
An Experiment in Live Collaborative Programming on the
Croquet Shared Experience Platform

Yoshiki Ohshima
Croquet Corporation
Los Angeles, CA, USA
yoshiki@croquet.io

Aran Lunzer
Croquet Corporation
Los Angeles, CA, USA

aran@croquet.io

Jenn Evans
Croquet Corporation
Vancouver, BC, Canada

jenn@croquet.io

Vanessa Freudenberg
Croquet Corporation
Los Angeles, CA, USA
vanessa@croquet.io

Brian Upton
Croquet Corporation
Los Angeles, CA, USA
brian@croquet.io

David A. Smith
Croquet Corporation

Cary, NC, USA
david@croquet.io

ABSTRACT
This paper describes our experiences in building a live collaborative
programming environment on top of the JavaScript version of the
Croquet shared experience platform.

Croquet provides a clean substrate for building real-time col-
laborative applications. We created an application framework that
supports live programming, and used that framework to build the
Greenlight collaborative application, then in turn, modified it to do
live programming experiments. The environment allows multiple
users to modify the running application from within, with changes
taking effect immediately.

The experiment was inspired by earlier work including Douglas
Engelbart’s oN-Line System (NLS) and the Kansas system in Self.
Analogically, the system is like the Smalltalk environment made
collaborative.

In this paper we explain the Croquet architecture, its library and
framework, and the Greenlight application used to make the live
programming environment.

The standard version of Greenlight is available at https://croquet.
io/greenlight, and the modified demo system is available at https:
//croquet.io/scripting.

CCS CONCEPTS
• Software and its engineering → Programming teams; •
Human-centered computing→ Synchronous editors.

KEYWORDS
Shared Experiences, Collaboration Application Framework, Live
Programming
ACM Reference Format:
Yoshiki Ohshima, Aran Lunzer, Jenn Evans, Vanessa Freudenberg, Brian
Upton, and David A. Smith. 2022. An Experiment in Live Collaborative
Programming on the Croquet Shared Experience Platform. In Companion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming> ’22 Companion, March 21–25, 2022, Porto, Portugal
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9656-1/22/03. . . $15.00
https://doi.org/10.1145/3532512.3535224

Proceedings of the 6th International Conference on the Art, Science, and En-
gineering of Programming (<Programming> ’22 Companion), March 21–25,
2022, Porto, Portugal. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3532512.3535224

1 INTRODUCTION
Imagine that a group of colleagues are building an application. The
tasks include developing not just the visual design but also the
software components themselves. Ideally developers and designers
can work together in the same shared development session with
a tight feedback loop. Of course each user would have their own
input devices and display. And of course a user should be able to
join the session from anywhere on Earth, at any time. The environ-
ment would be similar to popular collaboration applications such
as Figma and Google Docs; the difference is that the material being
developed is code.

It is vital for such an environment to be “live”: one should not
have to reload the whole application to see the effects of a small
code change, nor should one user’s changes interrupt the workflow
of their collaborating developers and designers. In this sense, the
live programming facility is even more important for a multi-user
collaborative environment than a single-user one.

We decided to build an experimental collaborative live program-
ming environment on top of the Croquet real-time shared expe-
rience platform. Croquet is based on the replicated computation
model [24] for writing real-time shared web applications. The sys-
tem design draws upon earlier systems with the same name, but
was fully re-implemented in JavaScript. (For an overview of the
current Croquet platform, see [4, 12]).

It is important for us that such a programming environment
be usable for collaborative editing and improvement of the envi-
ronment itself, as well as new applications. This idea was inspired
by highly productive self-sustaining systems like Smalltalk and
Lisp, and also by the bootstrapping idea from Engelbart’s oN-Line
System (NLS).

The rest of the paper is organized as follows. Section 2 describes
the foundational Croquet architecture, with Section 3 showing a
simple example application written in Croquet. Section 4 introduces
an application framework called Croquet Virtual DOM Framework
that supports live programming, Section 5 describes the Greenlight
application that was built on top of that framework, and Section 6

https://croquet.io/greenlight
https://croquet.io/greenlight
https://croquet.io/scripting
https://croquet.io/scripting
https://doi.org/10.1145/3532512.3535224
https://doi.org/10.1145/3532512.3535224
https://doi.org/10.1145/3532512.3535224

<Programming> ’22 Companion, March 21–25, 2022, Porto, Portugal Yoshiki Ohshima, Aran Lunzer, Jenn Evans, Vanessa Freudenberg, Brian Upton, and David A. Smith

Figure 1: A diagram of the Croquet architecture.

displays our collaborative live programming experiment within
Greenlight. Section 7 discusses related work.

2 CROQUET
Croquet is a platform for creating rich multi-user applications.
Instead of having to write client/server and networking code, devel-
opers write code to be executed in a shared virtual machine (VM)
running on each peer1 in a session, which is automatically synchro-
nized by Croquet. This gives the appearance of each peer having
direct access to a single shared computer, which in our experience
is a much simpler mental model for writing multi-user applications
than designing a networked client/server application.

