Live Programming and Text Editor Integration in the Croquet
Microverse 3D Collaborative Construction System

Yoshiki Ohshima
Croquet Corporation,
Shizuoka University
Los Angeles, CA, USA
yoshiki@croquet.io

Brian Upton
Croquet Corporation
Los Angeles, CA, USA
brian@croquet.io

ABSTRACT

This paper describes a web-based virtual 3D multiuser construction
environment that supports a practical live-programming mecha-
nism usable by professional programmers.

Developing a 3D collaborative application is time consuming.
On each change of the application code, you need to load a new
build onto all participants’ machines, re-establish a situation that
you were trying to affect, then perform an action to see whether
the change has had the intended impact.

We have designed and created a full-stack software architecture
to enable live programming in a 3D multiuser application called
Croquet Microverse. The most notable feature of Microverse is the
ability to integrate a regular text editor of the developer’s choice
into the real-time and collaborative live programming workflow,
implemented on a general purpose network infrastructure.

In this paper we explain the Croquet architecture and the Micro-
verse application and how its live programming feature works.

The standard version of Microverse is available at https://croquet.
io/microverse, and its source code is available on https://github.
com/croquet/microverse.

KEYWORDS

3D Application, Shared Experiences, Collaboration Application
Framework, Live Programming

1 INTRODUCTION

Building a 3D collaborative application is difficult and time con-
suming. Even when collaboration is not involved, making a 3D
application often requires arranging 3D models by modifying num-
bers in text, and then going through a laborious build process before
getting to see the results on screen. When writing and modifying
code for objects to respond to events, from the user or elsewhere,
your workflow involves getting the objects into a state where they
are ready for the events in question. Only then can you see if your
code change has had the desired effect.

It is even harder to make a collaborative application. If the action
you are writing requires multiple users to be in a certain state,
you need to install the new build to all participating computers. If
application code on the server is involved, you need to make sure
that that code is in sync with the clients’ code.

Aran Lunzer
Croquet Corporation
Los Angeles, CA, USA

aran@croquet.io

Vanessa Freudenberg
Croquet Corporation
Los Angeles, CA, USA
vanessa@croquet.io

David A. Smith
Croquet Corporation
Cary, NC, USA
david@croquet.io

On the other hand, imagine how simple it would be if a group
of colleagues could build an application in a “live” manner. Ideally
developers and designers can work together in the same shared
development session with a tight feedback loop. Each user would
have their own input devices and displays. And of course a user
should be able to join the session from anywhere on Earth, at any
time. The environment would be similar to popular collaboration
applications such as Figma and Google Docs; the difference is that
the material being created is code as well as visual appearances of
objects.

One should not have to reload the whole application to see the
effects of a small code change, nor should one user’s changes inter-
rupt the workflow of their collaborating developers and designers.
In this sense, having a live programming facility is even more impor-
tant for a multi-user collaborative environment than a single-user
one.

We have been developing a collaborative 3D construction envi-
ronment called Croquet Microverse, addressing the needs of a broad
range of users. Professional programmers can write application
code in a live manner and share the changes in real time. End-users,
who might not be programmers, can load models, and can use our
object-extension mechanism called “behaviors” to customize the
object by attaching and detaching self-contained code packages.
In this environment, you can seamlessly transition between solo
development and group real-time collaborative development.

The defining feature of Croquet Microverse is its text editor
integration with its deterministic and real-time propagation of code
changes to all participating peers. A developer can run a small server
on the local machine and have the server watch code updates in a
directory. When a code file change is detected, the server injects the
change into the collaborative session. This feature is implemented
on top of a general purpose collaboration framework.

Croquet Microverse is built on top of the Croquet OS, which is
based on the replicated computation model [16] for writing real-
time shared web applications. The system design draws upon ear-
lier systems with the same name, but was fully re-implemented in
JavaScript. It is carefully engineered to support real-world applica-
tions. For an overview of the current Croquet platform, see [2, 9].

Croquet Microverse uses the Croquet Worldcore 3D applica-
tion framework, and Three.js as the rendering engine. Its code is
available as open source at github.com/croquet/microverse, and


https://croquet.io/microverse
https://croquet.io/microverse
https://github.com/croquet/microverse
https://github.com/croquet/microverse
github.com/croquet/microverse

a reference installation is available at croquet.io/microverse. The
code base is small (=~ 15,000 lines of commented code) so that a
developer can understand, modify, and extend it.

