accept in the rules for layoul and
place at the right.

Press the blue button below. What happens
when you move the green square and change the
size of the text field?

All in One Line

Now lel's redefine place to arrange all
letters in one long line,
The line is clipped by the edge of the field.

I Create Text Field

42)

Text Field Spec

LWordWrapLavout layoul When client contents isEmpty not

Do rule tell client contents first

Lo 'place’.
Put each character in its
proper position in the field.
Accept
LWordWrapLavout place When [amNil

Do return me
Set ¥,y position of each letter When Always
to a random place in the
width and height.

Do my posilionBecomes
client width atRandom,
client height atRandom.

Random placement. rule Ltell my successor Lo 'place’

Accept

When [amNil
Do return me
When my index = 1
Do my position (client shape leftALY 0)+4 , 4.

LWordWrapLayout
place

Position me just to the

right of my return rule tell my successor Lo 'place’,
predecessor. When Always

Do pred := my predecessor.

my pivol

All in one long line. pred left + pred pivotOffset x + pred width @

pred pivotPosition y.
rule tell my successor Lo JBEGE . M-2010-002

Accept

How Lo Break Lhe Line of Texl

To layout the text in the field, place the next
letter just to the right of the previous one.

The red arrow shows that the "r" is the letter
we just placed.

That letter extends bevond the right margin,
50 we need to move its entire word to the next
line,

Walk back with the blue arrow until we reach
the first letter of the word. Move that letter to
the next line. Resume placing letters to the right
of the "o0", as indicated by the red arrow, Notice
that all letters in the word "over" are placed more
than once during the layout.

If the walk back (blue arrow) gets all the way
to the left margin, a single word covers the entire
line. Which letter should be moved to the next
line? The original clipped letter (red arrow) is
the proper letter to move. A single word that
covers the entire line is a special case, and we
must test for it.

Text Field Spec «2A

When the text extends uve£
|

When the text extends -::-vei
i |

When the text extends

0
L)

‘fhenawurdisverwerylungﬁmuat
|

Whenawnrdi5ueryvery|ung%muﬂ
|

VPRI Memo M-2010-002

Wrapping Lhe Texl lo a New Line

When a line of text is longer than the width
of the text field, we want to wrap it to the next
line., The goal of text wrapping is to determine
where to break the text to start a new line,

Each letter follows its prececessor on the
current horizontal line. When a letter hangs over
the right margin, its entire word needs to be
moved to the next line,

A carriage return causes the next letter to
start a new line.

A single word can be wider than entire line.
Break it where it touches the right margin. We
also need to handle the cases when a letter has
no prececessor (it is the first), and has no
successor (it is the last),

We start with a general layoul rule, It
places the first letter at the upper left. Then, it
the tells the next letter to place itself in the
field. (Ignore the part about maxHeight and
missing- Height for the moment.) When each
letter is finished being placed, it must tell its
successor to place.

Place each letter just to the right of the
previous letter on the current line. Then, look for
special cases,

If the letter follows a carriage return, move it
to the next line (this is done inside
placelfAfterRelurn).

The letter has the goal of not being clipped
by the right margin. When a letter is not white
space and finds that it is being clipped, run the
backToWordStart rule. It looks backwards to
find the start of the current word, and moves that
letter to the next line,

Press "Accept" for each rule.

43 P

Text Field Spec

Name,

Description,
Goal Actions

LWordWrapLavout layoul When client contents isEmpty not
Do maxHeight := client contents first
shape font ascent.
missingHeight := 0.
client contents first pivolBecomes
((client shape leftALY O},
maxXHeight) + inset.
rule Lell client first successor Lo 'place’,
When Always
Do rule tellLater rule to 'showSelection',

Move the first letter to the
upper left corner. Place
the next letter.

Put each character in its
proper position in the
field.

Accept

LWordWrapLavout place When [amNil

Do return me.
Put the current letter after When Always
the previous one. Detect Do pred := my predecessor.
if carriage return, or if the my pivot pred right + pred pivotOffset x,
letter is over the right pred pivot y.
margin. When rule placelfAfterRelurn me

Do return rule tell my successor Lo 'place
When rule isClipped me

Do rule tell me to 'backToWordStart'.
When (rule isClipped me) not

Do rule tell my successor Lo 'place’.

Do the normal case when
a letter fits on the current
line. Look for exceptions.

