
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

 Using ESOOP in Squeak

 Hesam Samimi

VPRI Memo M-2009-012a

squeak
Typewritten Text
This material is based upon work supported in part
by the National Science Foundation under
Grant No. 0639876. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Science Foundation.

Tutorial

Using ESOOP in Squeak
(Executable Specifications in Object Oriented Programs)

Hesam Samimi

last revised on: Oct, 2009

Contents

1 Introduction . 2

2 Installation . 2
2.1 Installing Unicode Font . 2
2.2 Loading the ESOOP change-set 2

3 Bringing up the solver server . 3

4 Defining spec methods for an existing Squeak class 3
4.1 Defining sort specs for List . 4

 4.2 Viewing and running de-sugared predicates . 6
4.3 solve: directive: Sorting a List using sort specification 7

 4.4 solveAll: directive: Permutations of a List using specification 7
4.5 Defining specs for Point class 8

5 Defining Squeak methods as optimizations for specs 9

6 Defining a new class supporting executable specs 11
 6.1 Defining a new class . 11

7 Defining spec methods for the new class . 12

7.1 Defining findShape specs for PentoShapes . 12
7.2 Executing PentoShapes findShape goal specification 14

8 Current limitations and known bugs . 16

1
VPRI Memo M-2009-012a

1 Introduction

This is a tutorial of a methodology to allow First Order Logic (FOL) specification
methods for Squeak classes, and thus opening the possibility of using a SAT-based
Constraint Solver to find models satisfying those specs.

Once the ESOOP change-set is loaded, and a unicode true-type font is installed as the
code font, users can define methods and new classes in a fashion familiar to Squeak
programmers. Given a running Solver server, objects can use the solve directive to satisfy
their specifications. Two step by step examples, Sorting a List of integers, and modeling
the Pentominoes puzzle game are presented in this tutorial.

2 Installation

2.1 Install Unicode Font (* required only if logical symbols instead of ASCII desired):

The specifications allow for unicode symbols for logic. However, the english spellings of
them, including and
, or, such that, in, prime are also supported. This step is optional.

 a. download DejaVu fonts:
 http://prdownloads.sourceforge.net/dejavu/dejavu-fonts-ttf-2.29.tar.bz2?download
 b. drag unicode font DejaVuSans.ttf onto the Moshi image
 c. left click → appearance → system fonts → code font → DejaVuSans → 12 pt

You may run the code below in Squeak's workspace in order to copy and paste the
unicode characters used in logic syntax:

 String streamContents: [:s | 16r2032 to: 16r22FF do:
 [:c | s nextPut: c asCharacter. c \\ 16 = 15 ifTrue: [s cr]]].

2.2 Load the ESOOP change-set
 a. download the change-set:
 http://www.cs.ucla.edu/~hesam/b-brains/runnable-specs/squeak/ESOOPLATEST.cs
 b. drag the downloaded change-set into the Moshi image, select filein entire file.

2
VPRI Memo M-2009-012a

http://prdownloads.sourceforge.net/dejavu/dejavu-fonts-ttf-2.29.tar.bz2?download
http://www.cs.ucla.edu/~hesam/b-brains/runnable-specs/squeak/ESOOPLATEST.cs

3 Bringing up the solver server

The solver is installed on tinlizzie.org machine. Before using the solve directive, ensure
the Kodkod server is up and running on this machine, by executing the following script.
Note that in the current setup, the server quits after being called once, so this step must be
repeated after each call to solve. Do this at steps 4.2, and 6.2.

 you@tinlizzie:~$ /home/hesam/tools/solver/Kodkod/run-kodkodi-server.sh
 Kodkod server listening for clients on port 9128...

The server options are contained in setOpts method of the ESOOPLogSolver class.

4 Defining spec methods for an existing Squeak class

In this section, we will define a sort goal for an existing classes, an OrderedCollection as
well as Point. In order to not mock with existing Squeak classes, we have defined a
subclass of OrderedCollection, ESOOPList, to do this experiment. Similarly, there is a
ESOOPInteger class for Integer primitive.

