
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

Supporting Actors in COLA

Michael FIG

VPRI Memo M-2009-013

This material is based upon work supported in
part by the National Science Foundation under

Grant No. 0639876. Any opinions, findings, and

conclusions or recommendations expressed in

this material are those of the author(s) and do

not necessarily reflect the views of the
National Science Foundation.

11/5/09 1:19 PMSupporting Actors in COLA

Page 1 of 4

Supporting Actors in COLA

Michael FIG

michael@fig.org

2009–10–13

Contents:

1 Introduction

2 Actors

3 Messaging Specification

3.1 Schedulers

3.2 Actors

4 Security

5 Optimisation

6 Further Work

7 References

1 Introduction

The Actor model is an easy-to-understand concurrency model that is gaining popularity as language support
for it becomes more common. It is a natural choice for the foundational concurrency mechanism that
applications can use directly or as a building block for more elaborate concurrency models. Its simplicity
does not preclude dynamic modification of the topology of the concurrency system on the grounds of
complexity.

The COLA Kernel Abstraction [Piumarta09] lets us implement message passing semantics in terms of
composable layers. Every message is either a "downcall" which needs to be resolved by an underlying
kernel, or an "upcall," where the sender has a direct reference to the destination mailbox and knows the
exact procedure by which to correctly add the message. Transaction protocols among actors can implement
more elaborate synchronised algorithms using these underlying mechanisms.

Ad-hoc message systems can be assimilated within these semantics. Asynchronous operating system
services (windowing systems, signal delivery, network communications, coprocessor or thread pool
invocations, etc.) fit naturally into this general mechanism.

The remainder of this memo describes an abstraction in which application, library, and system code remains
agnostic to the specific concurrency models selected for itself or for its peers. This allows us to implement
concurrency in COLA once and have it be useful in many different contexts.

2 Actors

An actor is an computational entity that can:

send messages to other actors,

VPRI Memo M-2009-013

11/5/09 1:19 PMSupporting Actors in COLA

Page 2 of 4

create other actors, and
designate the behaviour to be used for the next received message.

We extend this definition with features inspired by the Erlang programming language, so that actors can
also:

selectively scan their mailbox (leaving some messages unactivated),
specify another actor to be monitored and receive a failure message if that other actor becomes
unresponsive, and
designate a timeout for sends and receives, to aid in recovery from actors that stop responding to
application protocols.

3 Messaging Specification

The implementation is organised into layers, each of which is optional according to the application's
requirements. Additional layers can be inserted into the stack as needed.

These are currently:

fibre
The current COLA context, either a green thread or a coroutine.

thread
An operating system thread.

process
An operating system process.

platform
A physical or virtual machine on which the operating system runs.

3.1 Schedulers

The install-LAYER-kernel functions (where LAYER is the name of a layer) inserts a kernel on the current
context that provides scheduling and messaging services between the named entities in the current context.

(install-fibre-kernel)

(install-thread-kernel)

(install-process-kernel)

(install-platform-kernel)

After one or more of these kernel layers is installed, the following functions become available to the current
context:

(fork closure [options...])

creates a peer of the topmost kernel (such as a new fibre) running the closure and returns
a reference to its actor.

(create-layer closure [options...])

creates a peer of the specified kernel layer and returns the corresponding reference.

(connect-layer [options...])

Returns a reference to an existing entity.

The options... communicate parameters to the scheduler that could inclued timeslice quanta, priorities,
and so on.

VPRI Memo M-2009-013

11/5/09 1:19 PMSupporting Actors in COLA

Page 3 of 4

3.2 Actors

Messages are exchanged with an actor via its reference.

(send timeout destination message [references...])

Asynchronously adds message to the destination actor's mailbox along with optional
references to other actors. The timeout is the duration in seconds (nil means infinite) that
the message system should continue to try placing one copy of the message in
destination 's mailbox. send returns ack if the message was successfully placed in
destination 's mailbox, down if destination is known to have crashed, a more general error
object describing the status of a failed send, or timeout if timeout expired before any
other condition was reached.

(receive timeout match-function)

Executes (match-function message references...) for each message in the current
actor's mailbox. If the result is non-nil the message is removed from the mailbox and the
result returned to the caller of receive. If no messages are received the process repeats
for each newly-arrived message until a match is found. If no match is found within
timeout seconds, receive returns nil.

(current-actor)

Returns a reference to the current actor.

(actor-kernel n)

Returns a reference to the kernel n layers below the current actor.

(actor-layer-kernel)

Returns a reference to the kernel at the named layer under the current actor.

4 Security

Untrusted senders are permitted to send messages to trusted receivers. This section describes the related
security issues, and how their solutions determine implementation rules.

1. Direct pointers to the receiver's mailbox allow the sender to corrupt the receiver.

Untrusted code must be written in an object-capability form, so that the kernel controls all privileged
operations. The kernel can wrap actor addresses in kernel handles, so that the untrusted code can use
them without having access to their internal representation.

2. Mutable data structures in messages would allow the sender to modify a message after it is received
and validated but before some trusted operation is performed on it.

Message bodies must be copied by the kernel into the receiver mailbox so that they are no longer
referenced by the caller. The receiver must only interpret message data as a reference if it is known to
point to an object that is either immutable or untrusted.

3. Senders can cause a denial-of-service by filling receiver mailboxes faster than can be processed.

It is the responsibility of kernels to throttle their senders by checking the return value of the mailbox
post function. The COLA kernel's scheduler should penelise the sender and all its children each time a
send "overflows" a mailbox.

VPRI Memo M-2009-013

11/5/09 1:19 PMSupporting Actors in COLA

Page 4 of 4

4. Senders can cause a denial-of-service by sending huge messages.

Receiver mailboxes should have a dynamically configurable maximum message size. Oversized
messages are handled similarly to "overflow", but a special "oversize" condition should be signalled.

5 Optimisation

Some optimisation can be performed by avoiding copying messages when actors trust their senders and a
shared memory space is available. Flow control need not be implemented, if memory is plentiful.

6 Further Work

Implementation work is still ongoing. This research memo documents the current intentions and solicits
comments on improvements to the design.

Implementation techniques can be investigated and borrowed from the E programming language, Erlang,
and Mozart/Oz.

Most of the rules described in the security section are easily implemented with non-shared, process-local
message passing. The issues are more complex and require careful implementation design in the presence of
shared state or cross-process communication. Shared memory will require efficient synchronisation
primitives.

Messages carried between processes or platforms via a network protocol should use CAMP, the COLA
Actor Messaging Protocol, which is yet to be defined. CAMP/UDP/IP would be a portable implementation
that is friendly to Internet routers and packet filters. With careful design, cryptographic techniques can be
used to implement flow control and privacy over the network.

7 References

[Piumarta09] Ian Piumarta. COLA Kernel Abstraction, VPRI Research Memo, 2009.

VPRI Memo M-2009-013