Accept

VPRI Memo M-2010-002

Nolicing Carriage Relurn and Lhe Righl
Margin

The rule placelfAfterRelurn actually ignores
the return character itself. It only takes action
when the previous letter is a carriage return. If
50, it moves the current letter to the beginning of
the next line.

placelfAlterRelurn always returns true or
false. This allows it to be used in a guard clause.
You can see this in the place rule on the previous
page. When placelfAlflerRelurn has moved a
letter, it returns true, which signals to go on to
the next letter. For all other letters, it returns
false, which signals the place rule to go further
and test whether the current letter is over the
right margin.

maxHeight and missingHeight are used to
move the line down when a tall letter is in the
middle of the line. We won't use these until page
23.

isClipped is the most important rule for
specifying word wrap. It returns true if current
letter overlaps the right margin. It does this by
comparing the letter's right x-value with the
margin's ¥x. The margin can be curved, so we ask
the text field box for the margin's actual x value
at this y. Containers can have irregular shapes,
and line lengths can be different.

White space such as a space or a tab are
allowed to extend beyond the margin. Beturn
false for white space letters,

Text Field Spec

44 P

LWordWrapLavout
placellAlerRelurn

If my prececessor is a
return, move me to the
start of the next line.

Start a new line after a
carriage return

When my predecessor shape notNil and
[my predecessor shape isNewline]
Do "start of the next line"
my pivolYIncreaseBy my height.
my pivolLell
(client shape lefLALY my pivotPositionY) +
inset x.
maXHeight := my shape font ascent.
missingHeight := 0.
return true.

When Always
Do return false.

Accept
LWordWrapLayvout When my shape isWhiteSpace
isClipped Do return false.

Answer true if I am not

white space and my right

is greater than the right
margin.

Answer whether this letter

is over the right margin.

Accept

When Always
Do return my right + inset x =
(client shape righlALY my pivotPositionY)

VPRI Memo M-2010-002

Finding Lhe Stlarl of a Word

We know that the current letter hangs over
the right margin. We need to move the entire
word to the start of the next line.
backToWordStarl first calls startOfMWord,
which finds the first letter of the current word.

If that letter is already at the start of a line,
we should not move it. The line is wider than the
field and has no white space in it. The original
clipped character should be forced to start a new
line.

Otherwise, use the start of the word as the
letter to be moved.

Once we have the proper letter in
letterToMove, put it at the start of the next line.

startOMWord travels back along the word to
find the first letter. We are looking for a letter
that is not white space. If we happen come to
the first letter of the text, return it instead.

startOMWord considers just one letter, If
that letter is not the start of a word, it calls itself
again to consider the preceeding letter,

45 P

Text Field Spec

LWordWrapLayout
backToWordStarl

When Always
Do letterToMove := self startOMWord me.
When self isSlartOfLine letterToMove index
Do "Word takes entire line, break at the
clipped character"
letterToMove := me,
When Always
Do letterToMove pivolYIncreaseBy
letterToMove height.
letterToMove pivolLefll (client shape lefLALY
letterToMove pivotPositionY) + inset x.
maxHeight := letterToMove shape font ascent.
missingHeight := 0.

Find the start of the
current word and move
it to the next line. If
the word takes an
entire line, move
clipped letter to next

MRS rule Lell letterToMove successor Lo 'place’.
Accept

LWordWrapLayout When my predecessor isNil

startOMWord Do return me.

Return the letter at the When my predecessor shape isWhiteSpace
start of this word. Do return me.

When Always
Do return rule slartOfMWord my predecessor.
Find the beginning of
the current word.

Accept

VPRI Memo M-2010-002

Is a Letter al Lhe Starl of a Line?

Finally, we need a little test to tell if the current
letter is at the start of a line of text. 'me’' is the
index of a letter,

Press the button to experiment with a field
defined by these rules.

Create Text Field

Text Field Spec

5

LWordWrapLavout When Always
isStartOfLine Do return (client al me) pivot X - inset X <=

Eeturn true if the
letter is at the left
margin. Only works
on letters that have
been placed.

Accept

"left margin”
(client shape leftALY
(client al me) pivotPositionY)

VPRI Memo M-2010-002

Try Lthe Rules

Create Text Field

When all of the rules have been accepted,
press the blue button to see the text field in
action. Crab the green square to resize the field.
The text will start a new line at a word boundary,
as it should.

The layoul rule is called anytime something
in the text field changes. This means that
changes in the text contents, the shape of a
letter, or the location of a margin will trigger the
field to lay itself out again. The field will stay up
to date with changes.

These seven rules are enough to specify word
wrap in a paragraph of text. They handle several
special cases such as an extra long line and
carraige return. There are only 17 When clauses
in these rules.