The rest of the paper is organized as follows. Section 2 describes
the foundational Croquet architecture. Section 3 introduces the
Worldcore application framework. Section 4 describes the Micro-
verse application. Section 5 explains the concept of the object exten-
sion mechanism we use, and Section 6 displays our collaborative live
programming experiment within Microverse. Section 7 discusses
related work.

2 CROQUET

Croquet is a platform for creating rich multi-user applications. As its
library and associated back-end infrastructure perform the critical
operating-system role of managing computational space and time
on behalf of applications, we refer to the platform as the Croquet
OS. Instead of having to write client/server and networking code,
developers write code to be executed in a shared virtual machine
(VM) running on each peer! in a session, which is automatically
synchronized by Croquet. This gives the appearance of each peer
having direct access to a single shared computer, which in our ex-
perience is a much simpler mental model for writing multi-user
applications than designing a networked client/server application.

Croquet relies on absolutely bit-identical deterministic behavior
of code in that VM, so that the illusion of a single shared computer
is preserved. By controlling the progress of time, and ensuring that
all peers receive the same sequence of external events, Croquet
ensures that the peers stay in sync.

Our current system is implemented on top of JavaScript and can
run in a web browser or on Node.js. The ECMAScript standard en-
sures a high degree of conformity in the execution semantics across
different platforms. Where the standard allows differences, we pro-
vide solutions that ensure the same outcome on every platform (in
particular, for transcendental functions).

Application code is executed purely on the peer machines. Cro-
quet applications consist of two parts: a shared part running in the
synchronized VM, and a non-shared part for each user, handling
input and output. We call these parts models and views, respectively.
While Croquet enforces a strong separation between models and
views, it allows views to read data directly from models. This allows
very efficient rendering of complex shared data.

When any peer needs to inject a state change into the session,
typically due to an input action by its user, it informs the other
peers by transmitting an event to the session’s synchronization
server. This server puts a timestamp on the event and “reflects” it to
all the peers, without needing to examine the payload at all; this is
why we internally refer to the servers as reflectors. All transmission
of events is encrypted end to end.

3 WORLDCORE

Worldcore is an entity-management system that sits on top of Cro-
quet OS.

Following the model-view separation requirement of the Croquet
OS, but also borrowing terminology from the Unreal Engine [8],

1We use the term “peer” to refer to the client-side Croquet software system, and “user”
for a human participant who is using a Croquet application.

Yoshiki Ohshima, Aran Lunzer, Vanessa Freudenberg, Brian Upton, and David A. Smith

Figure 1: Two users’ views of a Microverse space with a
physics simulation.

a model object is typically called an actor, and a view object is
typically called a pawn. In the context of 3D programming, an actor
holds information such as the object’s translation, rotation, scale
and parent-child relationships, as well as optional values such as
the location of 3D-model or texture assets. The pawn takes those
values and creates Three.js objects to render them.

Worldcore offers vector and matrix calculation features. It also of-
fers useful features that fit well for Croquet. For example, motion of
an object caused by a program on the model side can be “smoothed”
(i.e., interpolated) on the view side on each animation frame. This
relieves the model of responsibility for the full animation of the
view’s position, reducing program complexity and the number of
Croquet messages needed between model and view.

While Worldcore provides reference implementations of event
handling, spatial audio, a custom-made WebGL renderer and other
features, we built Microverse on top of the “kernel” of Worldcore,
that does the basic handling of actors and pawns.

4 MICROVERSE

Croquet Microverse is a web-based 3D collaborative construction
environment. A user can enter a session by opening a URL in a
browser. Additional users can join the same session at any time, and
the state of the Microverse world will be perfectly synchronized
among them all. Any user can perform actions such as uploading a
new 3D model, or adding and removing “behaviors” for an object
(see Section 5) to customize that object’s actions.

To facilitate interactive update of object properties, there are
some basic manipulation features for object repositioning, and an
interface that we refer to as a property sheet [5] that supports
viewing and editing of property values.