Unlike Squeak, the name of the class is included before the method name. Note that in
the method definition below, the prefix ESOOP is not included within the code; It's added
automatically. The usual logical symbols are used in the specifications. However, their
English spellings are also supported.

The prime message (or symbol ') subsequent to a variable denotes its value in the
solution. When prime version of a variable exists in the formula, the solver should treat
the variable as an unknown, and allowed to explore values for it other than its current
value. On the other hand, when no formula mentions the variable prime, this is directing
the solver to consider the variable fixed.

The directive predicate starts the syntax for method definition. This will distinguish
between these methods and those representing goals. Although there are currently no
differences, between predicate and goal methods, one might potentially want to do extra
work for goal methods.

3
VPRI Memo M-2009-012a

4.1 Defining sort specs for List

 a. define a new method for ESOOPList, named sorted. Use the usual cmd-s to accept.

predicate List sorted
 all i in self indices allButLast | (self at: i) <= (self at: (i+1)).

 b. define a new method permutationOf: for the same class.

predicate List permutationOf: L
 all e in all Integer | self occurrencesOf: e = L occurrencesOf: e.

4
VPRI Memo M-2009-012a

c. define a goal method sort for the ESOOPList class. This method will be saved as goal0sort.

goal List sort
 self prime permutationOf: self and
 self prime sorted.

 d. let's also define a goal method allPerms for the ESOOPList class. We will later use it to get all
possible permutation of a list.

goal List allPerms
 self prime permutationOf: self.

5
VPRI Memo M-2009-012a

4.2 Viewing and running de-sugared predicates

The defined specification predicates are simply syntactic sugar for Squeak methods, and
it is possible to call them just as an ordinary Squeak method.

 a. To see the pure Squeak version of the defined List methods sorted and pemutationOf: methods,
select decompile instead of source in the What to show menu shown below:

 b. This predicate can be run simply by instantiating an ESOOPList object and calling sorted. The
previously defined goal predicate sort can also be called with its compiled name: goal0sort. Running a
goal method simply returns a boolean stating whether or not the goal predicate evaluates to true in the
current state of the object.

l1 := ESOOPList withAll: (#(3 4 5 1 2) collect: [:x | ESOOPInteger new: x]).
l1 sorted. “ returns false “
l1 goal0sort. “ returns false “

6
VPRI Memo M-2009-012a

4.3 solve: directive: Sorting a List using sort specification
 a. bring up the Kodkod server using the command stated in section 3.
 b. run the following test. Note that Integer type needs to be bounded first, and Integers must be of
specialized type: ESOOPInteger.

testSort

 "
 * bring up solver server first *
 ESOOPCompiler testSort.
 "
 | l1 |

 ESOOPInteger setBounds: #(0 30).
 l1 := ESOOPList withAll: (#(3 4 5 4 2 1) collect: [:x | ESOOPInteger new: x]).
 l1 solve: #sort.
 ^l1

4.4 solveAll: directive: Permutations of a List using specification

testAllPerms

 "
 STEP 3: Run test (after previous steps)
 * bring up solver server first *
 ESOOPCompiler testAllPerms.
 "
 | l1 |

 ESOOPInteger setBounds: #(0 30).
 l1 := ESOOPList withAll: (#(1 2 3) collect: [:x | ESOOPInteger new: x]).
 ^l1 solveAll: #allPerms.

Result of l1 solveAll: #allPerms

7
VPRI Memo M-2009-012a

4.5 Defining specs for Point class (used for later case study)

ESOOP supports enabling executable specifications for existing Squeak classes. This is
possible by defining a new specialized subclass of the class in question, along with listing
particular instance variables of which are involved in the specifications.

Lets use the Point class as an example. In section ? we will present a PentominoShapes
example as case study which finds the possible Pentomino puzzle pieces using a solver.
The class holds several instance variables as collection of Points. Since the problem
involves Point class, we need to first define an ESOOPPoint class, as subtype of Point
which can execuate specifications. This is accomplished via the following method call.