Text Field Spec

Hello. Thisis a
ine test of
ext wrapping!

Hello. This is a fine test
of text wrapping!

Index Numbers [or Lhe Lellers

MNext, we will implement clicking and
dragging in text to select it. A selection starts
and ends between letters. An insertion point is a
selection with no letters in it. The insertion
point can be before the first letter in the field,
between any two letters, or after the last letter.

We need a way to store the location of an
insertion point, Keeping in mind that can be
before the first letter or after the last letter, If
we simply hold a pointer to a letter and say that
the selection beqins just before it, we have no
easy way to indicate a selection that ends after
the last letter.

The selectlion is two numbers, start and end.
Start is the number of the letter before the
selected text., End is the number of the letter
after the selection. The selection is an interval
(start to: end) that is non-inclusive of its ends.

The insertion point shown at the right is the
selection (2 to: 3). "TH" is the selection (0 to: 3).
"THE" is (0 to: 4).

Text Field Spec

VPRI Memo M-2010-002

Selecling Texl wilh the Mouse

When the user clicks on a letter, he is tryving
to select part of the text.

A selection starts between two letters and
ends between two letters. The variable
selectionAnchor holds the index of the first
letter selectioned. The selection actually begins
on the letter boundary before selectionAnchor.

If the user clicks in the right half of a letter,
the selecion should begin at boundary after the
letter. We compare the event's position with the
point halway across the letter,

A selection can be an insertion point between
two letters, or it can span a group of letters,
When the user has only clicked, and not moved
the mouse, we set the selection to be an
insertion point.

If the user clicked on the bare field, call
clickEndOfLine to put the insertions point at the
end of the nearest line of text.

Text Field Spec

4 D

LWordWrapLayout
bullonDown:
anEvent wilh

When Always

When | amNol client
Do "on a letter"

A click in the left
half of a letter
means before the
letter. In the right
half means after.
A second click in
the same place
means select the

anEvent handled rule.
word.

Lo 'selectWaord'].

When | am client

set the anchor for
a selection in the
text. Start with an
insertion point. When Always

Do anEvent handled rule.

client layoutChanged.

Do client removeProperly 'hideSelection' asSymbal.

letterlP := rule selectionEmpty

ilfTrue [selectionAnchor] ifFalse [nil].
selectionAnchor := my index.
(anEvent localPointFor me) x =

(my width /f 2) ilfTrue |

selectionAnchor ;= selectionAnchor + 1].

selection := selectionAnchor-1 Lo selectionAnchor.
letterlP = selectionAnchor ilTrue ["twice on char"

return rule Ltell selectionAnchor

Do "in open space in the field"
rule click anEvent endOfLineln client.

client removeProperly 'hideSelection' asSymbal.

Accept

VPRI Memo M-2010-002

Exlending Lhe Seleclion by Dragging

When the user moves the mouse with the
button down, he extends the selection.

If we are in the last half of a letter, use the
next letter,

If cursor is after the anchor, select from the
anchor to the letter.

If cursor is before the anchor, select from the
letter to the anchor. The anchor is the 'pivot
point' for the selection.

When the user releases the mouse button,
the selection is already correct. We don't need to

do anything.

Text Field Spec

q10 P

LWordWrapLayout When anEvent buttons > 0 and [| amNol client]

molion: anEvent
wilh

If we are in the
last half of a
letter, use the
next letter. Pivot
around the
selection anchor,

Extend the
selection when
the mouse button
is down.

Accept

Do templ := my index.
(anEvent localPointlFor me) X > (my width // 2)
ilTrue [templ := templ + 1].
selectionAnchor < templ
ifTrue ["from anchor onward"
selection ;= selectionAnchor - 1 to templ]
ifFalse ["from templ and onward to anchor"
selection := templ-1 to selectionAnchor],
client layoutChanged.

When anEvent buttons = 0 and [I am client]
Do templ := rule indexOfl anEvent in me.
selectionAnchor =< templ
ilTrue ["from anchor onward"
selection ;= selectionAnchor-1 Lo templ+1]
ifFalse ["from temp]l and onward to anchor”
selection := (templ-1 max 0)
lo selectionAnchor].
client layoutChanged.
When Always
Do anEvent handled rule.

LWordWrapLavout
buttonUp: anEvent wilh

Accept

When Always
Do anFvent handled rule.

