
Kanto: A Multi-participant Screen-Sharing System for
Etoys, Snap!, and GP

Yoshiki Ohshima
Human Advancement Research

Commumity/Y Combinator Research
Japan

yoshiki.ohshima@acm.org

Bert Freudenberg
Human Advancement Research

Commumity/Y Combinator Research
Germany

bert@freudenbergs.de

Dan Amelang
Viewpoints Research Institute

USA
daniel.amelang@gmail.com

Abstract
This paper demonstrates an implementation strategy for
a general real-time remote collaboration framework called
Kanto. Kanto is a web-based library that provides screen
sharing, voice chat and bi-directional user interaction among
participants over the Internet. The generality of Kanto’s
design makes it straightforward to add its facilities to the
programming systems Squeak Etoys, Snap! and GP with
little modification to those systems. Because Kanto is web-
based, no additional software installation is required on the
computers that use it.

Kanto takes advantage of the WebRTC framework, which
supports peer-to-peer video, voice and other data transmis-
sion. One insight is that if an application uses a single HTML
canvas to render all graphics, we can simply stream the
contents of the canvas to other hosts to do screen sharing.
Luckily, the above-mentioned blocks-based programming
languages follow this single-canvas implementation strategy,
which is influenced by Smalltalk.

Kanto embodies a particular set of choices within the vast
design space of collaboration systems. For example, Kanto
maintains its application state by designating one node as the
state holder, and streaming just that node’s display contents
to the other nodes. This simplifies the implementation, but
for a remote user introduces a delay between an action and
its corresponding display update. In our experience the speed
of response is acceptable even at intercontinental distances,
but below we discuss alternative designs that would avoid
this issue.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PX/17.2, October 22, 2017, Vancouver, BC, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5522-3/17/10. . . $15.00
https://doi.org/10.1145/3167106

The system can be tested by visiting https://tinlizzie.org:
8080/snap/learner.html in one Google Chrome tab, then
https://tinlizzie.org:8080/snap/teacher.html in another.

CCS Concepts • Applied computing → Collaborative
learning; • Information systems → Web conferencing; •
Software and its engineering → Visual languages;

Keywords Blocks-based languages, Collaboration
ACM Reference Format:
Yoshiki Ohshima, Bert Freudenberg, and Dan Amelang. 2017. Kanto:
A Multi-participant Screen-Sharing System for Etoys, Snap!, and
GP. In Proceedings of 3rd ACM SIGPLAN International Workshop
on Programming Experience (PX/17.2). ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3167106

1 Introduction
As our devices become increasingly connected on the Inter-
net, we anticipate that learning activities on computers will
become more and more social, including remote collabora-
tion between teachers and learners. This is already seen in
the Scratch community, where children ask each other for
suggestions and help in the text-based online forums.
When a learner is learning how to program in a visual

environment, it is often difficult to provide guidance by text,
or voice, because these are somewhat indirect. It is certainly
more difficult than the situation where a tutor is sitting next
to the learner, being able to point on the screen and explain
things in person. A general video chat system such as Skype
or Google Hangouts still falls short, as the tutor cannot point
and actually demonstrate how to use the programming sys-
tem.
From this observation we decided to create a web-based

library that adds real-time collaboration features to blocks-
based programming systems. We named the library Kanto,
following the tradition of using the name of a large, flat
region, such as Kansas [15] or Nebraska [4].

Kanto was originally created for the Etoys programming
system running on top of SqueakJS [9][6]. However, its de-
sign does not depend on Etoys, so we were able to add
collaboration features to two more programming systems,
Snap! [3] and GP [10], with little modification to them.