Syntax for instance variable type specification:
Scalar: {<name>. <type>. <modifiable?>}
Collection: {<name>. <type>. <modifiable?>. <list element type>. <list size>}

Syntax for defining a subtype of an existing class, supporting executable specifications:
ESOOPUserTypes class: <class> subclass: <subclass>
 instanceVariables: {<instVar1 type>.
 <instVar2 type>
 … }

Note that the ESOOP prefix for the ESOOPInteger and ESOOPList types is not included
in the type names. The prefix is also automatically added to the name of subclass.

 a. define subtype of Point called ESOOPPoint by evaluating the following code
ESOOPUserTypes class: #Point subclass: #Point
 instanceVariables: {{#x. #Integer. true}.
 {#y. #Integer. true}}

 b. define equals: method for ESOOPPoint. The prime refers to the desired value in the solution:
predicate Point equals: p
 self x prime = p x prime and
 self y prime = p y prime.

 c. define plus:equals: method for ESOOPPoint:
predicate Point plus: p equals: q
 self x prime + p x prime = q x prime and
 self y prime + p y prime = q y prime.

8
VPRI Memo M-2009-012a

5 Defining Squeak methods as optimizations for specs

Relying on executable specifications is rarely practical due to slowness. In practice, we
would like to write implementations for the task. When implementations fail to work,
either giving incorrect results, or resulting in errors, we want to use an automatic fallback
mechanism to rely on the executable specifications to do the job. This fallback feature is
supported as follows.

 Write bubbleSort for List class, as an obtimization for the sort goal
 a. Syntax for a squeak method as a goal optimization is:
 goalOptimization <class> <goal> <method name> [<squeak method body>].

goalOptimization List sort bubbleSort
 [| s t |
 s := self size - 1.
 s to: 1 by: -1 do:[:i |
 1 to: i do: [:j |
 ((self at: j) > (self at: (j+1))) ifTrue:
 [t := self at: j.
 self at: j put: (self at: (j+1)).
 self at: (j+1) put: t]]].
 ^self].

9
VPRI Memo M-2009-012a

Internally, this defines a method bubbleSort for class ESOOPList that looks like below.

When implementation methods work as expected, specifications are not used.
However,the fallback mechanism will kick-in if the implementation results in error. For
example, in the shown bubbleSort method, if the “– 1” is uncommented, the method will
result in an out of bounds array indexing error. In such a case, as shown above, the object
will use the solve: directive to accomplish its sorting goal, relying on the specification of
sort and the constraint solver.

Currently the fallback mechanism does not kick in if the implementation method results
in incorrect values, yet without causing an error. This can be easily added by checking the
goal predicate, in this case sort for the object in question. When the implementation does
not satisfy the goal, the fallback should occur.

10
VPRI Memo M-2009-012a

6 Defining a new class supporting executable specs

In this section, we want to model the Pentominoes puzzle pieces, relying on the
declarative specifications to find a possible shape and orientation of a valid pentomino
piece. Let's model the problem by defining a class PentominoShapes , with instance
variables dirs, squares, froms, and fromDirs, enough to specify the problem. The dirs is a
fixed collection of 4 points (0@1 0@-1 -1@0 1@0) representing the possible four
directions up, down, left, and right. Note that we mark this instance variable as non-
modifiable. Note that this problem involves Squeak's existing class, Point, hence we
created an ESOOPPoint subclass in previous sections. The sqaures variable will be a list
of 5 points representing the coordinates of squares that make the pentomino piece, and
the value in the solution will be an answer to the problem. The froms is also a 5 element
list, describing how each square is obtained from a previously indexed square. The values
in this collection gives the index of square each square is derived from by adding the
origin square, to one of the direction points, dirs. The fromDirs is there to tell which
direction is chosen for each of the squares.

