el

“00sgg6

- PROLOG

A Step Toward the

Ultimate Computer Language

Ron Ferguson
137 University Ave W, Apt 907
Waterloo, Ontario N2L 3E6 Canada

What will the ultimate computer language be? What
language will we be using oncé assembler language,
BASIC, and Pascal have become museum pieces? Sur-
prisingly, this question is easy to answer: there will be
several ultimate computer languages. We even know
what their names will be. They will be called English,
Spanish, French, Russian, Chinese, etc. After all, the
easiest language you could use to program a computer is
the one you use to communicate with other people.

Unfortunately, programming a computer in English is
still in the future. For a computer to understand English,
it must be able to cope with the ambiguities inherent in
any natural language. It must be able to deduce facts you
don't bother specifying because they are “obvious.” (No-
thing is obvious to a computer unless it has been pro-
grammed to realize it is obvious. Everything must be
stated explicitly and precisely.)

Today, though, we do have a language, called PRO-
LOG, that simplifies the task of informing a computer
about obvious (and not so obvious) facts. The name
PROLOG is short for “PROgramming in LOGic”; how-
ever, you do not have to be familiar with formal logic
theory to use PROLOG. In fact, the language is so simple
a child can learn it. Yet its very simplicity makes it far
more powerful than any other language currently avail-
able for use on microcomputers.

PROLOG is a programming language ideally suited to
the manipulation of knowledge. A PROLOG ‘program
consists of facts about a certain subject. You can ask
PROLOG questions and it will attempt to answer them

384 November 1981 € BYTE Publications inc

using the facts it has been told.

Facts are expressed in PROLOG in a concise marner.
The fact that John is the father of Tom is expressed by the
one-line PROLOG program:

father{john,tom).

The relationship, father, appears first, followed by the
arguments (in parentheses) to which the relation app.es.
This data structure is called a term. The only poter:ial
area of confusion is the order in which the arguments are
written. As a rule, the subject of the relation is the #rst
argument and the object is the second. With this r-o-
gram, you can now ask PROLOG whether John is the
father of Tom:

father(john,tom)?

to which PROLOG will respond:
yes

Note that the only difference between telling PROLOG
that John is Tom's father and asking PROLOG whether
John is Tom's father is the punctuation mark at the enc of
the statement. An assertion always ends with a perioc a
question always ends with a question mark. If you ask
whether John is the father of Bill:

father(john,bill)?

Authorized Com;rwodore se
Repalr of the complete line of Commodore products
In a hurry? Check our modular

W

rvice ceriter -

AR

HARDWARE:
CBM 8032 Computer,
80Column $1195
CBM 8050 Disk Drive 1395
CBM 4032 Computer,
40 Column 995
CBM 4040 Disk Drive 995

CBM 4022 Printer 649
CBM VIC 20 Computer 263
CBM V5100 Cassette 68
PET to IEEE Cable 33
IEEE to IEEE Cable 39

BASF Diskette, Box of 10 30

SOFTWARE:

0zz

Wordcraft 80

Tax Preparation System

IRMA

‘Dow Jones Portfolio
Management System

PersonafTax

Pascal ¢

Assembler Development
Package

Wordpro 4+

Order TOLL FREE
1+-800-527-3135

10 AM 10 4 PM Cm’Mondaymrough Friday
Texas residents call 1+214-661-1370

Units in stock shipped within 24 hours, FO.B. Dallas, Texas.
Auemipmentshfppedwimnmmwsvsarrmty
Residents of Texas, Louisiana, Oklahoma City and Tulsa,
Oklahornanmaddappkawemm

$299
299
380
380

115
55
229

77
329

with CBM systems.

3. EPROM programmer
4. Front-end processor

386 November 1981 € BYTE Publications Inc

S.Mdmonalﬂnmmﬂobeanrmad~

Besxnmwﬁcemeaddmssbeuuﬁormehmm
dealer inquiries welcome.

OIBox 1166 « 16260 Midway Road - =

ddison; Texas 75001 - {214) 661-1370.

Edectic shortly will be announcing products that are designed 1o work

i ROM!O:mRSZBZm—ﬁmpamMm—ZbKB’ROM
memory-nanaged altemate character set, software
corgrofied—EDOS {extended DOS).

