OMeta: an Object-Oriented Language for Pattern Matching *

Alessandro Warth

Computer Science Department
University of California, Los Angeles
and Viewpoints Research Institute

awarth@cs.ucla.edu

Abstract

This paper introduces OMeta, a new object-oriented lan-
guage for pattern matching. OMeta is based on a variant of
Parsing Expression Grammars (PEGs) [5]—a recognition-
based foundation for describing syntax—which we have
extended to handle arbitrary kinds of data. We show that
OMeta’s general-purpose pattern matching provides a nat-
ural and convenient way for programmers to implement
tokenizers, parsers, visitors, and tree transformers, all of
which can be extended in interesting ways using familiar
object-oriented mechanisms. This makes OMeta particularly
well-suited as a medium for experimenting with new designs
for programming languages and extensions to existing lan-
guages.

Categories and Subject Descriptors D.1.5 [Programming
Techniques]: Object-Oriented Programming; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords pattern matching, parsing, metacircular imple-
mentation

1. Introduction

Many problems in computer science, especially in program-
ming language implementation, involve some form of pat-
tern matching. Lexical analysis, for example, consists of
finding patterns in a stream of characters to produce a stream
of tokens. Similarly, a parser matches a stream of tokens

* This material is based upon work supported by the National Science Foun-
dation under Grant No. 0639876. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

DLS’07, October 22, 2007, Montréal, Québec, Canada.
Copyright © 2007 ACM 978-1-59593-868-8/07/0010. . . $5.00

Ian Piumarta

Viewpoints Research Institute
piumarta@speakeasy.net

against a grammar—which itself is a collection of produc-
tions, or patterns—to produce parse trees. Several other
tasks, such as constant folding and (naive) code generation,
can be implemented by pattern matching on parse trees.

Despite the fact that these are all instances of the same
problem, most compiler writers use a different tool or tech-
nique (e.g., lex, yacc, and the visitor design pattern [6]) to
implement each compilation phase. As a result, the skill of
programming language implementation has a steep learning
curve (because one must learn how to use a number of dif-
ferent tools) and is not widely understood.

Several popular programming languages—ML, for in-
stance—include support for pattern matching. Unfortu-
nately, while ML-style pattern matching is a great tool for
processing structured data, it is not expressive enough on its
own to support more complex pattern matching tasks such
as lexical analysis and parsing.

Perhaps by providing programming language support for
a more general form of pattern matching, many useful tech-
niques such as parsing—a skill more or less exclusive to
“programming languages people” —might become part of
the skill-set of a much wider audience of programmers.
(Consider how many Unix applications could be improved
if suddenly their implementors had the ability to process
more interesting configuration files!) This is not to say that
general-purpose pattern matching is likely to subsume spe-
cialized tools such as parser generators; that would be diffi-
cult to do, especially in terms of performance. But as we will
show with various examples, general-purpose pattern match-
ing provides a natural and convenient way to implement tok-
enizers, parsers, visitors, and tree transformers, which makes
it an unrivaled tool for rapid prototyping.

This work builds on Parsing Expression Grammars (PEGs)
[5] (arecognition-based foundation for describing syntax) as
a basis for general-purpose pattern matching, and makes the
following technical contributions:

1. a generalization of PEGs that can handle arbitrary kinds
of data (i.e., not just streams of characters) and supports
parameterized and higher-order productions (Section 2),



expression meaning
e1 eo sequencing
e1 | e prioritized choice

e* Zero or more repetitions
et one or more repetitions (not essential)
~e negation

<p> production application

’x? matches the character x

Table 1. Inductive definition of the language of parsing ex-
pressions (assumes that e, e1, and eo are parsing expressions,
and that p is a non-terminal).

2. a simple yet powerful extensibility mechanism for PEGs
(Section 3),

3. the design and implementation of OMeta, a programming
language with convenient BNF-like syntax that embodies
(1) and (2), and

4. a series of examples that demonstrate how our general-
purpose pattern matching facilities may be used in the
domain of programming language implementation.

The rest of this paper explores our notion of general-purpose
pattern matching in the context of OMeta.

2. OMeta: an extended PEG

An OMeta program is a Parsing Expression Grammar (PEG)
that can make use of a number of extensions in order to han-
dle arbitrary kinds of data (PEGs are limited to processing
streams of characters). This section begins by introducing
the features that OMeta and PEGs have in common, and then
describes some of OMeta’s extensions to PEGs.

2.1 PEGs, OMeta Style

Parsing Expression Grammars (PEGs) [5] are a recognition-
based foundation for describing syntax. A PEG is a collec-
tion of productions of the form non-terminal — parsing-
expression; the language of parsing expressions is shown in
Table 1.

