
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

An Assembler for AVM2 using S-Expression

Takashi Yamamiya

VPRI Memo M-2009-010

This material is based upon work supported in
part by the National Science Foundation under

Grant No. 0639876. Any opinions, findings, and

conclusions or recommendations expressed in

this material are those of the author(s) and do

not necessarily reflect the views of the
National Science Foundation.

An Assembler for AVM2 using S-Expression

Takashi Yamamiya

takashi@vpri.org

2009-10-04

Overview

ABCSX is an assembler and disassembler for the ActionScript Virtual Machine 2 (AVM2) [1] and the

ActionScript Byte Code (ABC). It runs on Cola/Amino language or PLT-Scheme. The syntax consists

of s-expressions and a program can be constructed with normal list operations in Scheme like

language. The goal of this utility is to build a high level language compiler for Adobe Flash Player. To

get the idea, "Hello World!" programs for both ABCSX and abcasm (a standard assembler utility

consisted in the AVM2 source tree [4]) are shown.

;;;; A "Hello World!" program in ABCSX ASM-form
(asm
 (method
 (((signature
 ((return_type *) (param_type ()) (name "hello")
 (flags 0) (options ()) (param_names ())))
 (code
 ((getlocal 0)
 (pushscope)
 (findpropstrict ((package "") "print"))
 (pushstring "Hello, World!!")
 (callproperty ((package "") "print") 1)
 (returnvoid))))))
 (script (((init (method 0)) (trait ())))))

// A "Hello world World!" program in abcasm
function hello():*
{
 getlocal 0
 pushscope
 findpropstrict print
 pushstring "Hello, World!!"
 callproperty print (1)
 returnvoid
}

Although a program written in abcasm syntax is more concise than ABCSX, the semantics is rather

ambiguous. For example, in spite of each symbol name in ABC belongs to namespace(s), the syntax

of abcasm doesn't describe it clearly. In this case, "print" is implicitly interpreted to a Multiple

Namespace Name with a namespace set including PackageNamespace with no name. In case of

1 of 9

VPRI Memo M-2009-010

ABCSX, it is explicitly represented as PackageNamespace with no name by ((package "")

"print"). This implicit behavior might be useful for writing a program by hand, but not necessary for

a machine generated code. ABCSX rather takes a direction toward verbose but unambiguous style.

ABCSX offers two forms of syntax. ASM-form is higher level syntax introduced above. ABC-form is

identical to an abstract syntax tree of ABC binary file. This is useful when exact behavior is need to

know while debug.

;;;; A "Hello World!" program in ABCSX ABC-form
(abc
 (minor_version 16)
 (major_version 46)
 (constant_pool
 ((integer ())
 (uinteger ())
 (double ())
 (string ("hello" "" "print" "Hello, World!!"))
 (namespace ((package (string 2))))
 (ns_set ())
 (multiname (((namespace 1) (string 3))))))
 (method (((return_type (multiname 0)) (param_type ())
 (name (string 1)) (flags 0) (options ()) (param_names ()))))
 (metadata ())
 (instance ())
 (class ())
 (script (((init (method 0)) (trait ()))))
 (method_body
 (((method 0) (max_stack 2) (local_count 1)
 (init_scope_depth 0) (max_scope_depth 1)
 (code
 ((getlocal 0)
 (pushscope)
 (findpropstrict (multiname 1))
 (pushstring (string 4))
 (callproperty (multiname 1) 1)
 (returnvoid)))
 (exception ())
 (trait ())))))

Using ASM-form, a compiler writer doesn't have to care about building a constant pool, or code hint

information (AVM2 requires a frame information like stack size and register size used in a code).

Background

One of goals of the STEPS project [3] and COLA programming language is to provide full control of

computer environment from application level to machine language level, so that users could

experiment and design their own programming language best fit to their task. It also will be used as a

basis of next generation of EToys programming environment for kids.