2. Terminal program (options with ROMIO)

Circle 153 on inquiry card.

PROLOG{ will respond:

no

because it does not have any information to indicate that
John is the father of Bill.

You can ask PROLOG more complicated questions
such as who the father of Tom is by typing:

father(%who,tom)?

The % at the beginning of “%who” indicates that
“%who” is a variable, When a question contains a
variable, PROLOG attempts to assign a correct value to
the variable. PROLOG will respond to the above ques-
tion with:

%who = john

If PROLOG cannot find a correct value for the variable,
it again responds no.

father(%who, bill)7
no

As is the case in most programming languages, it does
not matter what name you use for a variable. You can
have used “%x" instead of “%who”. However, unlike
most programming languages, a PROLOG variable's
scope is limited to the statement in which it appears. If
the same variable name is used in two separate
statements, there is no connection between them. They
are treated as different variables.

So far, PROLOG appears to be nothing more than an
easy-to-use data-base language. You can store informa-
tion and retrieve it later by asking questions, What makes
PROLOG more than just another data-base language is
that you can teach PROLOG how to manipulate the facts
you have given it. Assume that you have made the
following assertions:

tather(bill,john).
father(john,tom).

From these assertions, you can deduce that Bill is the
grandfather of Tom. PROLOG can also make this deduc-
tion if you tell it the fact that the father of the father is the
grandfather. In PROLOG this fact is stated as a clause:

grandfather(%x, %z) — father(%x, %y) father(%y, %z).

— means “is implied by” or “is true if.” The term to the
left of — is true if the terms to the right of — are true. The
term to the left is called a goal, and the terms to the right
are called subgoals. The goal is true if the subgoals are
true. The goal is also referred to as the head term of the
statement.

Note that variables have been used in the clause to
make a general statement about what it means for some-

one to be the grandfather of someone else. PROLOG can
use this general statement to answer specific questions. If
you ask the question:

grandfather(bill,tom)?

PROLOG will attempt to answer by setting “%x = bill”
and "%z = tom” in the definition of grandfather. This
creates an instance of the grandfather definition of the
following form:

grandfather(bill, john) -~
father(bill, %y).father(%y,tom).

’
This states that Bill is the grandfather of Tom if Bill is
the father of a person who is the father of Tom. By the
first two assertions, PROLOG knows that Bill is the
father of John and John is the father of Tom. Therefore,
PROLOG will respond with a yes.
If you ask PROLOG to find two people such that one is
the grandfather of the other:

grandfather(%x, %y)?
PROLOG will respond:
%x = bill, %y = tom

Nonprocedural Languages

Most computer languages currently in use (such as
BASIC and Pascal) are procedural: & computation is per-
formed by executing a series of actibns in a precise order.
Each statement of a procedural language represents only
one step in an algorithm. This means that the correctness
of an individual statement cannot be determined by ex-
amining the statement by itself. Instead, you must ex-
amine the entire algorithm in which the statement occurs
to determine if the statement is correct. For example,
I'=1+ 2 is a typical statement in a procedural lan-
guage. If you are asked to determine whether the state-
ment is correct, the most you can say is that its syntax is
correct (ie: it is a valid statement in the language). This
does not necessarily mean that the statement is the cor-

rect one to use at that particular stage of the algorithm.
Perhaps the correct statement should be [= I « 2. You
cannot tell without looking at the rest of the code in
which the statement appears.

In PROLOG, on the other hand, you can determine
whether a statement is true by examining that statement
only. The correctness of the PROLOG statement that
defines grandfather can be determined independently of
the rest of the PROLOG program. A statement in a PRO-
LOG program corresponds to an entire subroutine in a
conventional programming language. Thus PROLOG
programs are extremely modular. PROLOG carries the
“divide-and-conquer” approach of structured program-
ming one step further,

Another advantage of nonprocedural languages is that
the order in which statements occur is irrelevant. Each
PROLOG statement represents a fact, and it does not
matter in what order PROLOG is told the facts. This
means that you can increase the power of a program by
adding new statements, and in most cases this does not
require any modification of the statements that are
already there. For example, the definition of grandfather,
given earlier, is true, but it is only a partial definition.
One must add the following statement to obtain a com-
plete definition:

grandfather(%x, %y) —
father(%x, % z), mother(%z,%Y).

