
Viewpoints Research Institute, 1209 Grand Central Avenue, Glendale, CA 91201 t: (818) 332-3001 f: (818) 244-9761

Quantum Object Dynamics

Ian Piumarta

VPRI Memo M-2009-002

This material is based upon work supported in
part by the National Science Foundation under

Grant No. 0639876. Any opinions, findings, and

conclusions or recommendations expressed in

this material are those of the author(s) and do

not necessarily reflect the views of the
National Science Foundation.

Quantum Object Dynamics

Ian Piumarta

21 September 2008
updated 27 September 2008
updated 15 January 2009

ian@vpri.org

Introduction

This memo suggests that many interesting organisations and behaviours are founded on a single primitive
operation: n-way associative lookup. An fast implementation of this primitive, in software or in hardware,
could be the basis of very efficient implementations of a wide and diverse range of programming language
semantics.

This suggestion could be argued top-down by chosing a range of interesting behaviours and organisations
and showing how they decompose into a single primitive, or bottom-up by showing how a single primitive
operation can be used alone or in recombination with itself to arrive incrementally at a number of familiar
(and widely-used) behaviours. Since the latter seems more open-ended (and since I’m a botom-up kind of
person) I chose that approach.

1 Proposition

The static and dynamic characteristics of a wide range of object models can be described as trivial parame-
terisations of a simple multi-way content-addressable memory.

2 An abstract model of memory

For clarity we introduce an artificial distinction between application and primitive mechanisms. Application
mechansism are the fundamental semantic operations needed to implement some programming system (in
Smalltalk we would identify dynamic binding as the critical semantic operation); they form the most essential
part of the programming model exposed to users of that system (even if not always made directly available
to those users). The primitive mechanism is the raw material used by the system implementor as a platform
on which to build the application semantics (in most Smalltalk implementations we would have to admit
that the primitive mechansims are memory allocation and base+offset addressing of that memory).

Our primitive mechanism provides a memory that is a map m associating one or more keys ki with a
value v.

m : K∗ → V

m[k1, ..., kn] = v

This memory supports two primitive operations, associative read and write.

m[k1, ..., kn] denotes the value in m associated with the keys ki

m[k1, ..., kn] ! v denotes in-place modification of m; subsequently m[k1, ..., kn] = v

(The notation m[k] is used instead of m(k) to remind us that m is not a function in the mathematical sense.)
The state of m is therefore relative to a particular time, the passage of which will be implied but not stated
in this discussion.1

1Object models in which time, versioning, causality, etc., are significant are far better described if their time component is
just another key, in the range of user-accessible values, rather than a fundamental property of the abstract model.

1

VPRI Memo M-2009-002

The domain K of keys and range V of values in m are the same. A distinguished value ε (the “undefined”
value) is initially associated with every possible combination of keys in m. If ε is used as a key, the associated
value is also ε (regardless of the other keys).

m[k1, ..., kn] = ε for any ki = ε

A simple model might signal a runtime error whenever an ε value is read.
Application mechanisms are presented as read and write operations on memory via the functions r and

w, respectively.

r : K∗ → V reads a value v in m associated with ki

w : K∗ × V → ε writes to m such that subsequently r(k) = v

For a given programming system we are therefore interested in defining its ‘characteristic’ functions r and w
of k in terms of the two primitive operations [] and []! on m. To see how this works, consider the simplest
possible object model: a flat address space...

3 Physical memory

Reading a memory address yields a value; writing a memory address updates its value. The functions r and
w are trivially defined as the two fundamental operations on m.2

r(k) = m[k]
w(k, v) = m[k] ! v

4 Various kinds of dictionary

Two addresses k1 and k2 are associated with each value.

r(k1, k2) = m[k1, k2]
w(k1, k2, v) = m[k1, k2] ! v

This describes arrays and traditional structures. (The latter are arrays whose indices are encodings of the
structure field names written by the programmer.) Furthermore, with suitable initialisation of k2 for each
k1 “created”, r and w implement virtual memory in which k1 is a segment identifier and k2 is an address
within k1. At sufficiently small granularity, k1 is an identifier for a strongly-encapsulated “object” and k2

a field designator within that object. (In other words, k1 identifies a “dictionary” object and k2 a “slot”
within that dictionary.)