To avoid ambiguities that arise from using a non-de-
terministic choice operator (the kind of choice found in
CFGs), PEGs only support prioritized choice. In other
words, choices are always evaluated in order. As a result,
there is no such thing as an ambiguous PEG, and their be-
havior is easy to understand. '

Figure 1 shows a PEG, written in OMeta syntax, that
recognizes simple arithmetic expressions (it does not cre-
ate parse trees). In order to create parse tree nodes and/or
do anything else upon successful matches, the programmer
must write semantic actions.

! Although the use of left-recursive productions should result in infinite re-
cursion (because of prioritized choice), some PEG implementations, includ-
ing OMeta, provide special support for left recursion as a convenience.

meta E {

dig ::= 0" | ... | ’9’;

num ::= <dig>+;

fac ::= <fac> ’*’ <num>
| <fac> ’/’ <num>
| <num>;

exp ::= <exp> ’+’ <fac>
| <exp> ’-’ <fac>
| <fac>;

}

Figure 1. A PEG, written in OMeta, that recognizes simple
arithmetic expressions.

Semantic actions are specified using the => operator and
written in OMeta’s host language, which is usually the
language in which the OMeta implementation was writ-
ten. We currently have two implementations: one written
in COLA [11], and another in Squeak Smalltalk?, both of
which can be downloaded from http://www.cs.ucla.
edu/~awarth/ometa/.

Important: All of the examples in this paper were writ-
ten for the COLA implementation of OMeta; if you are
not familiar with COLA, try to think of it as a cross be-
tween Scheme and Smalltalk.

The syntax of the functional parts of the language is very
similar to Scheme, e.g., (+ 1 2 (£ 5)).

COLA message sends look similar to Smalltalk’s, but are
written in square brackets, e.g., [jimmy eat: banana].
Note that each []-expression represents a single message
send; the COLA translation of the Smalltalk message
Array new: x sizeis [Array new: [x size]].

Refer to http://piumarta.com/pepsi/coke.html
for a more detailed description of COLA syntax.

Here is one way our grammar’s exp production might be
modified in order to create parse trees (the other productions
in our grammar would have to be modified accordingly):

exp ::= <exp>:x ’+’ <fac>:y => ‘(+ ,x ,y)
| <exp>:x ’-’ <fac>:y => ‘(- ,x ,y)
| <fac>;

Note that the results of <exp> and <fac> are bound to iden-
tifiers (with the : operator) and referenced by the seman-
tic actions to create parse tree nodes. Note also that the last
choice in this production, <fac>, does not specify a seman-
tic action. In the absence of a semantic action, the value re-
turned by a production upon a successful match is the result
of the last expression evaluated (hence <fac> is equivalent
to <fac>:x => Xx).

2 The Squeak port of OMeta was joint work with Yoshiki Ohshima.



OMeta has a single built-in production from which every
other production is derived. The name of this production is -
(underscore), and it consumes exactly one element from the
input stream. Even the end production, which detects the
end of the input stream, is implemented in terms of

end ::= "<_>;

In other words, we are at the end of the input stream if
it is not possible to consume another element from it. As
noted in [5], the ~ operator—used for negation—can also be
used to provide unlimited look-ahead capability. For exam-
ple, “~<expr> ensures that an expr follows, but does not
consume any input.

Like several other PEG implementations (e.g., Bryan
Ford’s Pappy [3]), OMeta also supports semantic predi-
cates [10]: host language (boolean) expressions that can
be evaluated while pattern matching. In OMeta, semantic
predicates are written using the 7 operator. For example, the
following production matches numbers greater than 100:

largeNumber ::= <number>:n 7(> n 100) => n;

2.2 PEG Extensions for Generality

PEGs operate on streams of characters, and consequently,
they only support one kind of primary parsing expression:
characters. Because OMeta operates on arbitrary kinds of
data, it needs to support some additional kinds of expression:

e strings (e.g., "hello")
® numbers (e.g., 42)
e atoms (e.g., answer)

e lists (e.g., ("hello" 42 answer ()))

Note that the patterns ’x’ ’y’ ’z’ and "xyz" are not
equivalent: the former matches three character objects,
whereas the latter matches a single string object. On the
other hand, the patterns (’x’ ’y’ ’z’) and "xyz" are
equivalent, because a string can always be viewed as a list
of characters. For convenience, OMeta accepts the syntax
’xyz’ (in single quotes) as shorthand for the sequence ’x’
) y ) ) z ) .

List patterns enable OMeta grammars to handle arbitrarily-
structured data. A list pattern may contain a nested pattern,
which itself may be any valid parsing expression (a sequence
of patterns, another list pattern, etc.). In order for a list pat-
tern p to match a value v, two conditions must be met: (i) v
must be a list, or list-like entity (e.g., a string), and (ii) p’s
nested pattern must match the contents of v. The list pattern
(<_>%), for example, matches any list.