Kanto adds screen sharing, voice conversation, and simul-
taneous user interaction to existing programming systems.

https://doi.org/10.1145/3167106
https://tinlizzie.org:8080/snap/learner.html
https://tinlizzie.org:8080/snap/learner.html
https://tinlizzie.org:8080/snap/teacher.html
https://doi.org/10.1145/3167106

PX/17.2, October 22, 2017, Vancouver, BC, Canada Yoshiki Ohshima, Bert Freudenberg, and Dan Amelang

We use theWebRTCmechanism to enable peer-to-peer trans-
mission of video, audio and user events (i.e., mouse pointer
and keyboard interaction) among participating nodes.
For sharing graphics, Kanto takes advantage of the fact

that these systems, Etoys on SqueakJS, Snap!, and the web
version of GP, follow a tradition that is influenced by
Smalltalk: the systems use a single HTML canvas element,
and render all user interface details for themselves. Because
WebRTC in modern browsers can stream the content out of a
canvas, we can use the feature to stream the entire graphics
of such an application. The audio content can be captured by
the browser’s getUserMedia() feature, and the user events
are encoded into binary data.
There are some modifications needed to these program-

ming environments to support multiple “hands”, or objects
that stand in for user interaction. See some more details in
the implementation section.
The intended use case of Kanto is as follows: there is a

“learner”, who is trying to learn programming, or the inter-
face of a programming system. When the learner feels in
need of help, he or she can solicit a teacher to join the session
as a remote collaborator and tutor.

The most important mode of collaboration we would like
to support is that the teacher should be able to show how
to perform a certain task by pointing the location, talking
what to do, and sometimes actually demonstrating. For this
reason, typical desktop sharing applications, such as Skype
and Google Hangouts don’t fulfill our need.
The network topology used in implementing the system

is asymmetric: the host session is the one running in the
learner’s browser tab, while teacher’s browser shows an
HTML video element that is receiving the streamed video
from the learner. User interaction, such as mouse pointer
and keyboard events on the teacher’s tab have to be trans-
mitted to the learner to take effects, and then the resulting
screen has to be transmitted back to the teacher, so there is
a noticeable lag. However, with sessions across the Atlantic,
we managed to maintain a real time interactive session. from
our experience, we conclude that the system is usable.

2 A Typical Use Case
Figure 1 depicts a typical session. In the figure, time flows
towards the right. The top row shows the learner’s screen
and the bottom row the teacher’s.
At step 1, the learner visits the programming system

page (the address is shown in the browser’s address bar as
learner.html). At step 2, the page is loaded but the server
adds a short random number to the URL (in this example,
#7071) as a session identifier.

The learner attempts a programming task but encountered
some difficulty (at step 3). In the current implementation,
the learner would then ask a teacher, with an out-of-band
communication, to join the session.

At step 4, the teacher requests the teacher-side web page,
adding the session ID (in this example, teacher.html#7071);
the web page then loads (step 5). Unlike the learner’s page,
the teacher’s page has an HTML video element to receive
the video stream from the learner’s page. At the same time,
the server mediates in establishing a WebRTC connection
between the learner and the teacher using the Interactive
Connectivity Establishment (ICE [13]) protocol (step 6). The
ICE information is exchanged over WebSocket connections
between clients and the server.
Once the connection is established, the contents of the

HTML canvas element in the learner’s page are streamed
to the teacher (step 7), and the session carries on without
requiring further intervention from the server. Step 8 shows
the flow of a user event from the teacher to the learner, and
step 9 shows further video update to the teacher from the
learner.

Kanto allows more than one teacher to join the same ses-
sion. In that case, each participant sends audio data to all
others, while user events are still only sent to the learner’s
computer, and video is only sent from the learner’s.