Hardware implementations of this kind of memory (with bounded keys) have treated k1 as a base address,
k2 as an offset, and ε as an access violation. A more dynamic representation (such as an object or hash
table) would be appropriate if the keys k1 and/or k2 are potentially unbounded (generated arbitrarily by
the running program, for example).

5 Recursively-defined semantics

Instead of signalling an error (or being converted to some default application value) we will let reading ε
from m cause the read operation to be restarted with the original keys transformed by a set of functions βi.

r(k1, k2) =
{

m[k1, k2] for m[k1, k2] #= ε
r(β1(k1), β2(k2)) for m[k1, k2] = ε

2In a w-bit computer (with no memory paging or segmentation) we might have K = {n ∈ N0 | 0 ≤ n < 2w }. This vastly
underutlises the power of the primitive mechanism, but would work.

2

VPRI Memo M-2009-002

In other worlds, the β functions repeatedly transform the combination of keys ki to find an associated non-ε
value in m.

Let σ denote a particular well-known key, distinct from any other application key. One useful set of
β-transformations is

β1(k) = m[k,σ]
β2(k) = k

that, when substituted back into r, yield

r(k1, k2) =
{

m[k1, k2] for m[k1, k2] #= ε
r(m[k1, σ], k2) for m[k1, k2] = ε

which delegates the lookup of the “slot” k2 within the “object” k1 to the object stored as the value of the σ
slot in k1, whenever k1 has no k2 slot of its own. In the case that k2 is being used as a message name then
the above describes the dynamic binding part of the method lookup operation in delegation-based message
passing.

Expressing this delegation as a pair of β transformations on keys in an associative memory emphasizes a
fundamental symmetry of the delegation mechanism that is ignored by most object-oriented programming
languages:

• if β1(k) = m[k,σ] and β2(k) = k then several different objects k1 delegate between themselves the
search for a non-ε value associated with a particular slot name k2;

• if β1(k) = k and β2(k) = m[k,σ] then several different slot names k2 delegate between themselves the
search for a non-ε value within a particular object k1.

Combining delegation along both of these “axes” within a two-dimensional delegation space k1×k2 provides
the basis for simple (but powerful) sharing and protection mechanisms.

The above β functions are “post-lookup” transformations. It is also useful to consider “pre-lookup”
transformations. Consider a set of functions αi that are applied to ki producing a transformed set of keys
to which r is then applied.

r(k1, k2) = r′(α1(k1), α2(k2))

r′(k1, k2) =
{

m[k1, k2] for m[k1, k2] #= ε
r′(β1(k1), β2(k2)) for m[k1, k2] = ε

Let τ denote a particular well-known key, distinct from any other application key. One useful set of
α-transformations is

α1(k) = m[k,τ]
α2(k) = k

that, when substituted back into r (keeping the β-transformations of the delegation example), yield

r(k1, k2) = r′(m[k1, τ], k2)

r′(k1, k2) =
{

m[k1, k2] for m[k1, k2] #= ε
r′(m[k1, σ], k2) for m[k1, k2] = ε

which uses some “property” τ of an object k1 as the starting point for the previous example’s lookup
(following a “chain” of σ slots). Put another way, if k2 is interpreted as a message name then τ is the “type”
of an object (grouping related objects into a family) and σ the “supertype” of a type. In other words

n = 2
α1(k) = m[k,τ]
β1(k) = m[k,σ]

3

VPRI Memo M-2009-002

is the dynamic binding mechanism for a class-based object system with inheritance.3

6 Keys are meta-taxonomic dimensions

Each particular well-known key, along with its recursive β- and α-transformations, can generate a taxonomy
within which objects in the memory can be organised. In the above examples, applied to a Smalltalk-like
system, τ is an object’s class pointer and σ is a (meta)class’ superclass pointer (both of which are hierarchical
taxonomies). Each is associated with a different concrete key, but both exist in the same dimension (are
used in the same position ki, where i = 2 in this case).