Furthermore, a user can connect a running Microverse session
to what we call a watch server, that runs locally on the user’s
computer and watches for changes in code files. When the watch
server detects a change, it immediately injects the new code into
the running world, updating the behavior of the related objects.
Like any other event, this form of update is replicated to all users
in a bit-identical manner, so that their world state continues to be
fully synchronized.


croquet.io/microverse

Live Programming and Text Editor Integration in the Croquet Microverse 3D Collaborative Construction System

Constants.DefaultCards = [

1
2 {

3 card: {

4 name: "world model",

5 type: "3d",

6 datalocation: "./assets/3D/artgallery.glb",
7 modelType: 'glb',

8 singleSided: true,

9 shadow: true,

10 layers: ["walk"],

11 translation:[0, -1.7, @],

12 3

13 3

14 {

15 card: {

16 name: "light",

17 layers: ["light"],

18 type: "lighting",

19 behaviorModules: ["Light"],

20 datalLocation: "./assets/sky/sky.exr",
21 dataType: "exr",

22 3

23 3,

24 {

25 card: {

26 name: "image card",

27 translation: [12, 0.6, 10.77],

28 rotation: [0, -Math.PI / 2, @],

29 type: "2d",

30 textureType: "image",

31 texturelLocation: "./assets/images/Logo.jpg",
32 behaviorModules: ["Spin"],

33 }

34 3,

Figure 2: A part of a template file for Microverse

The Microverse system is built on top of Croquet OS and the
kernel of Worldcore. We use Three.js as the rendering engine, pro-
viding state-of-the-art graphics.

The initial state of a Microverse world is described in a file that
mostly consists of a JSON-like declaration.

A Microverse consists of a set of objects that we call cards. A card
is an object with properties like 3D coordinates and specification
of its visual appearance, along with a set of behavior modules and
behavior-specific property values.

The 3D model for the terrain for an avatar to walk on is also a
card (line 3). When the layers property (line 10) has "walk" as an
entry, the code for all avatars treats this card as a walkable terrain,
determining where the avatars can roam.

The lighting specification is also manifested as a card. A 3D scene
typically needs elaborate lighting settings, which here have been
defined in a behavior module called Light (line 19). It instantiates
Three.js lights and puts them in the scene.

The third card is a 2d type (line 29) card with the texture of
Logo. jpg, with a translation and rotation also specified in the card
spec.

Microverse comes with bindings to a deterministic 3D physics
engine called Rapier [6]. The Croquet execution model allows a
complex physics simulation to be synchronized perfectly across
all users without any need to send states of the simulation over
the network. Figure 1 shows a microverse session with a physics
simulation. Two users are viewing the same simulation; the user
whose view is on the left is also seeing the avatar of the other user.

You can have many different worlds in a single Microverse instal-
lation. A search param “world” in the URL specifies which world
file to use. The URL also specifies a unique session name, which is
how all users navigating to that URL arrive in the same session. If
a world is loaded with no session name specified, Microverse auto-
matically generates one and adds it to the URL, ready for sharing.

By default, you can move your avatar around in the Microverse
world by the “joystick” at the bottom center of the screen. You
can go to the spawn point by pressing the “home” button. The
“gather” button starts the presentation mode: when a user hits this
they become the presenter, and all other users’ avatars follow the
presenter through the space as if on a guided tour.

There is an event routing algorithm that supports dynamically
modifiable rich interaction [4]. This event routing algorithm deliv-
ers a user event to the closest card that has a listener for the event,
and that is on the ray cast from the avatar to the mouse pointer
location. You can also specify a card to be a “first responder” to
override the normal routing.

The user’s avatar itself is a card and can have behaviors and
receive events. The avatar often serves as the “last responder” of
an unhandled event to provide additional user interaction.

5 BEHAVIORS

The single most important factor for enabling live collaborative
programming is whether or not code is also data. All design aspects
need to fall into a coherent system around this choice.

We designed an object-extension mechanism for Croquet, called
behaviors. In the context of an earlier 2D collaboration system [14]
we referred to this mechanism as instance-based expanders, but we
now use the more generic term.

The behavior mechanism is inspired by past work such as Mix-
ins [1], Traits [15], Expanders [17], as well as the way an application
like Etoys allows attachable/detachable behavior in object-oriented
programming [10], but its closest resemblance would be to the
PIE [11] mechanism.

A behavior is a set of methods wrapped in the JavaScript class
syntax. Those methods are required to have no external references
or free variables so that they can be recreated from a string. The
system evaluates the string representation of a behavior to create
a JavaScript class (a function object) so that it can be executed.
Because its primary representation is a string, the application can
update it, recreate the class object and replace it cleanly.