Croquet relies on absolutely bit-identical deterministic behavior
of code in that VM, so that the illusion of a single shared computer
is preserved. By controlling the progress of time and ensuring that
the sequence of external events is identical, all peers stay in sync.

Our current system is implemented on top of JavaScript and can
run in a web browser or on Node.js. The ECMAScript standard en-
sures a high degree of conformity in the execution semantics across
different platforms. Where the standard allows differences, we pro-
vide solutions that ensure the same outcome on every platform (in
particular, transcendental functions behaviors).

All application code is only executed on the peer machines, and
can be deployed in a static webpage. Croquet applications consist
of two parts: a shared part running in the synchronized VM, and a
non-shared part for each user handling input and output. We call
these parts models and views, respectively (see Figure 1).

Application computation and resulting changes of state happen
only on the peers. When a peer needs to inject a state change into
the session, typically due to an input action by its user, it informs
1We use the term “peer” to refer to the client-side Croquet software system, and “user”
for a human participant who is using a Croquet application.

its peers by transmitting an event to the session’s synchronization
server. This server puts a timestamp on the event and “reflects” it to
all the peers, without needing to examine the payload at all; this is
why we internally refer to the servers as reflectors. All transmission
of events is encrypted end to end.

Application code uses the Croquet publish/subscribe API to send
events. Events published by a view affecting a model are sent to
the reflector and reflected back to all peers, so they stay in sync.
This is typical for user input. All other events are delivered only
locally. While Croquet enforces a strong separation between models
and views, it allows views to read data directly from models. This
allows very efficient rendering of complex shared data.

Models must be implemented in an object-oriented style. The
way a new peer joins an existing session is by loading a snapshot
of the models’ state that Croquet previously captured automati-
cally; for this to work, no model can contain any value that is not
serializable, such as a JavaScript closure. The model code is also
forbidden from using any platform features that would make it
non-deterministic, such as local system properties or wall-clock
time.

The above restrictions do not apply to view code. The only re-
quirement is that a view never modify model properties directly,
because that would make the local model different from the other
peers, breaking synchronization. Views are free to adapt to local
system features, including screen size and input-device availability.

This design allows a user to join and leave a Croquet application
at any time. When a peer joins a session, the last snapshot as well
as all messages after the snapshot are sent to the peer. When the
peer finishes replaying the messages starting from the snapshot, it
is guaranteed to have identical model state to all other peers.

The reflectors are extremely efficient, since they do not have to
perform any computation on application data. We operate many
reflectors around the globe. The system chooses a close-by reflector
for each session. This allows a typical session to have only tens of
milliseconds of latency, which is determined by the round-trip time
to a nearby data center. With more Edge reflector deployments,
there will be even lower latency without additional effort on the
part of the application developer.

We have been running the Croquet system for a few years now,
with many different applications (written by us and other devel-
opers ranging from CS students to commercial developers), and
we have found that they work very reliably. Croquet reduces com-
plexity not only by eliminating networking and server code from
applications, but also by not having to resolve conflicts or perform
speculative execution or rollbacks at the framework level.

Note, however, that Croquet apps still require careful design of
the program and interface to provide a smooth shared experience.
For example, consider two users working in a collaborative text
editor, and simultaneously hitting the delete key with cursors in
two different points in the text. The two delete requests are sent
to the server, which sequences them and sends them to peers in
deterministic order. If each deletion were naively specified in terms
of text index, the state after the first executed deletion may cause
the second to occur in an unintended place. A collaborative text
editor written on top of Croquet must avoid such errors, for ex-
ample by appropriate transformation of the operations, though

An Experiment in Live Collaborative Programming on the Croquet Shared Experience Platform <Programming> ’22 Companion, March 21–25, 2022, Porto, Portugal

1 class MyModel extends Croquet.Model {
2 init() {
3 this.count = 0;
4 this.subscribe("counter", "reset",
5 this.resetCounter);
6 this.future(1000).tick();
7 }
8 resetCounter() {
9 this.count = 0;
10 this.publish("counter", "changed");
11 }
12 tick() {
13 this.count++;
14 this.publish("counter", "changed");
15 this.future(1000).tick();
16 }
17 }

18 class MyView extends Croquet.View {
19 constructor(model) {
20 super(model);
21 this.model = model;
22 countDisplay.onclick = event=>this.counterReset();
23 this.subscribe("counter", "changed",
24 this.counterChanged);
25 this.counterChanged();
26 }
27 counterReset() {
28 this.publish("counter", "reset");
29 }
30 counterChanged() {
31 countDisplay.textContent = this.model.count;
32 }
33 }

Figure 2: The model and view view code of a simple automatic counter example.

the deterministic ordering of events does simplify the necessary
algorithm (see an actual implementation in [6]).