Assume that the following assertions are also made:

mother(jane, alice).
father(bill jane).

Now if you ask for a grandchild of Bill:
grandfather(bill, % grandchild)?
PROLOG will respond:
%grandchild = tom

You can also find out if Bill has another grandchild by

T3

Z£80/Z8000

BANALOG 1/0 -
@Low/High Level A/D
@ X-Ducer Compensation

f ASC Computers 8085/3086/88

BPERIPHERALS -
©Flasidle Disks to 16D
©Winchester Brsks ta J6GHb

conmmarimatns LSI11/PDP-11 . 6800/09/68000 2w 1o bos
@ Programmable Gain (-’_ © Vides Comerss

o vie Sigizen Data Acquisition . Multi-Processing oo imee
® Muftipls DACs ESYSTEMS -
@OIGITAL 1/0 - -ASC MICRO-COMPUTER SYSTEMS- © Mogwlar Expandsbiity

@ Opticatly isoistud

@ High Lovel AC & DC

© Pulss Count 1/0
®Programmable Timers
© Digitsl Muliphexers

© UNI-BUS/IEEE Drivers
©VYoice Synihesizers
BCOMMUNICATIONS -
o Synchronswt to BOOXE
®Asynchrencus to 24KB
©Serial RS-232 o 20 Ma

Featuring a tull range of industry standard 8 and 16 Bit Micro-Processors, HMemoties,
IO Controllers, AnalogiDigital Modules and Communications Units.

Expedited delivery on the latest technology in Micro-Computers, Disk Memories
and Peripheral options, including Software and System Integration.

ASC Micro-Computer Systems are offered with optional IEEE/S-100 Bus, INTEL
MULTI-Bus, MOTOROLA EXOR-Bus, or STD-Bus compatible Micro-Processors,
Memories, /O Controllers, and Enclosures to your specifications.

Cail ASC for prompt quotations on Micro-Computer configurations.

©industre! Enciesures

O Rack-Meunting Codmats
@1/ Tormsashen Poncls

© Pertabie DAS Dption
©Contrei Consaie/ Dispisys
©Doveiopmont Sysioms
BSOFTWARE -

SCP/M Dporsting Systems
S MuRi-Uswr Suppont
OFertron, Basic, Poscal
GBAS - Process Lsngusges

. ‘ .] .. - : 13 208 A Loequeqe
Gl L%/ ASC Computer Systems, i, IS,

. Michigen 48081

388 November 1981 & BYTE Publications Inc

. _779-0_700

Circle 35 on inquiry carc.

<

typing 7. Now PROLOG will respond:
%grandchild = alice

If you ask whether Bill has other grandchildren besides
Tom and Alice by typing 7 once more, PROLOG will re-
spond with a no.
The two partial definitions for grandfather can be com-
bined into one statement:
grandfather(%x, %y) — father(%x, %z),
(father(%z, %y);mother(%z, %v)).

The semicolon between “father(%z, %y)” and “mother
(%z,%y) means that one or the othdr must be true.
A term can have any number of arguments. To say
that Alice is pretty, you would type:
pretty(alice).

Now you can ask PROLOG to find a pretty grandchild of
Bill, as follows:

grandfather(bill, % grandchild), pretty(% grandchild)?
to which PROLOG will respond:

%grandchild = alice

How PROLOG Works

To use PROLOG you do not need to know how it ac-
tually arrives at its answers. If you have specified all the
required information, PROLOG will find the answer as if
by magic. However, it is interesting to know how it goes
about coming up with a solution.

Basically PROLOG attempts to solve goals from left to
right. For a given goal, PROLOG attempts to find a state-
ment whose first term (the only term in an assertion: the
term to the left of the — in a clause) can be made to
match the goal. It then attempts to solve the subgoals of
that statement. Of course, if the statement is an assertion,
there are no subgoals. If the subgoals can be solved,
PROLOG then proceeds to the next goal. If one of the
subgoals cannot be solved, PROLOG backtracks and
tries to find another statement whose head term matches
the goal. If there are no untried statements left, PROLOG
realizes it cannot solve this particular goal.