As often discussed in the literature mentioned above on object
customization, the object identity of an expanded object (i.e., what
the “this” pseudo-variable refers to) is an important design trade-off.
In the case of behaviors, “this” refers to the base object. Upon invok-
ing an expander method, a JavaScript Proxy is created on the base
object, and property read and write access are passed through to
that object. This means that the property names used in separately
developed behaviors that are applied simultaneously to a single
base object might collide, but from our experience the benefit of be-
ing able to communicate between the multiple behaviors outweighs
the burden of taking care of potential clashes.

A behavior can invoke a method that the base objects implements,
and it can invoke a method that is defined at the same behavior in
the conventional method call syntax:



1 class TurnActor {

2 setup() {

3 this.addEventListener("pointerTap", "toggle");
4 3

5 toggle() {

6 this.turning = !this.turning;
7 if (this.turning) {

8 this.turn();

9 3

10 }

11 turn() {

12 if (!this.turning) {return;}
13 this.rotateBy([0, 0.1, 01);
14 this. future(100).turn();

15 }

16 3

18 export default [{name: "Turn",
19 actorBehaviors: ["TurnActor"]}1;

Figure 3: An example of a behavior module

this.foo(10, 20, 30);

A behavior can also invoke a method defined within another
behavior that is installed on the same base object, with a syntax
that explicitly specifies the behavior (like the #as: message in PIE):

this.call("Other", "foo", 10, 20, 30);

This “call” syntax may be seen as going against modularity prin-
ciples, but its use is rarely essential: the publish/subscribe commu-
nication mechanism that Croquet provides can be used to trigger
invocations between behaviors, whether on the same object or not,
obviating most needs for “call”.

Figure 3 illustrates an actor-side behavior called TurnActor.
TurnActor’s turn() method (line 11) rotates the object around
the y-axis by 0.1 radians and then schedules another call to itself
100 milliseconds in the future (line 14).

In this example, the setup method, which is called when the be-
havior is attached to an object, sets up a listener for the pointerTap
event to invoke the toggle method. The toggle method flips the
this. turning flag, and if it became true, it starts the “future loop”
of turn().

The workings of the actor-side “addEventListener()” call merit
some explanation, given that pointerTap is a view-side event that
only a pawn can listen for. What the call does is to set up a listener
in the pawn, along with an actor-side subscription to the event that
the pawn will send when pointerTap happens. In that way, when
any user’s pawn detects a tap, all users’ actors will be notified and
will handle the event identically.

When you want to create visual appearances programmatically
(by instantiating Three.js objects, for example), you write a pawn-
side behavior. An example of a pawn-side behavior is shown in
Figure 4.

In Figure 4, the setup() method sets up event listeners so that
pointerEnter and pointerLeave trigger hilite and unhilite,
respectively. The methods makeButton creates a Three.js Mesh, (af-
ter removing left over meshes at line 11). The property this. shape
is the root of the Three.js object for the card’s visual appearance.
The setColor method finds the sphere mesh in this.shape and

sets the color property.

Why is the line with removeFromParent (line 11) needed? It
is because the setup() method is called when the user changes

Yoshiki Ohshima, Aran Lunzer, Vanessa Freudenberg, Brian Upton, and David A. Smith

class HilightSphere {

1

2 setup() {

3 this.addEventListener("pointerMove", "nop");

4 this.addEventListener("pointerEnter", "hilite");
5 this.addEventListener("pointerLeave", "unhilite");
6 this.makeButton();

7

8 makeButton() {

9 [...this.shape.children].forEach((c) => {

10 this.shape.remove(c)});

11 let THREE = Microverse.THREE;

12 let geometry = new THREE.SphereGeometry(@.15, 16, 16);
13 let material = new THREE.MeshStandardMaterial(

14 {color: 0xCC0000, metalness: 0.8});

15 let button = new THREE.Mesh(geometry, material);
16 this.shape.add(button);

17

18 setColor(color) {

19 if (this.shape.children[0]) {

20 this.shape.children[@].material.color.set(color);
21 3

22 }

23 hilite() {

24 this.setColor (0xFFQ000) ;

25 3

26 unhilite() {

27 this.setColor(0xCC0000) ;

28 }

29 }

Figure 4: An example of a pawn-side behavior

the definition of the behavior dynamically. The base object may
have a mesh created by the previous invocation of makeButton()
(called from setup()). When the user updates the definition of the
behavior, the state of the base object itself is kept unchanged; this
is the state found during the subsequent invocation of setup().

This manual management of life cycle of dynamically created
objects is slightly cumbersome for a developer, but the system
cannot automatically infer the developer’s intent. We leave the
developer to decide what to clean up or recreate and what to retain.