Similarly, while Croquet itself does not use speculative execu-
tion, an app designer may want to incorporate it so that a user
gets immediate feedback instead of having to wait for an event’s
round trip to the reflector. For example, the position of an object
being dragged by one user could be updated in that user’s view
immediately, at the same time as sending events to all peers via the
server. On receipt of the event, each peer’s model—including that
of the initiating user—will calculate the object’s definitive position,
taking into account any constraints imposed by the model such as
collisions with other objects that are being dragged. The initiating
user’s view would then, if necessary, correct its prediction with the
actual result.

3 CROQUET APPLICATION DEVELOPMENT
IN A NUTSHELL

The Croquet JavaScript Library offers essential features for writing
Croquet-powered applications. The main task when developing an
application is to define the shared behavior as the “model”, and how
it interacts with the outside world through each peer’s “view”.

In practice, a developer creates model objects as a subclass
of the base Croquet.Model class, and customizes the subclass to
store shared data and implement shared behavior. A customized
Croquet.View subclass provides input/output for a user by in-
teracting with the browser’s Document Object Model (DOM) ele-
ments [8].

Croquet offers a simple event publish/subscribe mechanism for
describing model/view interactions. Note that unlike traditional
pub/sub, peers do not directly interact with each other, but only
with the shared model.

The left hand side of Figure 2 shows the model code of a Croquet
application example (a full description is available as the Hello
World tutorial within the Croquet documentation: https://croquet.
io/docs/croquet/). The count property is the only application state
(line 3). Line 4 with subscribe declares that when an event called
reset in the counter scope arrives, it invokes resetCounter(),
which resets the counter property to zero and publishes an event
named changed (lines 8-10). The tickmethod is called from init()
with the future mechanism, which specifies to invoke that method

1000 milliseconds in the future. Tick calls itself again with future,
so that tick() is executed at 1000 millisecond intervals (lines 12-
16).

A simple way to write view code is to manipulate the DOM
elements defined in HTML. The right hand side of Figure 2 shows
the corresponding view code written in that way.

A DOM element accessible from the code as countDisplay pro-
vides the user interface for this counter. The element’s content
is updated in response to a change in the count by way of the
view’s subscription to the changed event in the counter scope (line
23), which causes each such event to invoke the counterChanged
method (line 30). The element also supports a trivial form of input,
in that its onclick DOM event handler (line 22) invokes the view’s
counterReset method, which publishes a reset event (line 28).
Because the Croquet VM can see that there is a subscription to that
event in the model, it automatically routes the event via the server
so that it will be received by all the peers. Every peer’s model will
receive the reflected event at effectively the same time, and call its
resetCountermethod (line 8) immediately, so the application state
remains synchronized. On the other hand, the Croquet VM can see
that the changed event only travels from the model to the view,
which is a local effect that does not have to go through the network;
for this event, the Croquet VM triggers the subscription handler on
the view and all peers’ DOM elements are updated accordingly.

Just like Croquet takes care of the event routing, it takes care of
snapshotting the model state. When a peer joins a session that does
not yet have a snapshot, it runs themodel’s initmethod to initialize
the model state. Snapshots of the state are taken periodically as
the session runs, so that if a new peer joins a mature session it can
use the snapshot to jump forward to whatever state the model has.
Then, these later-joining peers do not run init at all.

Note that the count value is not needed as an argument to the
changed event. Instead, the counterChanged method can directly
access the shared model state for rendering. In more complex ap-
plications this is a significant advantage over other technologies,
where the shared state resides on some remote server and can only
be accessed via the network.

Direct model access works because of the bit-identical determin-
istic execution behavior of Croquet models. To ensure this, Croquet
uses customized versions of certain library functions that model

https://croquet.io/docs/croquet/
https://croquet.io/docs/croquet/

<Programming> ’22 Companion, March 21–25, 2022, Porto, Portugal Yoshiki Ohshima, Aran Lunzer, Jenn Evans, Vanessa Freudenberg, Brian Upton, and David A. Smith

code might use. For example, if a model invokes Math.random() it
executes a custom random-number generator that yields the exact
same sequence of numbers on all peers. This means that even a
complex real-time simulation that relies on getting thousands of
random numbers each second will stay in sync across all peers
without them having to communicate at all.

4 THE CROQUET VIRTUAL DOM
FRAMEWORK

While the Croquet Library described in the previous section is ef-
fective for writing simple applications, complex applications call
for more powerful frameworks. The Croquet Virtual DOM Frame-
work [7] is designed to support easier manipulation of DOM ele-
ments to help writing DOM-based 2D shared applications. Another
goal for the framework was strong support for dynamic update of
application code.

We took inspiration from many existing live programming sys-
tems and application frameworks. The first consideration in our
design was how to show visual elements on screen: specifically,
whether to use the canvas element exclusively, or to embrace a
richer set of DOM features.

4.1 Canvas vs. DOM
There are two major directions that one can take for displaying
visual elements in a modern browser window.

The native “widget set” of the modern web browser is Document
Object Model (DOM), which provides various types of visual ele-
ments, and the ability to customize their appearance and behavior
through with CSS (Cascading Style Sheets). One of the element
types is “canvas”: a surface onto which images can be drawn using
two-dimensional (or three-dimensional) graphical operations.