VPRI Memo M-2010-002

Discovering Which Leller is Near a Click

The user has clicked in the field, but not on
any letter. Find out which letter is at the end of
the line, and put an insertion point after it. If the
click was below the last line, select after the last
letter,

Find the index of the letter clicked on. If
below the last line, return the index of the last

letter.
Run backwards through the text, finding the
last letter of the line where the click occurred.

«f 11

Text Field Spec

>

When Always
Do index ;= rule indexOfl event in me.

selection := index to index+1.
selectionAnchor ;= index+1.

LWordWrapLavout click:
event endOfLineln

Find the current line, and
put an insertion point after
the end of it. Assume ¥ is
at the end of the line, not
before the left margin.

Accept
LWordWrapLayout When Always
indexOf: event in Do ourY := (event localPointFor me) y.

When my contents isEmpty or [
my contents last pivotPositionY < ourY]
Do "at the end" return my contents size.

For the event point
in the text field, find
the index of the
letter at that point. When Always
Do my contents reverseDo [:let |
let box lineTop < ourY ifTrue [
"last letter on this line"
return let index]].

return 0

Accept

VPRI Memo M-2010-002

Text Field Spec «q 12 e

Selecl Word
The user has double-clicked in a word. Find the LWordWrapLavout When (client contents size >= me and
start and end of the word and select the word. selectWord [(client al me) shape isWhiteSpace not])
Do return rule selectWord me+ 1.
Go forward one letter at a time until the end of Find the first and
the word. Then call startOfWord to find the index |last letter in the When Always
of the first letter. Select from before the first current word. Do wordStart := (self startOMWord
letter to after the last letter. (client contents atPin selectionAnchor))
index.
Select the word. selection := wordStart-1 to me.

client layoutChanged.

Accept

VPRI Memo M-2010-002

Highlightl the Seleclion or
Show Lhe Insertion Poinl

In order to show where the selection is in the
text, we put some colored rectangles behind the
text.

An LBox actually has three kinds of contents.
The letters themselves are in the normal
contents. There are other two kinds are "parts".
These are things that need to be present, but are
not part of the user-defined contents. They
include scroll bars, resize boxes, and other
controls. One collection of parts is in front of the
normal contents and one is behind.

A selection is one, two, or three green
rectangles behind the text. There is a rectangle
for part of first line, one for all of the fully
selected middle lines, and one for part of the last
line,

Each selection rectangle is tagged with the
property 'selection’,

Feturn a color for the selection rectangles.
We use a light green color.

13 P

Text Field Spec

LWordWrapLavout When Always
installSelection Do client removeBackParlsSuchThal

[:pp | pp hasProperly 'selection' asSymbaol],
Create the

selection objects
and put them into
background parts.

When (client valueOIProperty 'hideSelection' asSymbol)
-~ = {rue
Do rule selectionEmpty
ilfTrue [rule installCarel caret]
ifFalse [rule install3Seleclions selection].
ERemove the old
selection, and
decide to call for

selection or
insertion point.
Accept
LWordWrapLavout When Always
seleclionColor Do return Color r 0.258 g 1.0 b 0.258
Ilg.reenll

Return the color for the
selection rectangles. This
is a kind of green.

Accept

VPRI Memo M-2010-002

Text Field Spec q14 »

More Highlighting and Seleclion LWordWrapLayout When caret == nil
installCarel Do rule createCaret.
If the selection has zero length, add an When Always
insertion point to the background parts of the Do client addAsBackgroundParls caret.
field. Add the caret. adj := (font pointSize - caret shape font pointSize)
Compute baseline /i 2 - caret shape font lineSkip + 1.
adjustment. Note When client contents isEmpty
when after the last Do return caret pivol
letter. Set ((client shape leftAtY 0), 0) + inset.
position. When selection start < client contents size
Do pt :=
(client contents al selection start + 1) pivot +
Put the caret object (-2,adj).
in the right place in When selection start >= client contents size
the background. Do pt := client contents last pivot +
(client contents last width-2, adj).
When Always

Do caret pivol pt.

Accept

Highlighling a Box of Texl

LWordWrapLayout When Always
To highlight text that is selected, we place a installSelectionBox Do box := LBox extent my extent
green box behind the text, _ color self selectionColor.

The rule inslallSeleclionBox takes a Gl\?en_une r&ctanglt_g, L Lt box selProperty 'selection' asSymbol

rectangle, creates a box of that size and position, | P¢% With the selection color and LloValue true.
and installs it in the background parts. add it to the background behind box pivetRatio 0,0.

the letters. box pivoelPosition my origin.

client addAsBackgroundParls box.

Install one piece of the
selection.