3 Implementation
The Kanto library is written in about 1,000 lines of JavaScript
code. The general structure for discovering peers and estab-
lishing connection follows the standard tutorial and sample
implementation found on Google’sWebRTC tutorial site [11].
In other words, we did not have to devise all lines from
scratch but merely adapted an existing code base for our
purpose.
There is a server that handles the peer discovery. The

server keeps track of connected sessions and exchanging
the ICE protocol information over WebSocket among the
learner and the teachers sessions. It is also based on the
sample implementation, and written in about 300 lines of
JavaScript.
There are some modifications needed to these program-

ming environments to support multiple “hands” Etoys al-
ready has multiple-hand support in its Nebraska [4] screen-
sharing subsystem. Because of this, we only needed to adapt
its encoding and decoding of user events. We modified Snap!
to support multiple hands. It involved the core part of Mor-
phic JS as well as some parts of Snap! that embodied assump-
tions about the number of hands, such as the highlight in
block editing. GP so far has not been changed to support mul-
tiple hands, yet Kanto allows the position of remote users’
cursors to be visualized.

The code is available at:
https://github.com/yoshikiohshima/WebRTC-Events.

4 Related Work
Supporting collaboration through computers is a holy grail
of computing. We can trace the idea back to Engelbart’s Big

https://github.com/yoshikiohshima/WebRTC-Events

Kanto: A Multi-participant Screen-Sharing System for ... PX/17.2, October 22, 2017, Vancouver, BC, Canada

Figure 1. An illustration of typical user case. The time goes to right, and the top row shows the learner’s situation while the
bottom row shows a teacher’s.

Demo on NLS [2]. NLS included on-screen video stream of
one’s collaborator, and multiple mouse pointers controlled
by the respective users. In the “Big Demo”, the users (Doug
Engelbart and Bill Paxton) were collaborating in real time to
navigate the structured and hyper-linked files.
The Self system supported multi-user collaboration [15].

The subsystem for Self was called Kansas, where each par-
ticipant can view a part of a large virtual 2D space, using
facilities for panning and zooming. When the views of mul-
tiple users overlap, those users can collaboratively work on
objects in the overlapping area. When users wish to work on
objects in private, they simply make their views not overlap
with others’. While the idea of multiple users working in
the same space is now supported in Google Docs and has
become a common practice for editing documents, collabo-
rative programming in this form has not been fully realized,
even 20 years after the Kansas research.
The Squeak Etoys system draws upon Kansas with its

own collaboration subsystem called Nebraska [4]. Nebraska,
while named as an obvious homage to the Kansas system,
does not support the pan and zoom model. The interaction
design of Nebraska is based on the idea of a teacher be-
ing invited to a learner’s session, with a mechanism called
“badges” that is used as the contact list of helpers. Kanto’s
idea of inviting teachers draws upon this.
NetsBlox [1] is a collaboration environment for Snap!.

NetsBlox adds RPC and broadcast-based network features
to Snap!, as well as sending block editing commands to the
remote nodes. Unlike Kanto, which just streams video, Nets-
Blox has a more sophisticated collaboration model, and is
thusmore efficient and robust. But it required deeper changes
to the existing Snap! implementation. In addition, as of writ-
ing, NetsBlox does not support multiple hands.

VNC [12] is an OS-level screen-sharing system. It is gen-
eral in the sense that any application (or the entire OS dis-
play) can be shared. But it has some disadvantages. One is
that only some operating systems have VNC built in; for oth-
ers, the users must install the VNC software for themselves.
Another is that customizations such as specifying a different
cursor shape for a remote hand are not possible. Lastly, audio
communication (for voice chat) is not supported by VNC.

Croquet [14] offers a collaborative environment that uses
a sophisticated network model based on the concept of “repli-
cated computation”. In Croquet, all participating nodes hold
identical state. Each node sends user events to a small server
called the router, and the router sends properly sequenced
user events back to all participants. The system is designed so
that such this event distribution causes identical computation
on the participating nodes, thus maintaining consistency.
Lively Web is a system to support live development on

the Web [8][7]. While the sytems has deep root in Smalltalk,
the graphics model uses HTML DOM objects as morphs, and
our approach cannot be applied. On the other hand, it has its
own session to sessionn communication framework (called
Lively to Lively), and there were some attempts to create a
collaborative environment for Lively.
For document editing, Google Docs uses the concept of

“Differential Synchronization” [5]. This too is a sophisticated
and robust mechanism, that ensures eventual convergence
of remote sites even when occasional errors occur. But for a
live programming environment, care must be taken so that
execution does not diverge on different nodes.