This does not necessarily mean there is no solution to
your original question. If the goal PROLOG is working
on is actually a subgoal of one of your original goals.
there may be an alternate solution of the original goal
that does not involve the failed subgoal. PROLOG will
backtrack further and try to find an alternate solution: it
gives up only when it can find no solution to any of vour
original goals.

Let us examine in more detail how PROLOG works.

Listing 1: Assertions that specify the environment. PROLOG attempts to answer questions based on facts and relations tha® it
knows, stated in special syntax. Questjons are broken into goals to be achieved from left to right.

4
father(bill, john).

father(john, tom).
father(bill, jane).
mother(jane,alice).

grandmother(%x,%y)<- father(sx,%y),(father(sz, %y);mother(%z,%y)).

pretty(alice).

in programming in Pascal

McGraw-Hill Boo

The Only Book That Is Machine Specific in
Teaching Pascal on the Apple

by Peckham and Luehrmann
e Teaches the total beginner to become competent
e Offers concrete experiences in creating, running
and debugging actual programs in Pascal

This hands-on guide will teach you about the editor. the
operating system commands. even the keyboard layout
and labels of the Apple computer. 384 pp. $13.95

tore

Please print clearty.

mmmmmmmm = 1K
McGraw-Hill Bookstore e-‘ ﬁ
1221 Avenue of the Americas lfn

! N.Y. N.Y. 10020 BY1')
Pleasesendme__________ copeso

’ APPLE-PASCAL at $13.95 each. I

I MasterCard . Visa___ AmerExp____ l

I Account No. Expires '

l Name '

| Address I

l City State 21p !

LAdd sales tax plus $2.50 postage. handiing

__________ ;

392 November 1981 <. BYTE Publications Inc

Circle 243 on inquiry card.

Circle 132 on inquiry card,

ATTENTION ALL APPLE USERS

(602) ‘{98-94 11

Desert Computer announces a new online software
order service available 24 hours a day. Our complete
catalog and order information are available on this
system and on the Source. On the Source use mail to
TCHB60 to order and use >BASIC (11)TCH860>READ
to view the catalog. Our system can be reached at the
number above. If you do not have a modem you can send
a sase to the address below or use the reader service
number. We carry nationally known brands at discount
prices.

Take the BYTE out of Software Cost

DESERT COMPUTER P.O.BOX 4841 SCOTTSDALE,AZ85261

B,

0 Components Express. Inc.

~Have you] nsseq yom compiter latery?”
13805 Edmger UthC Santa Ana CA 92705 (714) $58- -3972

BROAD BAND MICROWAVE
RECEIVER SYSTEM
1.8GHZ to 2.4 GHZ

==

$205.00 | /7007, |

With buill-in\-converter 1o channel
2, 3, or 4 of any standard TV set.

HRANGE Line of sight 10 250 miles
SCOPE Willreceve withiri the frequency band from satelites. primary
microwave stations. and repeater microwave booster
stations
CONTENTS. Packaged in 18"x19"x4 1/2" corrugated carton complete
with
e 24 Dish e 300 Ohm to 75 Ohm Adapter
e Feed-Horn Recerver e 750 Ohm to 300 Ohm Adapter
e Mounting Bracket e 60 Feet Coax Cable with Connectors
e Mounting Clamp e 3 Feet Coax Cabie with Connectors

¢ |nstructions

WARRANTY

180 days for all factory defects and electronic fatlures for normatl
useage and handling Defective sub assemblies will be replaced
with new or re-manufactured sub assembly on a 48 hour exchange
guarantee

This system s not a kit ana requires no additonal devices of eguipment other than

a TVsetioplace ;noperaton DEALER INQUIRIES INVITED.