VPRI Memo M-2010-002

Accept

Text Field Spec

Three Reclangles May be
MNeeded Lo Cover the
Seleclion

The first line of the selected text may be a
partial line, and need a rectangle to cover it. If
three or more lines are selected, a middle
rectangle is needed. It covers complete lines,
The last line may have only a word or two at the
beginning selected.

Compute the three rectangles and install
them as background parts.

LWordWrapLayout
install3Seleclions

selection on start
line, selection of
whaole lines, and
selection on end
line. Place them in
the background.
Mark with property
selection.

Accept

Create rectangles for

When Always
Do letter] := client al selection start+1.
letter? := client al selection stop-1.

“first line of selection"
pl := letter] left , letterl lineTop.
¥2 := letter] pivotPositionY = letter2 pivotPositionY
ifTrue [letter2 right]
ifFalse [(client shape rightALY letter]l bottom) - inset x].
p2 :=p3 :=x2, (pl ¥ + letter]l shape font lineSkip).
rule installSeleclionBox (pl corner p2).

When letter2 top = letter] bottom "middle lines"
Do pl ;= (client shape lefLALY letter]l bottom) + inset x, p2 v.
p3 := (client shape rightALY letter2 top) - inset %, letter2 lineTop.
rule installSeleclionBox (pl corner p3).

When letter] pivotPositionY ~= letter? pivotPositionY "last line"
Do pl := (client shape lefLALY letter2 top) + inset x,
(p2 y max p3 y).

p2 := letter2 right @ letter2 pivot v + letter2 shape font descent.
rule installSelectionBox (pl corner p2).

VPRI Memo M-2010-002

Try Lthe Field wilh Seleclion and Highlighling

Click the blue button to create a working text
field. Click on a letter to test getting an
insertion point. Select text to see if dragging out
a selection is working. Click in the white space
to see if the end of line will be selected.

We have used 11 rule to add text selection.

Accepl New Texl lrom the Keyboard

When the user types on the keyboard,
insertChar receives every letter. We want to
insert it into the text, and delete any previously
selected text. Create a costume for the letter,
give it an event handler, delete the selection,
insert the letter into the text, and put the
insertion point after it.

Text Field Spec

Create Text Field
LWordWrapLavout When selection start > 0
insertChar Do ff := (client al selection start)

shape font.

Create a costume for yypon celection start <= 0

the letter, give it an

Do ff .= font.

event handler, delete When Always

the selection, link the
letter into the text, and
put the insertion after
it.

Catch a keystroke and
replace the selection
with it.

Accept

Do glyph := ff glyphAlL me.
letter := LBox withShape glyph.
rule installTo letter.
[rule selectionEmpty] whileFalse [
client removeAl selection start+1.
selection := selection start Lo selection
stop-1].
client add letter allerIndex selection start.
selection := selection start+1 Lo
selection start+2.

VPRI Memo M-2010-002

Move Lhe Inserlon Poinl with Arrow Keys

There are many special keys and control keys
that we'd like to use to do things to text.
Examples are the arrow keys for moving the
cursor and Control-¢ to copy text,

For each key, we simply add a rule. The
name of the rule is 'charTyped' followed by either
a letter or a keycode. 29 is the keycode for the
right arrow key.

The right arrow key moves the insertion
point to the right. It also converts a selection to
an insertion point. If the insertion point is
already after the last letter, do not move it.

The lefl arrow key moves the insertion point
to the left. It also converts a selection to an
insertion point. If the insertion point is already
before the first letter, do not move it. The
keycode for left arrow is 28,

17 P

Text Field Spec

LWordWrapLavout
charTyped29

When selection stop == client contents size
Do selection := selection stop Lo
selection stop + 1.
Right Arrow. Convert a
selection to an insertion point.
Don't go beyond the end of the
text.

When selection stop > client contents size
Do selection := client contents size Lo
client contents size + 1.

Move the insertion point one
letter to the right.

Accept
LWordWrapLayout When selection start >= 1
charTyped28 Do selection ;= selection start - 1 Lo

selection start.
Lefl Arrow. Convert a
selection to an insertion point.
Don't go beyond the start of the
text.

When selection start = 1
Do selection := 0 Lo 1.

Move the insertion point one
letter to the left.

Accept

VPRI Memo M-2010-002

Down Arrow

Down Arrow moves the insertion point to
the next line. It also converts a selection to an
insertion point. If the insertion point is already
after the last letter, do not move it. (For the
moment, move to the beginning of the line, not to
the letter just below its previous position.) The
keycode for down arrow is 31.