Skype, Google Hangouts, and other similar conferencing
technologies offer real-time collaboration with screen shar-
ing and voice chat. They are robust, but they do not support
transmission of user interaction, such as mouse pointer and

PX/17.2, October 22, 2017, Vancouver, BC, Canada Yoshiki Ohshima, Bert Freudenberg, and Dan Amelang

keyboard events. Trying to tell someone over Skype which
button to click, for example, can be a frustrating conversa-
tion. If Skype were to offer a remote hand feature, it would
be very useful.

5 Discussion
We think that the strength of Kanto is the balance between its
simple implementation and the benefit it provides to multiple
applications. Kanto requires minimum changes to an appli-
cation to get a simple collaboration started, as long as the
application’s graphics are rendered on a single HTML canvas.
Only transmitting higher-level events, as done in Croquet,
NetsBlox and Google Docs, gives better performance, but
would require deeper changes.

One strength of NetsBlox and Google Docs is that general
support for undo is available thanks to the mechanisms for
coordinating user events. Kanto only relies onwhat is already
implemented in the application, so providing undo on a per-
user basis would require further changes to the application.
Also, when the application does not use a single canvas but
multiple DOM elements for its UI, Kanto cannot support
video transmission.

In the future, we hope that operating systems will provide
native support for collaboration. Once that happens, groups
of users will be able to customize their collaborative work;
groups of programmers will be able to customize their pro-
gramming experience. What is holding us back today may be
a lack of will among OS developers to consider collaboration
as a fundamental need.

6 Conclusion
This paper describes a WebRTC-based collaboration frame-
work called Kanto for augmenting existing web-based ap-
plications with real-time collaboration features. Because it
is built on web technology, it does not require additional
software installation. We have shown that the framework is
general enough for us to add collaboration features to three
programming environments, with little modification to these
environments required.

We are aware of more sophisticated implementation strate-
gies that can deliver greater efficiency but would require
deeper modification of the applications. We believe that
Kanto represents a useful point in the design space of collab-
orative environments.

Acknowledgments
The authors would like to thank the colleagues at YCR and
Viewpoints Research Institute: especially Aran Lunzer for
valuable suggestions on the structure of the paper, and John
Maloney and JensMönig formaking GP and Snap! and giving
us encouragement.

References
[1] Brian Broll, Akos Lédeczi, Peter Volgyesi, Janos Sallai, Miklos Maroti,

Alexia Carrillo, Stephanie L. Weeden-Wright, Chris Vanags, Joshua D.
Swartz, and Melvin Lu. 2017. A Visual Programming Environment for
Learning Distributed Programming. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’17). ACM, New York, NY, USA, 81–86. https://doi.org/10.1145/3017680.
3017741

[2] Douglas C. Engelbart and William K. English. 1968. A Research Center
for Augmenting Human Intellect. In Proceedings of the December 9-11,
1968, Fall Joint Computer Conference, Part I (AFIPS ’68 (Fall, part I)).
ACM, New York, NY, USA, 395–410. https://doi.org/10.1145/1476589.
1476645

[3] Jens Mönig et al. 2017. Snap! (2017). Retrieved Aug 1, 2017 from
http://snap.berkeley.edu

[4] Lex Spoon et al. 1999. Nebraska. (1999). http://wiki.squeak.org/
squeak/1356.