One approach to creating a 2D application framework is to in-
stantiate a single canvas element that occupies the entire window
area, and to show the application’s graphical elements by drawing
them painstakingly with canvas drawing commands. This approach
leads to a clean and simple abstraction, and the ability to take full
control of the display model. However, manipulation of text or
of graphical elements is laborious to implement, and scrolling or
zooming of the viewport requires re-execution of all drawing com-
mands for the newly visible screen area. In addition, a canvas-based
application cannot embed independent JavaScript context in the
special DOM element type called iframe.

A second approach is to embrace DOM for showing the visual
elements. It leads to a system that is closely integrated with the
browser, and can use many powerful features such as highly opti-
mized CSS-tuned layout of text and widgets, and viewport transfor-
mations. The embedding of web pages can be achieved straightfor-
wardly by using the iframe DOM element. One downside is that it
requires intimate coupling with CSS, and having to be aware of the
numerous incompatibilities between different browser implemen-
tations.

We considered both options. Because the main requirement for
the primary application of this framework (described in the next
section) was to be able to embed and manage many iframes, we
decided to create an application framework that embraces DOM.

4.2 Virtualizing the DOM Specification
Having decided on using DOM, we had to find a way to work within
the Croquet rule that a model cannot include any objects that are
not serializable. That precludes all DOM elements. Inspired by Dan
Amelang’s work on implementing the DOM spec in JavaScript
for the Mico framework [1], we decided to “virtualize” the DOM
elements into pure JavaScript descriptions that can be stored in a
model. We define a plain JavaScript object that has properties such
as parentNode and childNodes, style (which in turn has methods
such as setProperty() and getPropertyValue()), classList,
and methods such as addEventListener(). When a property of
a virtualized DOM element changes in the model, the framework
notifies the view to update the actual DOM elements on screen.
The application framework calculates the difference between the
last state and the current state, and applies it to the view’s actual
DOM elements.

In short, an application in the Croquet Virtual DOM Framework
consists of a set of virtual DOM elements in the model as well
as corresponding virtual DOM views in the view, with the view
managing the actual DOM elements on-screen.

In this scheme, the application programmer can write a program
against the familiar set of functions that the DOM interface provides.
Any event that causes change on the virtual DOM properties is
sent to all peers, and since all peers execute the same code, their
virtual DOMs remain identical. The visual appearance on each
user’s screen is updated accordingly. It is fine for the users to have
different browser window sizes or different input devices; CSS and
DOM absorb the difference, while keeping the virtualized model
identical.

4.3 Full DOM or Subset of DOM
The HTML specification defines over 130 element types. Some of
those are essential for our purposes, while others can be emulated by
a div element with some CSS attached. We therefore chose to limit
the types of DOM elements supported: as of writing, we have div,
iframe, canvas, img, video, and textarea elements. Although the
div virtual element allows us to emulate many element types, the
others in the list each have special features that such emulation
would not support. For example, having a separate canvas virtual
element is necessary as its width and height attributes have special
meaning. Iframe has many attributes for controlling an embedded
page, including src. Our textarea is quite different from the true
DOM version, as ours supports collaborative editing by multiple
users. The img element could have been partly emulated by a div
with the background CSS property, but for some applications we
wanted to take advantage of browser-native img features such as
image drag and drop and the “save as” command.

In addition to supporting their subset of the DOMAPI, the virtual
DOM elements are Croquet Model and View objects so that they
have publish and subscribe methods.

4.4 Behavior Representation: Instance-based
Expanders

Now we know how to handle DOM elements in a Croquet model:
we represent an element as a serializable plain JavaScript object in

An Experiment in Live Collaborative Programming on the Croquet Shared Experience Platform <Programming> ’22 Companion, March 21–25, 2022, Porto, Portugal

the model, create a corresponding actual DOM element in the view,
and have a Croquet view object manage that.

What we are interested in is a programming system where users
can collaboratively update application code. Themodel-view separa-
tion requirement means that changeable data in the model—which
in this case includes code—must be serializable, and that when a
change occurs, that change needs to be applied on all peers identi-
cally and cleanly. For example, there must be a safe way to remove
a piece of code without breaking the running application.

Based on the rich literature around PIE extensible objects [14],
Mixins [2], Traits [22], Expanders [26], as well as the way an appli-
cation like Etoys allows attachable/detachable behavior in object-
oriented programming [13], we have devised a scheme that we call
instance-based expanders.

An instance-based expander is a set of methods wrapped in the
JavaScript class syntax. Those methods are required to have no
external references or free variables so that they can be recreated
from stringified data. The system evaluates the string representation
of an expander to create a JavaScript class (function) and stores it
in a dictionary in the object being expanded, which is either the
model- or view-side manifestation of a virtual DOM element.

The expanders are called “instance-based” because they are in-
stalled in a specific virtual-DOM object instance. In our experience,
a common path for development was to customize one instance
at a time in an exploratory manner. Some optimizations are im-
plemented so that identical code is not stored multiple times in
different instances, and further optimizations can be applied when
the developer decides to deploy a version of the application that
does not have to support live updating of code.

