
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

Research Summary: A Programming
Methodology and A Reliability Mechanism

Hesam Samimi

VPRI Memo M-2009-008

This material is based upon work supported in
part by the National Science Foundation under

Grant No. 0639876. Any opinions, findings, and

conclusions or recommendations expressed in

this material are those of the author(s) and do

not necessarily reflect the views of the
National Science Foundation.

Hesam Samimi
09/22/2009

Research Summary:
A Programming Methodology and A Reliability Mechanism

1. Programming as Planning

Programming tasks can be viewed from the AI viewpoint of automated planning. The meanings of
programs (the declarative part) are considered goals, and the implementations (the imperative part) are
actions that try to realize those goals. The planning problem is optimizable via heuristics that determine
the right action (or set of plausible ones) to take at any given step in the execution. Our old friend—
imperative program— is viewed as a fully optimized planning problem, where every action at every
step of the program is predetermined. Effectively, the normal execution of an imperative program is
traded for a higher level of control, which dynamically consults heuristics to determine the next
instruction, or explore multiple possibilities by means of exhaustive search. The approach suffers from
the overhead of a method call to determine the right dispatch at every step. On the other hand, it brings
about the interesting possibility of non-deterministic computation by listing multiple actions to explore.
Optimizations may be introduced to narrow down the possible actions to try at any given point, as well
as heuristics that describe the preferred order in which to explore those possibilities.

Programming as Planning

The main advantage is that existing programs can adapt the methodology without much effort. A
prototype extension of LLVM compiler was created that adapted the scheme to do optimal register
allocation, a task reducible to graph coloring and NP-complete. The resulting register allocator program
was substantially more compact and readable than the equivalent sections in the original C++ code.

Goal

Action

State

 Action
Optimization . . .

HeuristicsOptimization

 possible
actions & args

 > 1

Action
 (args)

Heuristic
 search

no yes optional
interactions

Methods

call

VPRI Memo M-2009-008

Goal
allocation [variables do:
 [:v | v isAssigned ifFalse: [^false]].
 ^true]
Goal Optimizations
allocation:optimization: [self haveRoomForNextVar ifTrue: [^#(assign:var:)].
 self spillRequired ifTrue: [^#(spill:)].
 ^#(split:to:)]
Goal Heuristics
allocation:heuristic: [^numSpills]
Actions
assign: reg var: var […]
split: from to: to […]
spill: var […]
Action Optimizations
assign:var:optimization: [^var = unAssignedVars first and:
 [reg = nextAvailableWithLength: var length]]

Summary of AllocatorX86.st:
Programming-as-Planning in an Allocator Smalltalk program

{ john-program }

start-world allocatorx86.

;; CLASSES
create Allocator unallocated-variables.
create Variable length live-ranges.
create Register next-right allocations.

;; QUALIFICATIONS
qualify Word repeatn: N [] if N = 0.
qualify Word repeatn: N (its repeatn: (N - 1)) + it.
qualify Variable live-range [its live-ranges first first / 2, its live-ranges first
second / 2]. ;; fixme
qualify Variable repeatn: N [] if N = 0.
qualify Variable repeatn: N (its repeatn: (N - 1)) + it.
qualify Variable repeatList it repeatn: (its live-range second - its live-range first).
qualify Allocator next-variable its unallocated-variables first.
qualify Allocator next-variable-start its next-variable live-range first.

qualify Allocator canAllocate: Variable if
 for any all Register do each canAllocate: Variable = yes.
qualify Register allocationWith: Variable
 its allocations to: (Variable live-range first - 1) +
 Variable repeatList + its allocations from: (Variable live-range last).
qualify Register canAllocate: Variable if
 (Variable length = 2 or

 (not its next-right = no and
 for every Variable live-range do its next-right allocations at: each = empty)) and

 for every Variable live-range do its allocations at: each = empty.

VPRI Memo M-2009-008

;; ACTIONS
action Allocator assign Register Variable consequence
 Register allocations = Register allocationWith: Variable and
 Register next-right allocations = (Register next-right) allocationWith: Variable if
Variable length = 4 and
 its unallocated-variables = its unallocated-variables rest.

rule Allocator assign is Register canAllocate: Variable = yes.

action Allocator split Register:RegisterFrom Register:RegisterTo consequence
 RegisterTo allocations = RegisterTo allocations to: (its next-variable-start - 2) +
 RegisterFrom allocations from: (its next-variable-start -
1) and
 RegisterFrom allocations = RegisterFrom allocations to: (its next-variable-start -
2) +
 empty repeatn: (RegisterFrom allocations size - (its
next-variable-start - 2)).
rule Allocator split is not RegisterFrom = RegisterTo.
rule Allocator split is not RegisterTo = RegisterFrom next-right.
rule Allocator split is not (RegisterFrom allocations at: (its next-variable-start)) =
empty.
rule Allocator split is RegisterFrom allocations at: (its next-variable-start) length = 2.
rule Allocator split is RegisterTo allocations at: (its next-variable-start - 2) = empty.