Figure 2 shows a simple OMeta grammar that uses list
patterns to flatten a list. Feeding the list

(1 (2 (3 4)) (((B)) 6))

to our grammar’s flatten production produces the flat-
tened list (1 2 3 4 5 6).

2.3 PEG Extensions for Expressiveness

OMeta’s productions, unlike those in PEGs, may take any
number of arguments. This feature can be used to imple-
ment a lot of functionality that would otherwise have to be
built into the language. As an example, consider regular-
expression-style character classes, which traditional PEG
implementations support in order to spare programmers
from the tedious and error-prone job of writing productions
such as

letter ::=’a’ | ’b’> | ’¢c’> | ... | ’y’> | ’z7;
and instead allow them to write the more convenient
letter :

= [a-z];

Using parameterized productions (i.e., productions with ar-
guments), OMeta programmers can write

cRange x y ::= <char>:c ?7(>= ¢ x)
?7(<= c y) => c;

which is just as convenient to use as character classes (e.g.,
<cRange ’a’ ’z’>), and much more flexible because it is
completely programmer-accessible.

The combination of parameterized productions and se-
mantic predicates can be used to support a hybrid of (tra-
ditional) “scannerful” and scannerless parsing [13], as
shown below:

eq ti= 0= => ’(eq nil);
num 1:= <digit>+:ds => ‘(num ,ds);
id ::= <letter>+:1s => ‘(id ,1ls);
scanner ::= <space>* {<eq> | <num> | <id>};
tok t ::= <scanner>:x 7(== [x first] t)
=> [x second];
assign ::= <tok ’id> <tok ’eq> <tok ’num>;

We have found this idiom to be less error-prone than
scannerless parsing (the only kind supported by PEGs),
and yet just as expressive since each production may
access the character stream directly if desired.

OMeta also provides a mechanism for implementing
higher-order productions, using the apply production. For
example, the production

1listOf p ::= <apply p> {’,’ <apply p>}*;

(where the {}s are used for aggregation) can be used to
recognize both lists of expressions (<1ist0f ’expr>) and
lists of names (<1ist0f ’name>).

These extensions bring some of the expressive power of
parser combinator libraries [8, 9] to the world of PEGs.



meta F {
flatten ::
inside

<_>:X
<empty>

(<inside>:xs)
(<inside>:xs) <inside>:ys => (append xs ys)

=> Xs;

<inside>:xs => (cons X x8)

=> nil;

Figure 2. Flattening lists.

2.4 A Note on Memoization

Packrat parsers are parsers for PEGs that are able to guar-
antee linear parse times while supporting backtracking and
unlimited look-ahead “by saving all intermediate parsing re-
sults as they are computed and ensuring that no result is eval-
uated more than once.” [4] While OMeta is based on PEGs, it
does not necessarily have to be implemented using packrat-
style memoization.

Our COLA-based implementation does in fact memoize
the results of productions without arguments, but in order
to keep its memory footprint small, we chose not to memo-
ize the results of productions with arguments. Our Squeak-
based implementation, on the other hand, does not memoize
any results.

While the linear time guarantee that comes with memo-
ization is certainly desirable, some of our experiments with
PEGs indicate that the overhead of memoization may out-
weigh its benefits for the common case, where backtracking
is limited. These trade-offs are orthogonal to the ideas dis-
cussed in this paper.

3. Ois for Object-Oriented

Programming in OMeta would be very frustrating if all pro-
ductions were defined in the same namespace: two gram-
mars might unknowingly use the same name for two pro-
ductions that have different purposes, and one of them would
certainly stop working! (Picture one sword-wielding gram-
mar decapitating another, Highlander-style: “There can be
only one!”)

A class is a special kind of namespace that comes with
a huge bonus: a familiar and well-understood extensibility
mechanism. By making OMeta an object-oriented language
(i.e., making grammars analogous to classes and productions
analogous to methods), several interesting things became
possible.

3.1 Quick and Easy Language Extensions

Programming language researchers often implement exten-
sions to existing languages in order to experiment with new
ideas in a real-world setting. Consider the task of adding a
new kind of loop construct to Java, for example; Figure 3
shows how this might be done in OMeta by creating a new
parser that inherits from an existing Java parser and over-
rides the production for parsing statements. Note that the ap-

plication <super stmt> behaves exactly like a super-send
in traditional OO languages.

Note: The example above is the only one in this paper
that does not actually run in our implementation, the reason
being that we do not have a Java parser written in OMeta.
What we do have is an almost complete implementation of
Javascript, which we discuss in Section 5.