Find the start of the next line. Return the
index of this letter if it is at the start of a line.
Otherwise ask my successor. If | am at the end,
return the index of the last letter.

13 P

Text Field Spec

LWordWrapLayvout
charTyped3l

When selection stop > client contents size
Do return selection := client contents size Lo
client contents size + 1.
Down Arrow. Converl ywhen Alw ays
a selection to an Do endPrevLine :=
insertion point. Don't (rule startOfNextLine selection stop + 1) - 1.

u;l: beyond the end of selection := endPrevLine to endPrevLine+1.
Lhe text.

Move the insertion
point to the next line.

Accept
LWordWrapLayout When client contents size == me
startOfNextLine Do return client contents size + 1.

Return the index of this
letter if it is at the start of
a line. Otherwise ask my
successor. If I am nil or at
the end, return the last
letter.

When (rule isStartOfLine me) not
Do "not at left margin"
return rule startOfMNexLLine me+1.

When Always

Do return me "at start of next line"

Find the start of the next
line,

Accept

VPRI Memo M-2010-002

Up Arrow

Up Arrow moves the insertion point to the
previous line. It also converts a selection to an
insertion point. If the insertion point is already
before the first letter, do not move it. The
keyeode for down arrow is 30,

Mote that the first call on startOfLine moves
to the start of the current line, and the second
moves to the line above it.

Find the start of the current line. Eeturn the
index of this letter if it is at the start of a line.
Otherwise ask its predecessor. If the index is at
the beginning, return 1.

i P

Text Field Spec

When selection start = 1
Do return selection := 0 Lo 1.
When self selectionAtEnd
Do lastOfPrevline :=
(self startOfLine selection start) - 1.
selection := (self starlOfLine lastOfPrevLine) - 1
Lo (self startOfLine lastOfPrevLine).
When self selectionAtEnd not
Do lastOfPrevliine :=
(self starlOfLine selection start + 1) - 1.
selection := (self startOfLine lastOfPrevline) - 1
Lo (self slartOfLine lastOfPrevLine).

LWordWrapLayout
charTyped30

Up Arrow. Convert a
selection to an
insertion point. Don't
go bevond the start of
the text.

Move the insertion
point up to the
previous line.

Accept
LWordWrapLavout When 1 > me
slartOfLine Do return 1.

Go back letter by letter

_ : _ When (rule isStartOfLine me) not
until one is at the margin.

Do return rule startOfLine me-1.

When Always

Find the index of the letter Do return me. "at start of this line"

that is at the start of the
current line.

Accept

VPRI Memo M-2010-002

Editing Commands

Every user expects to copy text by typing
Contrel-c (Command-c on a Macintosh). Here is
the rule that does it. When the Control key is
down and a letter is typed, the system looks for a
method named 'charTypedCMD' followed by
either a letter or a keycode, charTypedCMDe is
called when the user types a 'c' with the Control
key down.

Copy the text selection and put it into the
world's clipboard.

In a similar way, define Control-x to be the
cul command. First do the copy command, then
delete the selection.

< 20

Text Field Spec

>

LWordWrapLayout
charTypedCMDc

When self selectionEmpty not
Do client worldState clipboard
((selection start + 1 Lo selection stop - 1)
Make sure the collect [:ii | (client contents al ii) copy])
selection is not
empty.

Command-c. Copy
the selection and
put it into the
world's clipboard.

Accept
LWordWrapLayout When Always
charTypedCMDx Do rule charTypedCMDe,

[rule selectionEmpty] whileFalse |
client removeAl selection start+1.
selection ;= selection start

Lo selection stop - 11.

First do the copy
command, then delete the
selection.

Command-x. Cul.
Delete the selection and
put it into the clipboard.

Accept

VPRI Memo M-2010-002

Pasle and Backspace

When the user types Conlrol-v, pasle the
text in the clipboard into the field.

Make sure the clipboard has something in it.
Later, we will revise this to make sure the thing
in the clipboard meets the requirements to be in
text.

Delete the current selection in the text.

For each letter in the selection, copy it and
insert it just after the insertion point.

Move the insertion point to after the new
letter.

When the user types the backspace or delele
key, several thing may happen. '08'is the
keyeode of the delete key,

If the selection is empty, and there is a letter
before it, delete that letter,

If the selection is not empty, simply delete
the selection.

Press the button below and try cutting and
pasting text.