As often discussed in the literature mentioned above on object
customization, the object identity of an expanded object (i.e., what
the “this” pseudo-variable refers to) is an important design trade-off.
In the case of instance-based expanders, “this” refers to the base
object. Upon invoking an expander method, a JavaScript Proxy
is created on the base object, and property read and write access
are passed through. This means that the property names used in
separately developed expanders that are applied simultaneously to a
single base object might collide, but from our experience the benefit
of being able to communicate between the multiple expanders
outweighs the burden of taking care of potential clashes.

Because its primary representation is a string, the application
can update it, recreate the class object and replace it cleanly.

Figure 3 shows the “counter” example written in the Virtual DOM
Framework. The base element is created as a virtual textarea
element, and has been inserted into the top-level virtual DOM
element by code elsewhere. Note that in principle we would like
to use a keyword such as expander rather than class (line 1), but
sticking to the standard syntax for now lets us take advantage of
existing tools such as eslint.

The code is similar to the Croquet Library version presented
earlier, with a few notable differences. One is that we only need to
write code for the model but not for the view. The init() initializer
calls addEventListener() on the virtual DOM element (line 3),
which sets up some event handlers and Croquet publish/subscribe
calls so that a DOMevent on the corresponding actual DOMelement
will be sent to this virtual DOM element. Because the virtual DOM
element for textarea has a property called value, just as a real

1 class Counter {
2 init() {
3 this.addEventListener("click", "reset");
4 this.count = 0;
5 this.future(1000).call("Counter", "next");
6 }
7 next() {
8 this.count++;
9 this.value = "" + c;
10 this.future(1000).call("Counter", "next");
11 }
12 reset() {
13 this.count = 0;
14 this.value = "" + c;
15 }
16 }

Figure 3: The counter example in the Virtual DOM Frame-
work

Figure 4: A screenshot of a typical Greenlight session, where
the user has zoomed out to see various objects in the room.
If a Croquet app is loaded as one of the objects, all users in
the room become participants in that embedded app.

textarea element would, the code can assign a new value into it.
The framework will notice the change in the value property and
apply the difference to the actual DOM element.

With the design and implementation described in this section,
we now have a powerful application framework that also is a good
basis for providing live programming capabilities. In the next two
sections we will describe an application that is built on top of the
framework, and howwe can unleash the power of live programming
using it.

5 GREENLIGHT
Greenlight [5] is an application built on top of the Croquet Virtual
DOM Framework. It is inspired by Self’s Kansas system [25]. As
in Kansas, it is a large and flat rectangular area where you can
open collaborative text editors, images, and iframe elements that
in turn embed other Croquet applications. The screenshot in Figure
4 shows a typical session in Greenlight. Each user has their own
mouse cursor, and their positions change in real time as other users
interact with the application.

One can think of the large area as like a tabletop where various
papers, images and dynamic applications are laid out (although

<Programming> ’22 Companion, March 21–25, 2022, Porto, Portugal Yoshiki Ohshima, Aran Lunzer, Jenn Evans, Vanessa Freudenberg, Brian Upton, and David A. Smith

Figure 5: A screenshot showing two user tabs open on a ses-
sion with presentation mode enabled. The tab on the left is
acting as presenter, and the one on the right is following.
Because the presenter’s tab is wider, the presentation in the
follower’s tab is letterboxed so that exactly the same region
of the room appears.

since we refer to a session as a “room”, perhaps one should rather
think of them as being laid out on the floor). Each user by default
has an independent viewport in the room, and can zoom and pan
to see different parts of it. By contrast, whenever a user moves
or resizes an embedded object, all users see these changes as they
happen. Optionally, a session may have a video-chat app, so that
users can talk to each other while working together.

As well as collaborating at the level of the presence and layout of
objects in the room, users can collaborate within the applications
that have been loaded into the room. For example, a group can
open an iframe containing a Google Doc page, and create and edit
a document in that iframe without leaving the Greenlight browser
tab.

There are many subtle issues around designing user interface
features that work in themulti-user setting. For example, Greenlight
has a “presentation mode” in which one user takes control of the
viewport seen by all users, to make it easy to direct everyone’s
attention to the same embedded objects; a design issue was how
to control exactly what a “follower” user sees in this mode when
everyone’s screens (i.e., their browser tabs) can have different sizes
and aspect ratios. As shown in Figure 5, our solution was to use
letterboxing on follower tabs to ensure that everyone sees exactly
the same viewport.

We have released Greenlight as a locked-down application with-
out telling people about a secret feature that lurks within. This
feature—support for collaborative live programming—is discussed
in the next section.

6 LIVE PROGRAMMING IN GREENLIGHT
As described in Section 4, the code of an application written on top
of the Virtual DOM Framework is stored as text data. This means
that if we provide a collaborative editor for changing that text, and
a way for changed text to be adopted as the application’s new code,
we have ourselves a live collaborative programming environment.

A trivial demonstration of such live code editing is a workspace
that evaluates a snippet of JavaScript code (Figure 6) and shows the

Figure 6: The expression 3 + 4 has been entered into a collab-
orative text editor and evaluated.