Another note is that the color change in this example does not
send any event to the model; that means that the sphere’s color
change is only visible to the user who hovers the mouse pointer
over it. A developer can and must make decisions on how an object
behaves in a multi-user environment, determining which events
are shared with other users and which are not.

As you can see, a behavior is written in unmodified JavaScript.
We use the keyword class to declare a behavior so that we don’t
need to modify existing code analysis tools. The only global variable
allowed is Microverse, which contains system objects like THREE,
so that a behavior can be recreated from its string representation
identically for all participants.

6 LIVE PROGRAMMING IN MICROVERSE

As described in Section 5, the code of a Microverse behavior is
stored as text data. This means that if we provide a collaborative
editor for changing that text, we can simply do live collaborative
programming in the system itself.

In Figure 5, the card with the drone 3D model has a behavior
called CircleActor, whose step() method specifies that when it is
invoked, the “turn by a little, forward by a little, and repeat” action is
executed, and it then schedules a future () message to itself. When
any user edits the step code and saves the new definition by hitting



Live Programming and Text Editor Integration in the Croquet Microverse 3D Collaborative Construction System

Figure 5: The definition of CircleActor can be changed from
a collaborative text editor.

Cmd-S, the drone starts using the new definition immediately on
all users’ computers, in the next step() invocation. For example, if
one were to change the argument for the forwardBy method from
0.03 to -0.03, everyone would see the drone reverse its direction of
circling.

We decided to make it explicit that the setup() method of a
behavior is executed each time the behavior code is udpated. A
common case is to the state of an application and run the modified
code, but sometimes the developer wishes to reset the state and
start over a simulation. Both use cases are naturally supported in
the mechanism. We think that it is not a burden for a developer to
explicitly initialize a part of application state of her choosing. A
program in MIT Scratch, for example, retains the application state,
so it is common practice for novice programmers to write code to
reset state in initialization.

As we experiment with the live programming feature, we realized
that programmers who are accustomed to their own text editor (in
some cases showing almost religious attachment) would prefer to
continue using that editor to code in our system. To provide the
benefit of live programming for those programmers, we built what
we call the watch server.

The watch server watches file changes in a directory, and ac-
cepts a Websocket connection from a browser tab that is running
Croquet Microverse. Crucially, browser rules allow a connection
to a Websocket server running on localhost even from a page that
has been loaded over the Web; this enables the watch server to
be used wherever the world itself has been loaded from. This fea-
ture is similar to the hot module reloading feature provided by
webpack-dev-server and other mechanisms. But instead of using
an existing implementation, we wrote a simple server in 150 lines
of Node. js code.

Figure 6 shows an example of a live text-editor integration ses-
sion. A complex physics simulation program can be edited while
it is running, and code changes are immediately reflected to all
participants of the session deterministically.

As a behavior file may contain multiple behavior modules, and
each behavior module may contain multiple behaviors, we need to
extract individual behavior definitions from a file. For example in

Figure 6: A text editor editing a physics simulation.

class AActor {...}
class APawn {...}

1

2

3

4 class BActor {...}
5 class BPawn {...}
6 class BPawn2 {...}
7

8

9

export default {

modules: [
10 {name: "A",
11 actorBehaviors: [AActor],
12 pawnBehaviors: [APawnl},
13 {name: "B",
14 actorBehaviors: [BActor],
15 pawnBehaviors: [BPawn, BPawn2]},

Figure 7: A behavior module file with five behaviors

Figure 7, the text representation of the five defined behaviors needs
to be extracted from one file.

One could imagine using a JavaScript parser and analyzing the
results, but we employed a much simpler approach based on a built-
in browser feature. When the peer first receives from the watch
server the text that constitutes an ES module, the peer creates a
DOM script element with the received module code (after creating
an objectURL from it) as its src. Once the script element has
loaded its code from src, we can access the exported Module object
and then extract all actor and pawn behaviors.

The behavior definitions are then converted to strings by calling
toString(), and they are sent to all peers as a series of replicated
events. Upon receiving the string, each user’s model evaluates it to
create the defined JavaScript functions.

If code is saved with a syntax error, the evaluation fails on the first
peer and no harm is done to the system. When code is syntactically
correct but contains a logic error in the model side, the error causes
the same effects on all peers. If the error happens to be recoverable,
the session can be fixed, but if not, the session may be rendered
unusable.