All new user defined classes that involve executable specifications will be subclasses of a
class named ESOOPUserTypes. This class allows the syntax of these specification
methods to be of FOL as examples above, and provides the method solve.

Defining a new class is done via passing the message subclass:instanceVariables: to the
ESOOPUserTypes class. The main difference compared to normal Squeak is that instance
variables are typed. Also, each instance variable type specifications includes a boolean
value stating whether or not the value should be modifiable or not. This is necessary to
know which variables is the solver allowed to modify in order to solve a problem. For
List type variables, the type of elements and the size is also specified. The format was
given in section 4.3. Once again note that the ESOOP prefix for the ESOOPInteger and
ESOOPList types is not included in the type names. Also, this method of class definition
automatically defines getters and setters for all instance variables.

6.1 Defining a new class
 A subclass:instanceVariables: call to ESOOPUserTypes class defines a new class. This method along
with the sample call below is found as a class method for ESOOPUserType in the browser.

 ESOOPUserTypes subclass: #PentoShapes
 instanceVariables: {{#dirs. #List. false. #Point. 4}.
 {#squares. #List. true. #Point. 5}.
 {#froms. #List. true. #Integer. 5}.
 {#fromDirs. #List. true. #Integer. 5}}.

11
VPRI Memo M-2009-012a

7 Defining spec methods for the new class

We added the PentoShapes class in the previous section, which was saved in the browser
as ESOOPPentoShapes in order to keep these separate from Squeak's own classes. Now
let's specify the problem of finding a valid shape and orientation for a pentomino piece.

7.1 Defining findShape specs for PentoShapes

 a. define a new method for PentoShapes, named atOrigin. The predicate specifies that we want the
first square to be the origin.

predicate PentoShapes atOrigin

 (self squares at: 1) x prime = 0 and
 (self squares at: 1) y prime = 0.

 b. define a new method for PentoShapes, named fromsValid. The predicate states that froms
variable has valid index values.
predicate PentoShapes fromsValid

 all i in self froms prime allButFirst | i > 0.

12
VPRI Memo M-2009-012a

 c. define a new method for PentoShapes, named fromDirsValid. The predicate specifies that has
valid index values.

predicate PentoShapes fromDirsValid

 all i in self fromDirs prime | i > 0 and i <= 4.

 d. define a new method for PentoShapes, named goUp. The predicate specifies that all squares
should be on y-positive quadrants.
predicate PentoShapes goUp

 all s in self squares | s y prime >= 0.

 e. define a new method for PentoShapes, named noLeftFirstRow. The predicate avoid redundant
shapes disallowing negative x-value squares for y=0 row.
predicate PentoShapes noLeftFirstRow

 all s in self squares | s y prime > 0 or s x prime >= 0.

 f. define a new method for PentoShapes, named fromThat. The predicate ensures each square is
derived via a previously indexed square, excluding the first square at origin.

predicate PentoShapes fromThat

 all i in self froms prime indices allButFirst | (self froms prime at: i) < i.

 g. define a new method for PentoShapes, named distinct. The predicate ensures square coordinates
are unique.
predicate PentoShapes distinct

 all s1, s2 in self squares | s1 = s2 or (s1 equals: s2) not.

 h. define a new method for PentoShapes, named sprouted. The predicate specifies that each
subsequent square is derived via a previously index square plus one of the direction points.

predicate PentoShapes sprouted

 all i in self squares indices allButFirst |
 (self squares at: (self froms prime at: i)) plus:
 (self dirs at: (self fromDirs prime at: i)) equals:
 (self squares at: i).

13
VPRI Memo M-2009-012a

 i. finally define the findShape goal for the class, specifying the above predicates must hold:

goal PentoShapes findShape

 self fromDirsValid and
 self fromsValid and
 self atOrigin and
 self fromThat and
 self goUp and
 self noLeftFirstRow and
 self distinct and
 self sprouted.

We're now ready to run the specifications above. It should be noted that the instance
variables with primitive values should currently use the ESOOP specific subclass, namely
ESOOPInteger and ESOOPList.