We chose Adobe Flash Player as one of platforms of the system because of its popularity and

usability. Using Flash's virtual machine on a web browser, we could deliver our programming

2 of 9

VPRI Memo M-2009-010

environment without concerning about installation or security issue.

AVM2 has some disadvantages compared to Java VM. AVM2 lacks multi task support, and its

dynamic dispatching function is relatively slow. But the startup speed and memory footage are good,

and these aspects are essential to casual users. Especially AVM2 will be good platform to implement

EToys.

ABCSX is designed to be a back end module for COLA, command line assembler / disassembler, and

a Scheme library. While it is a part of COLA/ABC compiler, it also can be used as a command line

tool to examine and debug ABC binary file.

Usage

Command line tool

A version of ABCSX is publicly available on the github repository [2]. It includes command line tools

run on PLT-Scheme. There are also example programs at examples/ directory. The assembler and

disassembler use same file format and the assembler asm.ss can read an output file generated by

disassembler dump.ss.

asm.ss filename.sx

Generate an ABC binary file from ASM-form or ABC-form. The output file name is

filename.sx.abc.

dump.ss [-abc] filename.abc

Disassemble an ABC binary file. The output is printed to stdout. If -abc option is specified,

ABC-form is chosen as output format.

runasm.sh filename.sx

Assemble ASM-form or ABC-form and execute it by avmshell. It requires avmshell installed.

Avmshell is included in Tamarin VM's source tree [4].

swf_abc.erl width height classname abcfile.abc

A helper program to generate a flash file from an abc file. It requires Erlang.

Function

(write-asm list port) procedure

Assemble ASM- or ABC-form to a binary stream.

(read-asm port) procedure

Disassemble a binary stream to ASM-form.

(from-asm list) procedure

Convert ASM-form to ABC-form. This is a part of process of assemble. Each literal value is

replaced to a reference, and a constant pool is created

3 of 9

VPRI Memo M-2009-010

(to-asm list) procedure

Convert ABC-form to ASM-form. This is a part of process of disassemble. Each constant

reference in the ABC-form is replaced to a literal value based on the constant pool.

Data Type

ABC's data is expressed as scheme expression in ABCSX. In ASM-form, data conversion has subtle

context dependency in code-subsection.

integer - An integer value in Scheme is converted to ABC integer value depend on the context.

int (s32) - In code-subsection, an integer is converted to a signed 32 bit integer if the

opcode requires integer e.g. pushint.

uint (u32) - In code-subsection, an integer is converted to a unsigned 32 bit integer if the

opcode requires integer e.g. pushuint.

u30 - An integer is converted to a unsigned 30 bit integer in ABC anywhere else.

double (d64) - A floating point number value is converted to a 64-bit double precision IEEE 754

value.

string - A string is converted a string value in ABC.

namespace - Some list expressions are converted to namespace values in ABC. The format is

(kind string). For example, (package "org.vpri") is converted to a package namespace

named "org.vpri".

Namespace - (ns string) is converted to Namespace

PackageNamespace - (package string) is converted to PackageNamespace

PackageInternalNs - (internal string) is converted to PackageInternalNs

ProtectedNamespace - (protected string) is converted to ProtectedNamespace

ExplicitNamespace - (explicit string) is converted to ExplicitNamespace

StaticProtectedNs - (static string) is converted to StaticProtectedNs

PrivateNs - (private string) is converted to PrivateNs

namespace set - A namespace set can not be described as a literal. Instead, it is declared in a

constant pool of ns_set-section at first, and be made reference by index e.g. (ns_set 1).

multiname - Some list expressions are converted to multiname (symbol) in ABC.

QName - (namespace string) is converted as QName e.g. ((package

"flash.display") "Sprite"))

RTQName - is not supported.

RTQNameL - is not supported.

Multiname - ((ns_set integer) string) is converted as a Multiname e.g. ((ns_set

1) "addChild")

MultinameL - is not supported.