Each additional key position (gained by increasing n by 1, for example) creates a new “dimension” or
“taxonomic space” in which any number of new taxonomies can be created. These new taxonomies will all
be orthogonal to (and completely independent from) those in other key positions (even if they share the
same concrete keys).

Continuing with the delegation example, increasing n to 3 (adding the key k3)

r(k1, k2, k3) =
{

m[k1, k2, k3] for m[k1, k2, k3] #= ε
r(m[k1, σ], k2, k3) for m[k1, k2, k3] = ε

gives us multiple (disjoint) perspectives on objects, each associated with a particular concrete k3, with dele-
gation occuring between objects only within a single perspective. In effect, k3 is a ‘namespace’ constraining
both the content of, and the extent of the taxonomies defined by concrete keys and their β functions between,
objects ‘residing’ within it.

If we have a namespace ω in which global relationships are expressed and let

β3(k) = m[k, σ,ω]

then perspectives (the k3 keys) on a given object will delegate to each other (via their σ slot).
The occurrence of ε in m can be used to terminate delegation (or other recursive relationships) in multiple

dimensions. Introducing distinct versions of r (one ri for each dimension i in which delegation occurs) lets
us choose the precedence of axes in the n-dimensional delegation space. For example,

r(k1, k2, k3) =
{

r1(k1, k2, k3) for r1(k1, k2, k3) #= ε
r1(k1, k2, m[k3, σ]) otherwise

r1(k1, k2, k3) =
{

m[k1, k2, k3] for m[k1, k2, k3] #= ε
r1(m[k1, σ], k2, k3) otherwise

delegates first between objects k1 within a single perspective k3 and then between perspectives k3 on the
original object, whereas

r(k1, k2, k3) =
{

r3(k1, k2, k3) for r3(k1, k2, k3) #= ε
r3(m[k1, σ], k2, k3) otherwise

r3(k1, k2, k3) =
{

m[k1, k2, k3] for m[k1, k2, k3] #= ε
r3(k1, k2, m[k3, σ]) otherwise

delegates first between perspectives k3 on a single object k1 and then between distinct objects k1 in the
original perspective k3.

One final example (among many): if we let v range over methods of arity n within a memory indexed
by k1, ...kn, then the above model (with appropriate α- and β-transformations) can easily describe binding
mechanisms for multimethod (generic function) dispatch.

3Of course, not all the complexity is contained within the three lines that characterise the mechanism. For example, they
only tell you some of what you need to know to be able to create the initial class hierarchy, install new methods in classes, or
implement a ClassBuilder in Smalltalk.

4

VPRI Memo M-2009-002

7 The function w and its transformations

These are constructed in exactly the same manner as for the function r, with the same possibilities for pre-
and post-transformations and for recursive recombination, in the obvious manner.

The simplest useful definition of the application write function

w(ki, ..., kn, v) = m[ki, ..., kn] ! v

introduces new keys into m directly with no attempt to reason about “where” the new value v should be
“placed” within any taxonomies defined by r. In the same manner as was done for r, pre-transformations
γi and post-transformations δi can be introduced.

w(k1, ..., kn) = w′(γ1(k1), ...,γ n(kn))

w′(k1, ..., kn) =
{

w′(δ1(k1), ...,δ n(kn)) for some condition involving ε, r,α i, βi, γi, δi

m[k1, ..., kn] ! v otherwise

It is worthwhile to note that this “simplest useful” definition of w is almost always the most appropriate.
(For the inheritance and delegation mechanisms described above it is precisely what is wanted.) More exotic
constructions for w would be identical in nature to those already examined for the function r.