Figure 7: Theworkspace itself can bemade to rotate by chang-
ing the behavior of the “this” object.

result. All users can see and edit the code snippet, and whenever
anyone hits Cmd-S, the current content is evaluated and the result
appears. Note that the appearance of the result in every user’s
workspace is not another shared edit to the workspace content, but
happens because each user is locally evaluating the snippet and
displaying the result.

The “this” variable in this workspace refers to the textarea
object that is showing the code. This makes it easy to perform
some tricks on the environment itself. For example, one can write
a method to access and modify the CSS transformation of the
textarea’s grandparent node (a div representing the window
frame) so that the window is given, say, a new rotation angle. Re-
peatedly evaluating this code with the help of a Croquet future()
call will mean that on every user’s screen the window will start to
rotate steadily (Figure 7).

Note that, thanks to the power of the browser and CSS, the collab-
orative text editor itself is fully functional even as it rotates; pointer
and keyboard events are automatically transformed, allowing users
to continue to edit the code and save new versions to change the
window’s behavior on the fly.

Beyond such simple visual tricks, there are of course more inter-
esting capabilities to live programming. A real application consists
of multiple objects, and the job of the application code is to make

An Experiment in Live Collaborative Programming on the Croquet Shared Experience Platform <Programming> ’22 Companion, March 21–25, 2022, Porto, Portugal

Figure 8: Two objects that each have their own expanders,
and communicate with each other via the publish/subscribe
mechanism.

those objects work together. One building block is adding code that
causes an event on one object to affect other objects. The following
is a simple demonstration of loading two images and adding such
event handling on the fly.

In Figure 8, two virtual DOM elements are loaded, and two sepa-
rate script editors opened to edit their instance-based expanders.
As explained in Section 4, the elements are equipped to publish and
subscribe to Croquet events. In this example, the cat object listens
for a DOM click event, and when it occurs the cat finds its CSS
width property and replaces it with the existing value multiplied
by 0.9. The cat then publishes a Croquet newWidth event with the
new width as payload.

Independent from the cat’s behavior, the dog listens for the
newWidth Croquet event; when an event arrives, the dog sets its
own width based on the event’s data payload.

With those two scripts, whenever any user clicks on the cat, both
the cat’s and dog’s widths change for all users. Anybody can edit
code while others are experimenting, and the new definition takes
effect as soon as Cmd-S is hit (and the content compiles).

The true potential power of live programming becomes apparent
when one considers that the code of the Greenlight application
itself is amenable to editing in this way. Greenlight uses thousands
of virtual DOM elements, all coded using instance-based expanders
and all communicating using Croquet’s publish and subscribe. It
would be straightforward to change or extend Greenlight on the fly,
just as in the demo above, for example adding a script that invokes
some Greenlight feature automatically when some condition is
fulfilled.

Liveness is considered important in the live programming com-
munity, but we think that it is truly essential in the collaborative
setting. One can imagine a collaborative session where one user
is setting up behavior for some object, while another user tweaks
the visual styles of other related objects. Each user’s changes are
immediately shared with the other, so they both see their combined
progress towards the shared goal. Of course there is the potential
for clashes if they both try to edit the same object at the same time,

but in a cooperative setting they can use side channels such as
the video and voice chat to help steer clear of such conflict. The
users could also choose to work for extended periods on their own,
preparing large sections of code in separate rooms (or copies of the
main room) then bringing them into the main room later, either
copying and pasting or opening the work in an iframe. In other
words, the live collaboration on shared objects is not an imposed
requirement but an additional available capability.

While the development of Greenlight itself did not fully take ad-
vantage of collaborative programming, we believe that it stands as
a validation of the following ideas: (1) an application as complex as
Greenlight can be written using instance-based expanders to define
the behaviors of thousands of cooperating elements; (2) Croquet
provides a solid foundation for keeping such a collaborative appli-
cation in sync; and (3) live editing of such a large-scale application
is possible and practical. We feel that with further attention to the
editing facilities, collaborative live programming will be a realistic
technique for future development of similarly rich applications.

7 RELATEDWORK
The replicated computation model can be traced back to TBAG by
Elliott et. al [9]. TBAG transmits events in a peer-to-peer manner.
The restricted programming model, which was constraint-based,
ensured that the resulting application state was replicated. Cro-
quet’s computation is more general and allows developers to write
interactive programs in various styles, as long as the resulting data
is stored in the model objects.

Some multi-user games, such as Age of Empires, use a similar
model. The model works well enough for the limited forms of syn-
chronization needed within those games’ domains, but Croquet
offers a platform for writing a broader range of multi-user applica-
tions.

There aremany “local first” [18] frameworks based onCRDT [23],
including Yjs [10] and automerge [11]. Those frameworks aim to
solve similar but still substantially different problems. The primary
concern of CRDT and other solutions is what to do when changes
cannot be propagated “right away”, including the possibility that
the network is temporarily disconnected. The merging algorithm
can be intelligent so that it preserves the “intent” of changes. A
user’s intent can be guessed reasonably in a limited domain such
as text editing or other well known problems, but merging changes
to a generic data structure when radically conflicting changes are
made is often hard.