Syntax

The syntax of ASM-form is explained. ABCSX uses same symbol names as "ActionScript Virtual

Machine 2 (AVM2) Overview" unless it is too strange. Especially, underline delimited names and

capital names are derived from the document.

4 of 9

VPRI Memo M-2009-010

ASM-form

(asm [ns_set-section] method-section [metadata-section] [instance-section] [class-

section] script-section)

ASM-form begins with a symbol asm, and contents are followed. ns_set-section, instance-section, and

class-section are optional.

ns_set-section

(ns_set (ns_set namespace ...) ...)

Ns_set-section will be a part of constant pool, and it is only necessary if namespace set is used in

other part of the ASM-form. You can not specify a namespace set directly as a literal, but you need to

define it in ns_set-section and point it with the index number.

Ns_set-section begins with a symbol ns_set and a list of ns_set_info is followed. A ns_set_info

begins with a symbol ns_set and it includes a list of namespaces. A namespace set is referred with

one-based index by other part. For example, the first namespace set is referred as (ns_set 1).

method-section

(method (signature-subsection code-subsection) ...)

Method-section includes a list of pairs of signature and code. A method is referred by zero-based

index. For example, the first method is referred as (method 0).

signature-subsection

(signature (return_type multiname) (param_type (multiname ...)) (name string) (flags

integer) (options (option...)) (param_names (multiname ...)))

Signature-subsection describes method's signature. If * is specified at the return_type. It is treated as

Any Type. A name entry is not used as a method name in a program. In a typical case, methods are

explicitly bound to named slots in initialization code at script-section or object constructor.

code-subsection

(code (instructions...))

Code subsection describes a sequence of instruction code of the method. A label is specified as a

symbol, and normal instruction is specified as a list as:

([offset-number] inst-name args ...)

offset-number is optional and used just as a place holder. It can be a integer or symbol _. ABCSX's

5 of 9

VPRI Memo M-2009-010

disassembler put a byte offset number at this place, but the assembler ignores it.

metadata-section

(metadata (metadata_info ...))

Metadata-section describes a list of metadata entries.

instance-section

(instance (((name multiname) (super_name multiname) (flags integer) (interface

(multiname ...)) (iinit method) (trait (trait_info ...)) ...)))

Instance-section describes a list of class definitions. Class members are defined by a list of trait_info.

class-section

(class (((cinit method) (trait (trait_info...))) ...))

Class-section describes a list of static members of class definition. The number of this list is same as

instance-section, and each entry of class-section corresponds to instance-section. A definition consists

of a class initializer and trait_info definitions.

script-section

(script (((init method) (trait (trait_info...))) ...))

Script-section defines a list of static functions. It is also used as a program's startup code. Once the

virtual machine reads a program, the last entry of script-section is invoked. Each entry consists of a

method reference and a list of trait_info. Trait_info is used as a function's environment.

trait_info

Trait_info defines a fixed property of an object, class, or method. ABCSX only supports Trait_Slot

and Trait_Class.

Trait_Slot

((kind slot) (name multiname) (slot_id integer) (type_name multiname) (vindex

integer) (vkind integer) (metadata (metadata_info...)))

Trait_Slot defines a named slot in the context.

Trait_Class

((kind class) (name multiname) (slot_id integer) (classi class) (metadata

6 of 9

VPRI Memo M-2009-010

(metadata_info...)))

Trait_Class defines a named slot with a class in the context.

metadata_info

((name string) (items (((key string) (value string)) ...)))

Metadata_info defines an entry including arbitrary key/value pairs.

Current Status

Currently, only major elements in AVM2 are implemented.

All primitive data types are implemented.

75 instructions (about a half of the whole instruction set) are implemented.

Only QName (Qualified Name) and Multiname (Multiple Namespace Name) are implemented.

Optional parameters or parameter names are not implemented.

Trait_Method, Trait_Getter, Trait_Setter, Trait_Function, or Trait_Const are not implemented.