The effects of a logic error on the view side can vary widely. In
most cases it can be recovered by saving a version of the source
code. However, an error that results in Infinity or NaNin a Three.js
data structure could cause an unrecoverable crash, which would
typically require you to start a new session. The good news here
is that the files you have written are all saved to disk, so you have



not lost any work. This is similar to the role of the . changes file in
Smalltalk.

The text-editor integration is the defining feature of Croquet
Microverse. It is simple but useful. A classic development process
of a collaborative application, especially when you would like to
test a new feature with multiple users, is to rebuild the applica-
tion, and then re-launch it for all participants (not to mention to
update the server if it involves a server component), and recreate
the situation where your changed code is relevant, and then try
the same action with others. This is a time-consuming process. In
Croquet Microverse, you edit the code and that is it; the object
whose behavior you are editing can be right in front of everyone’s
eyes, and everyone can try out its new behavior right away.

In practice, a developer might spend a majority of their time
writing Microverse code alone, rather than in a shared session. The
text editor integration helps just as much in that setting, as a live
change takes effect immediately. The developer can open additional
browser windows onto the same running session to experiment
quickly, and when ready to try with other users can invite them
into the same session too.

7 RELATED WORK

(N.B. Please refer to the Related Work Section of our previous paper.)

The replicated computation model can be traced back to TBAG
by Elliott et. al [7]. TBAG transmits events in a peer-to-peer manner.
The restricted programming model, which was constraint-based,
ensured that the resulting application state was replicated. Cro-
quet’s computation is more general and allows developers to write
interactive programs in various styles, as long as the resulting data
is stored in the model objects.

There are some attempts to make the development of 3D col-
laborative applications (metaverses) more productive. For example,
the Meta company’s Horizon platform has a blocks-based program-
ming interface. However, the definitions of the blocks still have
to be written in C#, and testing requires a lengthy build and the
restarting of the Unity-based application if you need a new block.
While Microverse does not offer a blocks-based programming in-
terface yet, we anticipate that our interface will be more uniform,
including allowing extension of the blocks editing system itself
from within the system.

Mozilla Hubs [3] is a Web/JavaScript based 3D shared environ-
ment. Despite some efforts to ease the development effort, Hubs
still requires cumbersome building steps and reloading. Also note
that the synchronization is based on sending values of properties,
which is not sufficient as the basis for a complex shared application.

The concept of a self-sustaining live programming environment
on the web was influenced by a series of implementations of Lively
Web [12]. Lively Web, in turn, was influenced by Smalltalk, and we
borrow many ideas including the live-programming idea itself, and
also treating a class as data to implement meta-features.

The reports of experiments by Misback et al. [13] are also of
interest to the LIVE community.

8 CONCLUSION

This paper describes the live-programming feature and text-editor
integration of the Croquet Microverse 3D collaborative construction

Yoshiki Ohshima, Aran Lunzer, Vanessa Freudenberg, Brian Upton, and David A. Smith

application. Microverse is a web-based application built on top of
the Croquet OS and the Worldcore 3D application framework.

The text-editor integration is novel and has already shown its
value in professional development, helping to unleash the power
of live programming.

ACKNOWLEDGMENTS

The authors wish to acknowledge David Reed, Alan Kay and the
late Andreas Raab, who worked with some of us in bringing the
original Smalltalk version of Croquet to fruition. We also thank our
Croquet Corporation colleagues.

REFERENCES

[1] Gilad Bracha and William Cook. 1990. Mixin-Based Inheritance. In Proceedings
of the European Conference on Object-Oriented Programming on Object-Oriented
Programming Systems, Languages, and Applications (Ottawa, Canada) (OOP-
SLA/ECOOP ’90). Association for Computing Machinery, New York, NY, USA,
303-311.

[2] Croquet Corporation. 2018. Croquet. Croquet Corporation. https://croquet.io/
docs.

[3] Mozilla Corporation. 2018. Mozilla Hubs. Mozilla Corporataion. https://hubs.
mozilla.org.

[4] Croquet Corporataion. 2022. Event Routing of Microverse. Croquet Corporation.
https://croquet.io/blog/june2022/event-routing/.

[5] Croquet Corporataion. 2022. The Property Sheet of Microverse. Croquet Corpora-
tion. https://croquet.io/docs/microverse/tutorial-PropertySheet.html.

[6] Dimforge. 2020. Rapier. Dimforge. https://rapier.rs.