;; GOALS
goal Allocator allocation try its unallocated-variables size = 0.

;; OPTIMIZATIONS
action-optimization Allocator assign dynamically establish Variable = its next-variable.
action-optimization Allocator assign dynamically establish Variable length = 2 or not
Register next-right = no.
goal-optimization Allocator allocation use split if it canAllocate: (its next-variable) =
no.
goal-optimization Allocator allocation use assign if it canAllocate: (its next-variable) =
yes.

;; OBJECTS
for [["Va" name, 2, [[2, 22]]], ["VB" name, 4, [[6, 14]]], ["Vc" name, 2, [[
10, 18]]], ["Vd" name, 2, [[14, 22]]], ["VE" name, 4, [[18, 22]]]] do make
Variable (each first) (each second) (each third).
for [["R1" name, "R2" name], ["R2" name, no], ["R3" name, "R4" name], ["R4" name, no]] do
make Register (each first) (each second) (empty repeatn: 12).
make Allocator Al (all Variable).

Al satisfy allocation.

end-world.
The Allocator program written in planning language JOHN

VPRI Memo M-2009-008

2. Executable Specifications

Our study shows formal specifications can realize an instance of Marvin Minsky's B brains visions.
He proposed a system with multilevel control logic, where the higher levels, say B brain, may take over
the control, or affect the execution of the normal logic, the A brain. One can view meanings and
specifications as B brains, and normal implementations as A brains. We observed three scenarios
where the declarative specifications may want to take over the implementations 1. Accidentally due to
a run time error 2. Accidentally due to the implementations failing to satisfy the specifications (post-
conditions) 3. Intentionally where implementations explicitly yield the control to the specifications to
save lines of code, avoid complex corner cases, etc.

 A brain: Implementation
 B brain: Specifications

Three scenarios for implementation to specifications fallback

The specifications, which cover global class invariants as well as post-conditions for methods, are
usually expressed in high level syntax involving first-order logic expressions. It is desirable for the
specifications to be written in same language as the rest of the program, so that they can be run and
tested like normal methods. Thus syntactic sugars may be supported for these expressions, including
quantified expressions, as well as field closures useful for recursive data structures. But support for
high-level expressions in the specifications is not just a matter of providing more readable and
mathematical formed code. Such expressions carry the semantics necessary to enable translating them
into formulas in the syntax of constraint solvers. In the event of a fallback to meanings, we use external
constraint solvers to extract a satisfying model to the problem expressed in the specifications and apply
the model to the object.

A Binary Search Tree program is shown below with insert and delete methods in the Java language
extended with the high-level function methods. The two operations are fully runnable without any
implementations, only relying on the specifications accompanying them denoted with the ensures
keyword. The .^ and .* symbols denote reflexive and non-reflexive field closures and .< is a map field-
get over a set of objects.

 A B

goal state

start
state

 error
thrown

 A B

violating
 state

 A B

VPRI Memo M-2009-008

public class BSTree
 ensures isAcyclic() && oneParent() && isValidBinarySearch()
{
 …
 function public ESJSet<Node> nodes() { root.*(left+right) }
 function public ESJSet<Integer> nodeValues() { this.nodes().<value }
 function public boolean isAcyclic() { no Node n | n.descendants().contains(n) }
 function public boolean oneParent() {

(root == null) ?
 true :
 all Node n : this.root.^(left+right) | one Node p | n.parent == p
 }
 function public boolean isValidBinarySearch() {
 all Node n |
 ((n.left == null || all Node lc : n.left.*(left+right) | lc.value < n.value) &&
 (n.right == null || all Node rc : n.right.*(left+right) | rc.value > n.value))
 }
 public void insert(Node insertedNode)

modifies BSTree.root, Node.left, Node.right, Node.parent
ensures this.nodes().equals(this.old.nodes().union(insertedNode)) {
// no implementation...

 }
 public void delete(Integer key)

modifies BSTree.root, Node.left, Node.right, Node.parent
ensures this.nodeValues().equals(this.old.nodeValues().minus(key)) {
// no implementation...

 }
A fully runnable Binary search tree program with insert and delete

operations, only relying on specifications

VPRI Memo M-2009-008