7.2 Executing PentoShapes findShape goal specification
 a. bring up the Kodkod server using the command stated in section 3.
 b. run the following test (also found under ESOOPCompile → testPentominos)

testPentominos

 "
 * bring up solver server first *
 ESOOPCompiler testPentominos.
 "

 | dirs squares fromDirs froms pentoShape |

ESOOPInteger setBounds: #(-3 5).
dirs := ESOOPList withAll: (#((0 1) (0 -1) (-1 0) (1 0)) collect:
 [:p | ESOOPPoint new x: (ESOOPInteger new: p first);
 y: (ESOOPInteger new: p second); yourself]).
squares := ESOOPList withAll: ((1 to: 5) collect:
 [:p | ESOOPPoint new x: (ESOOPInteger new: 0);
 y: (ESOOPInteger new: 0); yourself]).
froms := ESOOPList new.
fromDirs := ESOOPList new.
pentoShape := ESOOPPentoShapes new
 dirs: dirs; squares: squares; fromDirs: fromDirs;
 froms: froms; yourself.
pentoShape solve: #findShape.
^pentoShape squares.

14
VPRI Memo M-2009-012a

 c. note that after the solve: #findShape call, the squares instance variable's points are updated to
reprent a valid Pentomo shape.

6.2.a (before)

 an ESOOPList(0@0 0@0 0@0 0@0 0@0)

6.2.b (after)

 an ESOOPList(0@0 1@0 0@1 2@0 -1@1)

15
VPRI Memo M-2009-012a

8 Current limitations and known bugs

In the current implementation, Squeak's own primitive and library types are not tampered
for safety, and their subclasses clearly marked as ESOOP<type> such as ESOOPList and
ESOOPInteger are used.

Another limitation is that instance variables can only take values of supported types:
ESOOPInteger, ESOOPList, or user defined classes ESOOP<type>. The only reason is
that objects need to support the prime message (post solution value), and several methods
regarding the logical expression equivalent of objects. When these are defined within
Squeak's own primitives and library types, no such limitation exists. Currently there is a
regrettable need to specify at the time of class definition, whether each instance variable
is modifiable or not. This in theory isn't needed, since the “primes” in the problem
specification should tell us this information.

Also, the List sizes need to be declared in the types, which is limiting.
A main limitation of the logic solver we use is bounded model checking and efficiency.
The solver requires everything involved in the problem including integers to be bounded.
It may not realistic to bound integers to some low interval, depending on the problem.
Very large bounds would increase the run-time in some cases prohibitively.

Another limitation of executable specification methods is that they may not be recursive.
These methods are only used by in-lining the expressions to make a final string
representing the problem in the syntax of the logic solver. This problem needs to be
addressed.

A major bug in current implementation is due to usage of class variables such as counters,
etc. which make the code flaky. Sometimes multiple tries are required until a solve: call
works properly.

Currently there is a bug regarding method definitions. When defining an ESOOP method,
few extra methods (logical counterparts of the OOP method) are automatically defined.
While all four methods automatically generated out the the user typed method get added
to the class dictionary, only the two main ones (named <method name> and
log0<method name>) are shown in the browser. The other helper methods do not show
up in the browser. The user needs to search and delete them manually (maybe via the
class dictionary) when the methods are no longer needed.

Although the Kodkod solver does allow using cost optimization SAT solvers, we have not
experimented with such a tool. Cost optimization problems, such as the second example
above, are very common and need to be handled properly.

16
VPRI Memo M-2009-012a

In the current setup, the solver server can only handle one connection at a time, and quits
with after the first call. It's possible to modify the code to keep the server running.

Sometimes when calling upon the solver, the program stalls, likely to be a
parsing/communication issue between the program and the server. Aborting the solver
server and retrying, usually resolves the problem.

As for future work, we are going to have to work on formulations to incorporate events in
also a declarative way, as well as support for introduction of optimizations to the
specifications.

17
VPRI Memo M-2009-012a