On the other hand, Croquet simply assumes real-time network
connectivity for its normal operation, and tries to provide good real-
time shared experiences. The server guarantees consistent message
order, meaning that eventual consistency between peers is guaran-
teed, and not something that the developer even has to consider.
Croquet also fully takes care of reconnecting a user consistently
into the session when recovering from a network disruption. That
said, as written in Section 2, a Croquet app still requires careful
treatment when users issue events that conflict with each other.

Croquet’s session-join mechanisms (based on snapshots and
event catch-up) relieve the developer of many challenges that gen-
erally arise in shared-application development. This goes beyond

<Programming> ’22 Companion, March 21–25, 2022, Porto, Portugal Yoshiki Ohshima, Aran Lunzer, Jenn Evans, Vanessa Freudenberg, Brian Upton, and David A. Smith

the reconciling of data changes to the storage and recovery of ap-
plication state; these can be daunting tasks for a developer who is
not familiar with the myriad ways in which network disruption
can occur. All the features needed are provided as a service, so
a developer can create a shared application without setting up a
server or network storage.

The concept of self-sustaining live programming environment
on the web was influenced by a series of implementation of Lively
Web [17], especially the “Lively4” implementation that embraced
DOM elements [19].

As for related work for Greenlight, there are many collaboration
applications available [15, 16]. Greenlight differs from many of
them as it is a meta application to manage other collaborative
applications. The entire application is written in about 10,000 lines
of code, which means that a single person can fully understand and
modify it.

There are also many attempts in the collaborative live program-
ming field [3, 21]. However, many of those focus just onwriting code
together, without guaranteeing that everyone arrives at identical
execution results [20]. The further step of supporting collaborative
development of collaborative applications has not been extensively
researched.

The collaborative live programming feature in Greenlight is
experimental, and is not ready for public consumption. However,
the results achieved so far suggest that it is a powerful direction
for further pursuit.

8 CONCLUSION
This paper describes our JavaScript-based implementation of Cro-
quet, the base Croquet library, the Virtual DOM application frame-
work on top of the library, the Greenlight application that was
built with that framework, and an experimental live programming
feature built within Greenlight. We believe that each of these layers
is novel, and that what we have shown by way of a possible user ex-
perience in collaborative live programming points to a worthwhile
direction for future programming environments.

The work was done in a 2D application, but there is nothing
that limits this concept to two dimensions. In fact, the liveness and
immediate feedback are even more essential in a 3D and immersive
environment. We hope that this work inspires future collaborative
creation environments of all forms.

ACKNOWLEDGMENTS
The authors wish to acknowledge David Reed, Alan Kay and the
late Andreas Raab, who worked with some of us in bringing the
original Smalltalk version of Croquet to fruition. We also thank our
Croquet Corporation colleagues.

REFERENCES
[1] Dan Amelang. 2008. Mico. Viewpoints Research Institute. https://github.com/

damelang/mico.
[2] Gilad Bracha and William Cook. 1990. Mixin-Based Inheritance. In Proceedings of

the European Conference on Object-Oriented Programming on Object-Oriented

Programming Systems, Languages, and Applications (Ottawa, Canada) (OOP-
SLA/ECOOP ’90). Association for Computing Machinery, New York, NY, USA,
303–311.

[3] CodeSandBox. 2021. CodeSandBox Live. CodeSandBox. https://codesandbox.io/
docs/live.

[4] Croquet Corporation. 2018. Croquet. Croquet Corporation. https://croquet.io/
docs.

[5] Croquet Corporation. 2019. Greenlight. Croquet Corporation. https://croquet.io/
greenlight.

[6] Croquet Corporation. 2020. The Croquet Virtual DOM Framework. Croquet
Corporation. https://github.com/croquet/virtual-dom.

[7] Croquet Corporation. 2020. The Croquet Virtual DOM Framework. Croquet
Corporation. https://croquet.io/docs/virtual-dom.

[8] Terence Eden, Xiaoqian Wu, Sangwhan Moon, Shwetank Dixit, Scott O’Hara,
Patricia Aas, and Bruce Lawson. 2018. HTML 5.3. W3C Working Draft. W3C.
https://www.w3.org/TR/2018/WD-html53-20180809/.

[9] Conal Elliott, Greg Schechter, Ricky Yeung, and Salim S. Abi-Ezzi. 1994. TBAG:
a high level framework for interactive, animated 3D graphics applications. In
Proceedings of the 21th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1994, Orlando, FL, USA, July 24-29, 1994, Dino Schweitzer,
Andrew S. Glassner, and Mike Keeler (Eds.). ACM, New York, NY, USA, 421–434.
https://doi.org/10.1145/192161.192276

[10] Kevin Jahns et al. 2014. Y.js. Kevin Jahns et al. https://yjs.dev.
[11] Martin Kleppmann et al. 2017. Automerge. Martin Kleppmann et al. https:

//github.com/automerge/automerge.
[12] Vanessa Freudenberg. 2020. Croquet: A Unique Collaboration Architecture.