Create Text Field

Text Field Spec q 21 »

LWordWrapLavout When client worldState clipboard isNil

charTypedCMDv Do return rule.
When Always
Delete the Do [rule selectionEmpty] whileFalse |
selection and client removeAl selection start+1.
replace it with a selection := selection start lo selection stop-1].
copy of the client worldState clipboard do [:1box |
clipboard. letter := lbox copy.

rule installTo letter.
letter setPivotForGlyph.

Command-v. client add letter aflterIndex selection start,
Pasle text into the "put insertion point after new text"
field. selection .= selection start+1

Lo selection start+ 2].

Accept

LWordWrapLayout When self selectionEmpty and [selection start = 0]
charTyped08 Do client removeAl selection start,

_ _ selection := selection start - 1 Lo selection start.
If insertion point,

erase the letter before When self selectionEmpty not

it. If a selection, Do [self selectionEmpty] whileFalse [

erase it. client removeAl selection start + 1.
selection := selection start

Delele or Backspace. Lo selection stop - 11].

FRemove the selection.

Accept

VPRI Memo M-2010-002

Tab Slops

A tab is unique. It's width depends on where
it is in the line of text. An array of numbers
called tabArray holds the x values of tab stops.

When we layout a tab, we need to set its
width each time. Bun backwards through the tab
stops, looking for one just larger than the tab's
left edge. Set the tab's width so that the next
letter will be at that stop.

Tall Lellers

The height of a line is the font height of the
first letter. If there is a letter in a larger font in
the middle of the line, we need to move the
entire line down.

When a taller letter is discovered, run back
through all the previous letters in the line and
move them down.

If this letter is taller than we have seen
(maxHeight + missingHeight), add the extra to
missingHeight.

You may have noticed that layout on page 3
has lines that initialize maxHeight and
missingHeight.

22 p

Text Field Spec

LWordWrapLayout
selTabWidlh

When my shape ~~ nil and
[my shape name == #controlHT]
Do goalX := client width.
tabArray reverseDo [:tabX |
tabX > me left ifTrue [goalX := tabX]].
my shape (my shape asTabOMWidth
goalX - my left).

If I am a tab, go backwards
through the tab stops,
looking for one just larger
than my x. Set my width
s0 that the next letter will
be at that stop.

Set the width of a tab

character.
Accept
LWordWrapLayout When Always
LallLeller Do extra := my shape font ascent -

imaxHeight + missingHeight).
If this letter is taller than When extra = 0

all we have seen on this Do missingHeight := missingHeight + extra.
line, increase
missingHeight.

Set the variable

missingHeight when we
see a taller font.

Accept

VPRI Memo M-2010-002

Base Line Adjusimenl

Run back from the tall letter to the beginning
of the line, moving each letter down the page.

Every time we place a letter at its final
location, we need to check if it is a tab. Since a
letter has its ¥ set in three different places, we
will wait until we place the next letter to
compute a final tab width.

In the place rule, the first thing we will do is
to selTabWidlh of the previous letter. This
should work for all letters, including the first
letter. (If the last letter is a tab, its width will
be wrong. But, no letter follows, so it is OK.)

This is the second time we have modified the
place rule to add more capability. Be sure to
click Accept.

423 p

Text Field Spec

LWordWrapLayout
baselineAdjusL

When 1 amNil or [missingHeight <= 0]
Do return self.
When Always
Do my pivotPosilionY
my pivotPositionY + missingHeight.

If missingHeight is = 0,
then lower this letter
and move back towards
the start of line, When self isStartOfLine my index
Do maxHeight := maxHeight + missingHeight.
missingHeight := D,
When (self isStartOfLine my index) not
Do rule baselineAdjuslt my predecessor,

Move letters down
when a taller letter is

discovered.
Accept
LWordWrapLayvout place ‘When | amNil
Do return me.

When Always
Do pred := my predecessor.
rule selTabWidLh pred.

Put the current letter after
the previous one. Detect
if carriage return, or if the

letter is over the right my box pivol |
margin. pred right + pred pivotOffset x @
pred pivot y.

self lallLetler me.
When rule placellAlfterReturn me
Do return rule Lell my successor Lo 'place’.
When my shape isWhiteSpace and
Do the normal case when [(self isClipped me) not]
a letter fits on the current Do rule tell me to 'baseline Adjust'.
line. Look for exceptions. wWhen rule isClipped me
Do rule Lell me Lo 'backToWordStart'.
When (rule isClipped me) not
Do rule tell my successor Lo 'place’.

VPRI Memo M-2010-002

Accept

Changing Emphasis

To make text be bold, select some text and
press Control-b. Or, select the text and choose
Bold from the Style Menu. If the beginning of the
text is already bold, make it un-bold.