194 A avprmber 1081 7 BRVTE Dol e e 1o irades TR Ar o ime i mg el

Assume that the statements in listing 1 have been made.
Now assume that PROLOG is asked this question:

grandfather (bill, %grandchild), pretty(%grandchild):

Because PROLOG attempts to answer questions by
solving goals one at a time from left to right, it will first
attempt to solve “grandfather(bill, %grandchild)”. It
searches for a clause whose first term is grandfather.
There is only one clause whose head term is grandfather,
so PROLOG tries to match “grandfather (bill, %grand-
child)” with “grandfather(%x, %y)”. A match can be
made by setting “%x = bill”and "%y = %grandchild".
This substitution is applied to the subgoals of that state-
ment, which may be expanded to:

father(bill, %z), (father(%z, %grandchild);
mother(%z, %grandchild))

PROLOG now attempts to solve “father(bill, %z)".
The first three statements have father as a head term, so
PROLOG tries them one after the other. The first state-
ment matches if “%z = john”; it is an assertion and has
no subgoals. Therefore, PROLOG can proceed to the
next goal in the expanded statement. Here there is a
choice between “father(john, %grandchild)” and
“mother(john, %o grandchild)’. PROLOG attempts to
solve the first alternative. It tries to match
“father(john, %grandchild)” with the first given state-
ment, but fails because the first arguments do not match.
It then tries the second statement, and this time succeeds
with the substitution “%grandchild = tom".

Now all the goals of the expanded statement have been
satisfied, so PROLOG attempts to solve the last goal of
the original question. Since “%grandchild = tom”, the
goal is “pretty{tom)”. There is only one clause whose
head term is “pretty”, but “pretty(tom)” does not match
“pretty (alice)”. At this point, PROLOG backtracks to
the last place where there was a choice—between
“father(john, %grandchild)” and “mother{john, %grand-
child)”— and selects the alternate choice: “(mother(john,
%grandchild}”. This choice does not work either because
the fourth statement is the only one whose head is
“mother” and “mother(john, %grandchild)” cannot
match “mother(jane,alice)”.

So PROLOG backtracks further and tries to solve the
first goal of the expanded statement again.

First, it tries to match “father(bill, %z)" with the second
statement but fails. Then it tries to match ‘“father
(bill, %z)" with the third statement and this time suc-
ceeds by setting “%z = jane”. Now PROLOG attempts
to solve the second part of the expanded statement,
which is a choice between “father(jane, %grandchild)”
and “mother(jane, %grandchild)”. Once again PROLOG
attempts to solve “father(jane, %grandchild)” first but
fails. Then it attempts to solve “mother(jane, %grand-
child)”. This time it succeeds by matching “mother
(jane, %grandchild)” and setting “%grandchild = alice”.

PROLOG now tries to solve the last goal in the original
question, which is now “pretty(alice)”. This goal matches
the sixth statement, so “%grandchild = alice” is an
. rer to the original question.

Controlling Robots

Now consider how a PROLOG program could be used
to control a robot. Assume that a human and a robot are
inside a rocket that has landed on the surface of a planet.
The rocket has an airlock. On the planet there is a
building that contains rocket fuel. There is also a cave
with a key to the building. The cave also contains gold.
The robot is able to lift the key, the fuel, or the gold (but
it cannot lift the rocket). This situation can be destribed
in PROLOG as shown in listing 2.

The statements in listing 2 represent the state of the
robot’s environment, As the robot interacts with the en-
vironment, some of the statements mdy cease to be true.
To keep the description of the environment up to date
you must have a way to delete statements no longer true.
PROLOG provides a built-in function, called delete, to
eliminate specified statements; another built-in function,
called assert, can be used to add statements,

Now you can specify commands for the robot to at-
tempt to obey. The first command will make the robot
fetch an object to a specified place (see listing 3a).

The first subgoal, “inside(% object, % place)”, checks to
se= if the object is already where you want it. If it is, the

st does not need to do anything. If it isn't, the robot
must pick up the object, move to the required place and
drop it. Note that the terms “pickup(% object)$, “moveto
(%place)’, and “drop(%object)” have been grouped
together within parentheses to show that the semicolon
operator applies to all of them.

In order for the robot to pick up an object (see listing
3b), the object must be liftable. The robot must move to
the place where the object is in order to pick it up. As-
suming that the robot can carry only one thing at a time,
it must be empty-handed when it picks up an object.

Listing 2: Hypothetical environment found in a simulated space
expedition. Through a series of commands specified in listing 3,
a robot can be made to perform complex tasks, such as exiting
the craft, and finding and returning with fuel—all with a simple
instruction from the user.

ingide(human, rocket).
ingide(robot, rocket).
ingide(fuel,building).
inside(key,cave).
inside(gold,cave).
entrance(airlock, rocket).
entrance(door,building).
entrance(hole,cave).
»sed(airlock).
t1o0sed(door).
liftable(key).
liftable(fuel).
liftable(gold).