Video is available at: https://www.youtube.com/watch?v=ujOVHVAjXj4.
[13] Vanessa Freudenberg, Yoshiki Ohshima, and Scott Wallace. 2009. Etoys for One

Laptop Per Child. In 2009 Seventh International Conference on Creating, Connecting
and Collaborating through Computing. IEEE Computer Society, Los Alamitos, CA,
USA, 57–64.

[14] Ira P. Goldstein and Daniel G. Bobrow. 1980. Extending Object Oriented Pro-
gramming in Smalltalk. In Proceedings of the 1980 ACM Conference on LISP
and Functional Programming (Stanford University, California, USA) (LFP ’80).
Association for Computing Machinery, New York, NY, USA, 75–81. https:
//doi.org/10.1145/800087.802792

[15] Google. 2017. Google Jambboard. Google. https://jamboard.google.com.
[16] Miro Inc. 2012. Miro. Miro Inc. https://miro.com.
[17] Daniel H. H. Ingalls, Krzysztof Palacz, Stephen A. Uhler, Antero Taivalsaari, and

Tommi Mikkonen. 2008. The Lively Kernel A Self-supporting System on a Web
Page. In Self-Sustaining SystemsWorkshop (S3). Springer Berlin Heidelberg, Berlin,
Heidelberg, 31–50.

[18] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark Mc-
Granaghan. 2019. Local-First Software: You Own Your Data, in Spite of the
Cloud. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Athens,
Greece) (Onward! 2019). Association for Computing Machinery, New York, NY,
USA, 154–178. https://doi.org/10.1145/3359591.3359737

[19] Jens Lincke, Stefan Ramson, Patrick Rein, Robert Hirschfeld, Marcel Taeumel,
and Tim Felgentreff. 2017. Designing a Live Development Experience for Web
Components. In Programming Experience 2017.2 (PX/17.2) Workshop. ACM, New
York, NY, USA.

[20] Microsoft. 2018. Visual Studio Live Share. Microsoft. https://visualstudio.microsoft.
com/services/live-share/.

[21] Replit. 2016. Replit. Replit. https://replit.com.
[22] Nathanael Schärli. 2005. Traits — Composing Classes from Behavioral Building

Blocks. Ph. D. Dissertation. University of Berne.
[23] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.

Conflict-Free Replicated Data Types. In Proceedings of the 13th International
Conference on Stabilization, Safety, and Security of Distributed Systems (Grenoble,
France) (SSS’11). Springer-Verlag, Berlin, Heidelberg, 386––400.

[24] David Smith, Alan Kay, Julian Lombardi, Mark McCahill, Rick McGeer, Andreas
Raab, and David P. Reed. 2005. Croquet: A platform for Collaboration. InWorking
with Vision workshop at OOPSLA 2005, San Diego, CA, USA, October 19.

[25] Randall B. Smith, Mario Wolczko, and David Ungar. 1997. From Kansas to Oz:
Collaborative Debugging when a Shared World Breaks. Commun. ACM 40, 4
(April 1997), 72–78. https://doi.org/10.1145/248448.248461

[26] Alessandro Warth, Milan Stanojević, and Todd Millstein. 2006. Statically Scoped
Object Adaptation with Expanders. In Proceedings of the 21st Annual ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications (Portland, Oregon, USA) (OOPSLA ’06). ACM, New York, NY, USA,
37–56.

https://github.com/damelang/mico
https://github.com/damelang/mico
https://codesandbox.io/docs/live
https://codesandbox.io/docs/live
https://croquet.io/docs
https://croquet.io/docs
https://croquet.io/greenlight
https://croquet.io/greenlight
https://github.com/croquet/virtual-dom
https://croquet.io/docs/virtual-dom
https://doi.org/10.1145/192161.192276
https://yjs.dev
https://github.com/automerge/automerge
https://github.com/automerge/automerge
https://www.youtube.com/watch?v=ujOVHVAjXj4
https://doi.org/10.1145/800087.802792
https://doi.org/10.1145/800087.802792
https://jamboard.google.com
https://miro.com
https://doi.org/10.1145/3359591.3359737
https://visualstudio.microsoft.com/services/live-share/
https://visualstudio.microsoft.com/services/live-share/
https://replit.com
https://doi.org/10.1145/248448.248461

	Abstract
	1 INTRODUCTION
	2 CROQUET
	3 CROQUET APPLICATION DEVELOPMENT IN A NUTSHELL
	4 THE CROQUET VIRTUAL DOM FRAMEWORK
	4.1 Canvas vs. DOM
	4.2 Virtualizing the DOM Specification
	4.3 Full DOM or Subset of DOM
	4.4 Behavior Representation: Instance-based Expanders

	5 GREENLIGHT
	6 LIVE PROGRAMMING IN GREENLIGHT
	7 RELATED WORK
	8 CONCLUSION
	References