For each letter of the selection, tell its
surface (letter shape) to be the same surface
asBold.

To make text be italic, select some text and
press Conlrol-i. Or, select the text and choose
[talic from the Style Menu. If the beginning of
the text is already italic, make it un-italic.

For each letter of the selection, tell its
surface (letter shape) to be the same surface
asltalic. A letter can be bold and itialic at the
same time.

424 P

Text Field Spec

LWordWrapLayout
charTypedCMDbD

When (client al selection start + 1) isBold not
Do return rule selectionDo [:let | let beBold]

To make text be bold,
select some text and
press Control-b. [f the
beginning of the text is
already bold, make it
un-hbaold.

When (client at selection start + 1) isBold
Do rule seleclionDeo [:let | let box beNotBold].

Toggle the bold property
of the selection.

Accept
LWordWrapLayvout When (client al selection start + 1) isltalic not
charTypedCMDi Do return rule seleclionDo [:let | let beltalic)

When (client al selection start + 1) isltalic
Do rule seleclionDo [:let | let beNotitalic].

To make text be italic,
select some text and
press Control-i. If the
beginning of the text is
already italic, make it
un-italic.

Toggle the italic property
of the selection.

Accept

VPRI Memo M-2010-002

Plain Texl

When the user types Conlrol-L for plain bext,
remove any bold or italic from the selection. For
each letter in the selection, replace its graphic
with the non-bold, non-itialic version.

Create Text Fisld

Change Lthe Fonl

Change the font of all letters in the selection.
This is invoked from the menu of the text field
box. Control-click in the text field to get a halo.
Click on the menu icon at the upper left. Click
"Choose Font". Pick a font from the list.

In this method, if (I am: nil) is true, it means

that the user chose 'leave as it'. Exit in this case.

If ('be the default' = me), the user designated
the font of the first letter in the selection to be
the default font for this field. What is that used
for? If you delete all the text in the field, and
then type, the new letters will be in the default
font.

Text Field Spec

2 P

LWordWrapLayout
charTypedCMDL

When Always

Conlrol-1, plain texl.
For each letter in the
selection, replace its
graphic with the
non-bold, non-itialic
version.

Force there to be no
bold or italic in the
selection when the user
types Control-t.

Accept

Do rule selectionDao [:let | let beNormall.

LWordWrapLavout When Always
selectionToFonl
When | am nil

Do return self.
When 'be the default' = me

Change the Font of
the selection.

De client topContainer worldState delete Halo,

Do return font := (client al selection start + 1)

shape font.
When Always

Change the
selection to that
font, preserving,

size and emphasis. self selectionDo [:let |

Do newFont := LFamily families al me.

"replace the glyph shapes in place"
let shape (let shape ofFonl newFont)].

client layoutChanged.

Accept

VPRI Memo M-2010-002

Increase Fonl Size

Make all of the letters in the selection be one
size larger. The keycode of "plus" is 43.

Decrease Fonl Siee

Make all of the letters in the selection be one
size smaller. The kevcode of "minus" is 45,

< 26

Text Field Spec

g

When Always
Do rule seleclionDo [:letter |
letter increaseFonlBy 1].

LWordWrapLayout
charTypedCMDA43

Conlrol- +, Conlrol-=.
Increase fonl size of the
selection. Handles both =
and + since the shift key
is not tested.

Accept
LWordWrapLavout When Always
charTypedCMDA45 Do rule seleclionDo [:letter |

letter increaseFonlBy -1].

Conlrol-minus.
Decrease fTonl size of the
selection.

Accept

VPRI Memo M-2010-002

Text Field Spec 27

>

Select All TexL LWordWrapLayout When Always

charTypedCMDa Do selection ;= 0 Lo client contents size + 1
Type Command-a to select all of the letters

in the field. Command-a.
Selecl all LexL.

Accept

Conclusion

Each rule is translated into the base language
of the system. The result runs as fast as any
normal text editor. There is no speed penalty for
using rules to define the behavior,

Basic layout and word wrap takes 7 rules,
Selection, highlighting, typing and clicking in the
open field takes 11 rules. Fifteen addtional
features take 19 rules. The entire text editor is
defined in 37 rules.

Rules of this kind are easy to define. The
sequence of clauses with guards is very flexible
and expressive. The resulting application runs at
full speed, and is understandable by humans,

First working version: October 2009

; VPRI Memo M-2010-002
Current version: March 2010