Model i 64K 33288

An excellent computer for your business
needs. Easy expandability & compatibility.
No formal operator training needed. All ac-
cessories available—disk expansions,
printers, software, at our low discount
prices. Our fast, fully insured air freight
service can assure most deliveries within
seven days after payment is received.

Model 11l 16K $835 With TCS Memory:
Model 11l 32K $979 Model 11l 32K $909
Model 111 48K $1089 Model! i1l 48K $969

Model 11l 48K 2 Disk RS232 $2100 —"9i
Model! Il 32K 1 Disk $1729 .
i [

Model il 48K 1 Disk $1849
‘Corvus Hard Disks SCall

5. 10, or 20 megabytes of stocage for the Model | 1, or 111, confiqured with TRSDOS, NEWDOS 80. or CP/M
Tor one o several computers sharing a single hard drive simuttaneousty Easy expandability and compatibriity
Nso fits Apple, Superbrain. Altos, and most other computers Don't wait on othes 's prormuses We can Oeliver
this proven system now Calf us for the lowest pnce!

Pocket Computer & Acc. SCail Pocket Computer Printer Interface 1 stock

Color Computer
4K Level 1 $319

16K Level | $439

16K Extended Basic $489

With TCS Memory:

16K Level | $369
16K Extended Basic $449

Epson Printers SCall

Letter qualty matrix printer has fult software control of 40. 80. 66 or 132 columns 80 cos tidirectionai
wractor teed. disposable printnead $300 less than nearest competitive printer Lists $645 Calt for our

‘ow price

MX-80 Tractor Feed MX-100 Graphtrax, Friction

MX-80 FT Friction and and Tractorupto 15"
Tractor wide.

Graphtrax for MX-80, MX-80 FT, graphics option.

Word Processor Package $2679

Includes 2 Disk Modet 111 with 48K, Epson MX-80 Tractor Feed with cable, and
word processing software ready to operate. Lists at $3300. Our low price
special this month: $2678. For MX-80 FT Tractor and Friction. add $99.

@ Paymen! Money Order. Castuer s Check Ce-titied # Prices subtect to change any time
Check Personal checks take 3 wks VISA MC @ No tax out-of-state Texans add 5%
ade 3% ¢ Delivery subject to avar'abuty

e Shipping extra. quoted by phone

TEXAS COMPUTER SYSTEMS

Box 951, Brady Texas 76825

For fast. efficient service. we can air freight from Dallas
10 major a/p near you. Call for information.

Toll Free Number 800-433-5184

Texas Residents 817-274-5625

Circle 408 on tnquiry card. November 1981 © BYTE Publications Inc 395

Listing 3: Fundamental commands built to control the hypothetical robot. In each case, the commands are constructed of goals and
subgoals that are either basic enough for the robot to perform directly or are further broken into subgoals.

3a

fetch(gobject, splace)<~ inside(%object, splace);
(pickup(sobject), moveto(splace),drop(sobject)).

3b
pickup($object)<~ liftable(%object),

inside($object, $place), moveto(tplace),
emptyhanded, assert(holding(%object)).

3c

emptyhanded <- (holding($obyect), drop(%object)); true.

34

drop(sobject) <- delete(holding(%object)).

-
3e

moveto(gplace) <— inside(robot, $place);

(inside(robot, $place2), leave(splace2),enter(tplace));
(outside(robot),enter(%place)).

3f

leave(%place) <— entrance(%x, $place),((closed(¥x.),open(tx)); true),
delete(inside(robot, $place),assert(outside(robot)),
((holding(sobject),delete(inside(sobject, tplace)),
assert(outside(sobject)));true).

enter({%place) <~ entrance(%x, splace), ((closed(%x),open(%x));true),
deletefoutside(robot)),assert(inside(robot,tplace)),

((holding(sobject),delete(outside(sobject)),
assert(inside(%object, splace)));true).

39

delete(closed(door)).

open(door) ¢~ (holding(key);(inside(key, %place),pickup(key), leave(splace))),

Finally, you must assert that the robot is now holding the
object.