8 Unification

The primitive read and write operations on m can be unified into a single operation. To write a value v, a
statement

m[k1, ..., kn, v]

is made about its presence within the memory. (If v = ε the value is “deleted”.) Unifying a single variable
v within a similar statement

m[k1, ..., kn, v]

retrieves a value. It is trivial to rephrase this entire memo using the above formulation.
This simplifiction suggests a very powerful extension that would allow the ‘unified’ variable(s) to appear

in any key position, not just the last—true content-addressibility. The primitive mechansim is now directly
applicable to the semantics of local operations of relational languages.4 (Generalised support for publish-
subscribe would then require ‘just’ the addition of a global notification mechanism. One possibility might
be ‘future unification’ where a process blocks until a non-ε value becomes available for each unified variable
in a statement.)

Such extensions are not without practical and philosophical costs (far beyond the already considerable
implementation challenges presented by the basic primitive mechanism).

9 Practical considerations

Some of the application-level models of organisation and dynamic behaviour described in this memo are
trivial to implement on (or are intrinsic to) current computer hardware. All of them are trivial to implement
given the primitive [] and []! operators. Furthermore, if these implementations are efficient then the resulting
programming system will be efficient, with complexity increasing commensurately (in the absolute worst case
exponentially) with n.

Software implementations for all of the models/behaviours presented for are common for n = 2, and can
be made very efficient (through various caching techniques) for αi that map many objects onto a much smaller

4Looking at it from the other direction: an efficient relational language is sufficient to implement all of the mechanisms
described in this memo.

5

VPRI Memo M-2009-002

set of object families. Hash tables work well for ‘singleton’ associations where n = 2 and alpha(k) = k, but
already present problems of garbage collection: values should be deleted from m when either k1 or k2 becomes
unreachable, but it is usual to consider only k1. The problem becomes increasingly difficult as generality is
preserved while n grows beyond 2, where unreachability of any given key k must imply deletion of all values
for which some ki = k (for any i : 0 ≤ i < n). It seems clear that some cooperation between the primitive
mechanism and end-user storage management collector is required, since the latter almost certainly places
implicit constraints on the combinations of values stored in the memory that would simplify (or even make
possible) primitive storage management.

In some models the storage management should participate in simplifying end-user structures when keys
vanish. For example, given three keys ka, kb and kc for which a model defines a β(k) as

β1(k) = m[k,σ] such that
m[ka, σ] = kb and
m[kb, σ] = kc

then the unreachability of kb (which occurs between ka and kc in a transitive relationship) should cause all
values in m associated with kb to be re-associated with ka, and the relationship between the keys simplified
to

m[ka, σ] = kc

Hardware support for large memories with unconstrained (or a relatively large limit on) n would enable
efficient implementations of a wide variety of interesting object models, both commonly used and many yet
to be imagined. I am not a hardware expert, but I believe that current virtual memory hardware is not far
from being useful (if it could be scaled) for this purpose.

10 Conclusion

This memo is an attempt to stimulate thinking about how a very simple pair of primitive operations (that
should be efficiently realisable in sufficiently parallel hardware) can scale to (and adequately implement with
trivial additional work) the complex structures and behaviours we struggle to implement in object-oriented,
functional and relational systems.

I hope it also managed to demonstrate that many apparently very different and interesting organisations
and behaviours are in fact closely related as slight variations within a general parameterisable n-way asso-
ciative memory. (A suitably bored CS student could probably, in short order, characterise the fundamental
operations in dozens of seemingly disparate languages in terms of simple β and α functions.)

I have no idea what hardware support can be easily made for the primitive operators within familiar
architectural components (such as virtual memory). I do know that an efficient software implementation,
capable of scaling to billions of entries, would make a great thesis. The big challenges are not necessarily
to be found in the primitive operators, but rather in the associated manangement—garbage collection in
particular.

I believe that a hardware company wondering how software will ever be able to make good use of
their trillion (and growing) transistors per die should look seriously at massively parallel support for n-way
associative memory. While it may be only marginally useful as a raw programming model, a hardware
scheme providing the two operators described in this memo would clearly make a huge difference in the
implementation of many popular dynamic languages.

6

VPRI Memo M-2009-002