Exception is not implemented.

Example

As a complete example, A GUI version of "Hello World!" program is shown with commentary. This

file is available at examples/textField.sx on the source tree.

(asm
 (ns_set
 ((ns_set (package "") (package "flash.text"))))

An ASM-form begins with a symbol asm, and a ns_set-section follows if necessary. This example

declare one namespace set including package namespaces "" and "flash.text" as (ns_set 1).

Ns_set's index number starts with 1 because this is a member of constant pool. Other kind of index

number (method, class) starts with 0.

 (method
 (((signature ((return_type *) (param_type ()) (name "")
 (flags 0) (options ()) (param_names ())))
 (code
 ((returnvoid))))

The first method is referred as (method 0). It is used as a class initializer in the class-section, but

nothing to do in this case.

 ((signature ((return_type *) (param_type ()) (name "")

7 of 9

VPRI Memo M-2009-010

 (flags 0) (options ()) (param_names ())))
 (code
 ((getlocal_0)
 (pushscope)
 (getlocal_0)
 (constructsuper 0)
 (findpropstrict ((ns_set 1) "TextField"))
 (constructprop ((package "flash.text") "TextField") 0)
 (coerce ((package "flash.text") "TextField"))
 (setlocal_1)
 (getlocal_1)
 (pushstring "Hello, World!")
 (setproperty ((package "") "text"))
 (findpropstrict ((package "") "addChild"))
 (getlocal_1)
 (callproperty ((package "") "addChild") 1)
 (pop)
 (returnvoid))))

The second method is later used in the instance-section as class Hello's constructor. It builds an

instance of flash.text.TextField and set "Hello, World!" to the property named text. Finally, the

text field is added to this (Hello) object.

 ((signature ((return_type *) (param_type ()) (name "")
 (flags 0) (options ()) (param_names ())))
 (code
 ((getlocal_0)
 (pushscope)
 (getscopeobject 0)
 (findpropstrict ((package "") "Object"))
 (getproperty ((package "") "Object"))
 (pushscope)
 (findpropstrict ((package "flash.display") "Sprite"))
 (getproperty ((package "flash.display") "Sprite"))
 (pushscope)
 (findpropstrict ((package "flash.display") "Sprite"))
 (getproperty ((package "flash.display") "Sprite"))
 (newclass 0)
 (popscope)
 (popscope)
 (initproperty ((package "") "Hello"))
 (returnvoid))))))

The third method is used as the startup script. It creates an environment and initialize a new class

defined in instance-section and class-section by newclass instruction.

 (instance
 (((name ((package "") "Hello"))
 (super_name ((package "flash.display") "Sprite"))
 (flags 0)
 (interface ())
 (iinit (method 1))
 (trait ()))))

8 of 9

VPRI Memo M-2009-010

 (class (((cinit (method 0)) (trait ()))))

Instance-section and class section define classes. In this case, A class named Hello is defined as a

subclass of flash.display.Sprite. When a SWF file is created from ABC file, a SymbolClass tag in

the SWF creates association between a class name defined here and the main timeline of the SWF. In

ABCSX tool set, script swf_abc.erl's third argument does this task.

 (script
 (((init (method 2))
 (trait
 (((kind class)
 (name ((package "") "Hello"))
 (slot_id 1)
 (classi (class 0))
 (metadata ()))))))))

Script-section defines the startup script and predefined named slot.

References

[1] ActionScript Virtual Machine 2 (AVM2) Overview. http://www.adobe.com/devnet

/actionscript/articles/avm2overview.pdf

[2] ABCSX github repository. http://github.com/propella/abcsx

[3] Steps Toward the Reinvention of Programming (First Year Progress Report).

http://www.vpri.org/pdf/tr2007008_steps.pdf

[4] Tamarin Project http://www.mozilla.org/projects/tamarin/

9 of 9

VPRI Memo M-2009-010