In order to be empty-handed, the robot must drop
whatever it is holding (see listing 3c). If it is not holding
anything, it is already empty-handed, so the built-in true
function (which always succeeds) is executed.

When the robot drops something, you must delete the
statement that says it is holding the object (see listing 3d).

Depending on where the robot is located initially, there
are three possible actions that the robot must perform to
move to a specified place (see listing 3e).

e If it is already at the specified place, it does not need to
do anything.

oIf it is inside some other place, it must leave that place
and enter the specified place.

eIf it is already outside, it must enter the specified place.

To leave a place (see listing 3f), if the entrance is
closed, the robot must open the entrance. You must also
remember to delete the fact that the robot is inside the

396 November 1981 © BYTE Publications Inc

place, and assert that the robot is now outside. If the
robot is holding something, you must assert that the ob-
ject also moves outside. Entering a place is accomplished
similarly. To open the door to the building, the robot
must either be holding the key or it must pick up the key

(see listing 3g). Assume the robot can open the rocket’s ,‘

airlock automatically:

open(airlock — delete(closed(airlock)).

Now you can order the robot to fetch the gold to the '

rocket with the command:

fetch(gold,rocket)?

The robot will leave the rocket, enter the cave, pick up :.5.
the gold, and return to the rocket. If you ask the robot to &
fetch the fuel from the building by typing: ‘B

fetch(fuel, rocket)?

o g a4

In Less Than 3 Minutes

Your IBM Model 50, 60, or 75
Electronic Typewriter
can be an RS232C PRINTER or TERMINAL

CALIFORNIA MICRO COMPUTER Models 5060 and
5061 can be installed easily and require NO modifications
to the typewriter.

For additional information contact:

CALIFORNIA MICRO COMPUTER
9323 Warbler Ave., Fountain Valley, CA.
92708 (714) 968-0890

ATARI ASTEROMIDS

ATARI MESE] COMMAND

WE CARRY THE COMPLETE LINE OF ATARI SOFTWARE,
PERIPHERALS AND ACCESSORIES. CALL FOR THE SUPER
CHRISTMAS SAVINGS!!

OMEGA SALES CO.
WEST COAST EAST COAST
1-800-235-3581 1-800-556-7586

398 November 1981 © BYTE Publications Inc

the robot will leave the rocket and try to enter the
building. To do this it needs the key, so it will go to the
cave to get it. Once it is in the building, it will drop the
key and pick up the fuel. Finally, it will return to the
rocket with the fuel. At this point, the PROLOG state-
ments describing the “environment” will be as shown in
listing 4. Note that the airlock and the door to the
building are left open because the robot did not bother to
close them,

This robot is not very bright. If, starting with the initial
situation, for instance, you ask the robot to move the
gold from the cave to the building (fetch(gold,
building)?), it will go to the cave, pick up the gold, and
go to the building. At this point the robot realizes it needs
the key to open the door, so it returns to the cave to get
the key. Since it can carry only one thing at a time, it
drops the gold and picks up the key. It then returns to the
door, opens it, and enters the building. It now thinks it
has succeeded in moving the gold to the building, but the
gold is still sitting in the cave where the robot dropped it.
This problem is caused by the fact the robot may undo
part of the overall goal by backtracking to accomplish a
subgoal.

A Modest Proposal

It would not be too difficult to make the robot in-
telligent enough to handle the above problem. But in-
stead of making the robot more intelligent, let’s give it
some “consciousness.” Any robot worth its positronic
brain must obey the three laws of robotics as postulated
by Isaac Asimov (see reference 1). These laws are:

1. A robot may not injure a human being or, through in-
action, allow a human being to come to harm.

2. A robot must obey orders given it by human beings
except where such orders would conflict with the first
law.

3. A robot must protect its own existence as long as such
protection does not conflict with the first or second law.

In order to obey these laws, a robot must not simply obey
commands blindly. It must first determine whether it can
perform the command without violating the laws.

Circle 317 on inquiry card.