[7] Conal Elliott, Greg Schechter, Ricky Yeung, and Salim S. Abi-Ezzi. 1994. TBAG:
a high level framework for interactive, animated 3D graphics applications. In
Proceedings of the 21th Annual Conference on Computer Graphics and Interactive
Techniques, SSGGRAPH 1994, Orlando, FL, USA, July 24-29, 1994, Dino Schweitzer,
Andrew S. Glassner, and Mike Keeler (Eds.). ACM, New York, NY, USA, 421-434.
https://doi.org/10.1145/192161.192276

[8] Epic Games. 2022. Unreal Engine Documentation. https://docs.unrealengine.
com/4.27/en-US/InteractiveExperiences/Framework/Pawn/.

[9] Vanessa Freudenberg. 2020. Croquet: A Unique Collaboration Architecture.
Video is available at: https://www.youtube.com/watch?v=ujOVHVAjXj4.

[10] Vanessa Freudenberg, Yoshiki Ohshima, and Scott Wallace. 2009. Etoys for One
Laptop Per Child. In 2009 Seventh International Conference on Creating, Connecting
and Collaborating through Computing. IEEE Computer Society, Los Alamitos,
CA, USA, 57-64.

[11] Ira P. Goldstein and Daniel G. Bobrow. 1980. Extending Object Oriented Pro-
gramming in Smalltalk. In Proceedings of the 1980 ACM Conference on LISP
and Functional Programming (Stanford University, California, USA) (LFP ’80).
Association for Computing Machinery, New York, NY, USA, 75-81. https:
//doi.org/10.1145/800087.802792

[12] Daniel H. H. Ingalls, Krzysztof Palacz, Stephen A. Uhler, Antero Taivalsaari,
and Tommi Mikkonen. 2008. The Lively Kernel A Self-supporting System on a
Web Page. In Self-Sustaining Systems Workshop (S3). Springer Berlin Heidelberg,
Berlin, Heidelberg, 31-50.

[13] Edward Misback and Steven Tanimoto. 2021. Peer-to-peer Syncing and Live
Editing of Shared Virtual 3D Spaces: Challenges and Opportunities. In The LIVE
Workshop "21. Association for Computing Machinery, New York, NY, USA.

[14] Yoshiki Ohshima, Aran Lunzer, Jenn Evans, Vanessa Frudenberg, Brian Up-
ton, and David A. Smith. 2022. An Experiment in Live Collaborative Program-
ming on the Croquet Shared Experience Platform. In The Programming Experi-
ence Workshop "22. Association for Computing Machinery, New York, NY, USA,
(to appear). also available at https://tinlizzie.org/IADocs/live--programming--
greenlight.pdf.

[15] Nathanael Scharli. 2005. Traits — Composing Classes from Behavioral Building
Blocks. Ph.D. Dissertation. University of Berne.

[16] David Smith, Alan Kay, Julian Lombardi, Mark McCahill, Rick McGeer, Andreas
Raab, and David P. Reed. 2005. Croquet: A platform for Collaboration. In Working
with Vision workshop at OOPSLA 2005, San Diego, CA, USA, October 19. ACM,
New York, NY, USA.

[17] Alessandro Warth, Milan Stanojevi¢, and Todd Millstein. 2006. Statically Scoped
Object Adaptation with Expanders. In Proceedings of the 21st Annual ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications (Portland, Oregon, USA) (OOPSLA ’06). ACM, New York, NY, USA,
37-56.


https://croquet.io/docs
https://croquet.io/docs
https://hubs.mozilla.org
https://hubs.mozilla.org
https://croquet.io/blog/june2022/event-routing/
https://croquet.io/docs/microverse/tutorial-PropertySheet.html
https://rapier.rs
https://doi.org/10.1145/192161.192276
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Framework/Pawn/
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Framework/Pawn/
https://www.youtube.com/watch?v=ujOVHVAjXj4
https://doi.org/10.1145/800087.802792
https://doi.org/10.1145/800087.802792
https://tinlizzie.org/IADocs/live--programming--greenlight.pdf
https://tinlizzie.org/IADocs/live--programming--greenlight.pdf

	Abstract
	1 INTRODUCTION
	2 CROQUET
	3 WORLDCORE
	4 MICROVERSE
	5 BEHAVIORS
	6 LIVE PROGRAMMING IN MICROVERSE
	7 RELATED WORK
	8 CONCLUSION
	References