[5] Neil Fraser. 2009. Differential Synchronization. In Proceedings of the
9th ACM Symposium on Document Engineering (DocEng ’09). ACM,
New York, NY, USA, 13–20. https://doi.org/10.1145/1600193.1600198

[6] Bert Freudenberg, Dan H.H. Ingalls, Tim Felgentreff, Tobias Pape, and
Robert Hirschfeld. 2014. SqueakJS: A Modern and Practical Smalltalk
That Runs in Any Browser. SIGPLAN Not. 50, 2 (Oct. 2014), 57–66.
https://doi.org/10.1145/2775052.2661100

[7] Daniel Ingalls, Tim Felgentreff, Robert Hirschfeld, Robert Krahn, Jens
Lincke, Marko Röder, Antero Taivalsaari, and Tommi Mikkonen. 2016.
A World of Active Objects for Work and Play: The First Ten Years
of Lively. In Proceedings of the 2016 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward! 2016). ACM, New York, NY, USA, 238–249. https:
//doi.org/10.1145/2986012.2986029

[8] Dan Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and
Tommi Mikkonen. [n. d.]. The Lively Kernel – A Self-Supporting Sys-
tem on a Web Page. In Proceedings of the Workshop on Self-Sfustaining
Systems (LNCS 5146). Springer, 31–50.

[9] Alan Kay, Kim Rose, Dan Ingalls, Ted Kaehler, John Maloney, and Scott
Wallace. 1997. Etoys & SimStories. (February 1997). ImagiLearning
Internal Document.

[10] John Maloney, Jens Mönig, and Yoshiki Ohshima. 2017. GP: A general-
purpose blocks programming language. (2017). Retrieved Aug 1, 2017
from http://gpblocks.org

[11] The WebRTC Project. [n. d.]. Real time communication with WebRTC.
([n. d.]). Retrieved Aug 1, 2017 from https://codelabs.developers.
google.com/codelabs/webrtc-web/

[12] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and
Andy Hopper. 1998. Virtual Network Computing. IEEE Internet Com-
puting 2, 1 (Jan. 1998), 33–38. https://doi.org/10.1109/4236.656066

[13] J. Rosenberg. 2010. Interactive Connectivity Establishment (ICE): A Proto-
col for Network Address Translator (NAT) Traversal for Offer/Answer Pro-
tocols. RFC 5245. RFC Editor. http://www.rfc-editor.org/rfc/rfc5245.txt
http://www.rfc-editor.org/rfc/rfc5245.txt.

[14] David A. Smith, Alan Kay, Andreas Raab, and David P. Reed. 2003.
Croquet - A Collaboration System Architecture. Creating, Connect-
ing and Collaborating through Computing, International Conference on
(2003), 2–9.

[15] Randall B. Smith, Mario Wolczko, and David Ungar. 1997. From Kansas
to Oz: Collaborative Debugging when a Shared World Breaks. Com-
mun. ACM 40, 4 (April 1997), 72–78. https://doi.org/10.1145/248448.
248461

https://doi.org/10.1145/3017680.3017741
https://doi.org/10.1145/3017680.3017741
https://doi.org/10.1145/1476589.1476645
https://doi.org/10.1145/1476589.1476645
http://snap.berkeley.edu
http://wiki.squeak.org/squeak/1356
http://wiki.squeak.org/squeak/1356
https://doi.org/10.1145/1600193.1600198
https://doi.org/10.1145/2775052.2661100
https://doi.org/10.1145/2986012.2986029
https://doi.org/10.1145/2986012.2986029
http://gpblocks.org
https://codelabs.developers.google.com/codelabs/webrtc-web/
https://codelabs.developers.google.com/codelabs/webrtc-web/
https://doi.org/10.1109/4236.656066
http://www.rfc-editor.org/rfc/rfc5245.txt
http://www.rfc-editor.org/rfc/rfc5245.txt
https://doi.org/10.1145/248448.248461
https://doi.org/10.1145/248448.248461

	Abstract
	1 Introduction
	2 A Typical Use Case
	3 Implementation
	4 Related Work
	5 Discussion
	6 Conclusion
	References