Listing 4: Status of the hypothetical space expedition’s environ-
ment after the robot has accomplished its tasks.

inside(human, rocket).
inside(robot, rocket).
inside(fuel, rocket).
inside(gold, rocket).
inside(key,building}).
entrace(airlock, rocket).
entrance(door,building).
entrance(hole,cave).
liftable(key).

liftable(fuel).
liftable(gold).

e MRS AN

Listing 5: Asimouv's three rules of robotics as implemented in PROLOG., These rules allow the robot to protect humans by shooting
aliens, and even by injuring itself, should the situation warrant. The application of the “mini-interpreter” obey makes this a simple

proposition for PROLOG.

¢ ((%p,%S)) <~ |, obey(%p),obey(ss).
obey((%p;%s)) <~ | ,obey(sp);obey(%s).

obey(%goal) ¢~ clause(%goal, $subgoals), protect(human), protect(robot),

obey($subgoals),!.

protect(%x) <~ (in_danger(%x,%danger),eliminate(%danger));true.
in_danger(%x,alien) <~ not(injured(alien)), inside(alien, splace),

inside(%x, $place).

eliminate(%danger) <~ shoot($danger).

shoot(%x) <~ %x<>human, inside(%x, ¥place), moveto(¥place), assert(injured(sx)).

This is easy to do in PROLOG (statements in Iis:ing 5
are explained individually below). Rather than issuing a
command such as “ fetch(fuel,rocket)?” you must now
tell the robot to: .

obey(fetch(fuel,rocket))?

“Obey” is a “mini-interpreter” for PROLOG that checks
to see whether the human or the robot needs protecting
before executing the subgoals associated with a goal.
(Comments in PROLOG are surrounded by /+ and +/.)
For example:

/» 1If a command consists of two subcommands,
xecute them one after the others/

obey((%p, %s)) — !,obey(%p),obey(%s).
s
The exclamation point is a signal to PROLOG that if
backtracking causes a return to that point, then the
parent goal should be failed immediately, rather than try-
ing to find another solution. This is used here to insure
that “obey” does not introduce any extra backtracking.

/+ 1f the command consists of a choice between
two comnmands, execute one or the other of them =/

obey((%p; %s)) — 1,0bey(%p);obey(%s).

If there is only one command and also a statement that
matches it, protect the human and robot and then execute
the subgoals associated with the goal. Note that clause is
a built-in function. “Clause(%goal, %subgoals)” will
return the subgoals associated with a goal):

obey(%goal) — clause(%goal, %subgoals),
protect(human), protect(robot), obey(%subgoals), !

/+ lf the command is a built-in function, execute it »/
obey(%p) — %p,!.

protect(%x) — (in__danger(%x, % danger),
¢liminate(%danger)); true.

Now let there be an alien in the building who, as long as
he is not injured, will attempt to injure anything in the
same place as he is:

inside(alien, building).

in__danger(%x,alien) — not(injured(alien)),
inside(alien, %place),inside(%x, place).

Assume also that the robot has a phasor and will use it to
eliminate danger:

eliminate(%danger) — shoot(%danger).

Anything that is shot is injured. However, under no cir-
cumstances will the robot shoot a human:

shoot(%x) — %x < > human,inside(%x, % place),
moveto(% place),assert(injured(%x)).

Now if you tell the robot the fetch the fuel to the
rocket:

obey(fetch(fuel,rocket))?

the robot enters the building and shoots the alien in order
to protect itself. The robot then carries the fuel to the
rocket. If you ask the robot to shoot the human:

obey(shoot)human))?

the robot will not obey because that would violate the
first law. However, if you ask the robot to shoot itself:

obey(shoot)robot))?

it will do so because the second law of robotics takes
precedence over the third.

I hope that this brief introduction has given you an in-
dication of the simplicity and power of nonprocedural
languages such as PROLOG. Such languages may repre-
sent the next step in the evolution of programming lan-
guages. B

References/Suggested Reading
. Asimov, Isaac. /, Robot. New York: Doubleday, 1957.
2 . Kowalski, R. Logic for Problem Solving. New York: Elsevier-North
Holland Publishing Co, 1979.
3 .Pereira, L, F Pereira, and D Warren. “'User's Guide to
DECsystem-10 PROLOG,"” 1978.

Ly

November 1981 © BYTE Publications inc 399

AT AT A Wt NNt M, e rmr re 4