3.2 Extensible Pattern Matching

The OMeta parser (the front-end of our implementation)
translates the code for a production, which is a stream of
characters, into a parse tree. It represents sequences as AND
nodes, choices as OR nodes, applications as APPLY nodes,
and so on. As an example, the parse tree generated for the
body of the production

foo ::= <bar> <baz>;
is
(OR (AND (APPLY bar) (APPLY baz)))

which is later transformed by the OMeta compiler into the
code that implements that production.

Our simple-minded parser always produces an OR node
for the body of a production, even when there is only one
alternative (as in the example above). This is wasteful, and
can degrade the performance of OMeta programs. After all,
the OR macro must store the current position of the parser’s
input stream so that when a choice fails, it can backtrack
before trying the next choice.

Expressions like

(OR (OR (APPLY x) (APPLY y)) (APPLY z))

are also needlessly inefficient. ORs are associative, and thus
the expression above can be flattened to the more efficient

(OR (APPLY x) (APPLY y) (APPLY z))

Our implementation performs several such transforma-
tions in order to improve the performance of OMeta pro-
grams. Each of these is implemented in OMeta itself, us-
ing an idiom similar to the visitor design pattern. Fig-
ure 4 shows (i) the NullOptimization grammar, which
visits each node in a production’s parse tree, and (ii) the
OROptimization grammar, which inherits the traversal
code from NullOptimization and overrides the opt pro-
duction in order to implement the two optimizations for OR
nodes described in this section.



meta Java++ <: Java {

stmt ::= <space>* ’foreveryother’ <space>* ’(’ <expr>:x <space>* ’)’ <stmt>:s =>

| <super stmt>;

Figure 3. Extending Java with foreveryother loops.

We have implemented several other transformations, in-
cluding a jumptable-based optimization that allows choices
such as (OR (CHAR 97) (CHAR 98) (CHAR 99)) to be
performed in constant time, and left factoring. 3

3.3 Stateful Pattern Matching

OMeta’s grammars may be declared to have any number
of instance variables. These variables are initialized by the
__init__production, which is invoked automatically when a
new instance of the grammar is created.*

Using an earlier version of OMeta, we implemented a
parser for a significant subset of Python [12] that used
an instance variable to hold a stack of indentation levels.
This stack was used for implementing Python’s offside rule,
which enables programs to use indentation instead of brack-
ets for forming lexical scopes.

Another example of OMeta’s stateful grammars is Calc,
a desk calculator grammar, shown in Figure 5. This gram-
mar is not just a parser; it is a complete interpreter for arith-
metic expressions with variables (the interpreting is done in
the productions’ semantic actions). Calc’s instance variable
vars holds a symbol table that maps variable names to their
current values. The following transcript shows our desk cal-
culator in action:

> 3+4x%5
23
> X
2
>x =x %7
14

>y

2

y=2

Note that OMeta does not attempt to undo the effects of a
production’s semantic actions while backtracking (for some
semantic actions, like printing characters to the console, this
would be impossible). Programmers implementing stateful
pattern matchers must therefore write their semantic actions
carefully.

3 These transformations are part of our implementation, available at http:
//www.cs.ucla.edu/~awarth/ometa/.

4 A grammar object must be instantiated before it can be used to match
a value with a start symbol (production). This is done by sending the
grammar the match:with: message (e.g., [G match: ’(1 2 3) with:
‘myList]).

3.4 Foreign Production Invocation

Consider the task of implementing a parser for MetaCOLA,
a language that is the union of COLA and OMeta. (Suppose
we already have OMeta parsers for these languages; they are
called COLA and OMeta, respectively.)

Using OMeta’s single inheritance mechanism, we could
either

1. make MetaCOLA inherit from COLA and duplicate (re-
implement) OMeta’s productions, or

2. make MetaCOLA inherit from OMeta and duplicate COLA’s
productions,

but neither of these choices is satisfactory, since it results
in code bloat and creates a versioning problem (e.g., subse-
quent changes to the OMeta parser will not carry over to the
the MetaCOLA parser resulting from (1)). Making MetaCOLA
inherit from both OMeta and COLA would also be a bad idea,
since name clashes would most likely result in incorrect be-
havior.’

A much better solution to this problem is OMeta’s foreign
production invocation mechanism, which allows a grammar
to “lend” its input stream to another in order to make use
of a foreign production. This mechanism is accessed via the
foreign production, which takes as arguments the foreign
parser and production name, as shown below:

meta MetaCOLA {
mcola ::= <foreign OMeta ’ometa>
| <foreign COLA ’cola>;

}

Foreign production invocation makes it possible for pro-
grammers to compose multiple grammars without having to
worry about name clashes.

4. More Examples
4.1 Lexically-Scoped Syntax Extensions

A Domain-Specific Language (DSL) is a programming lan-
guage designed to do one kind of task very well. OMeta, for
instance, can be thought of as a DSL for pattern matching.

While DSLs are used for writing entire programs, Mood-
Specific Languages (MSLs) are intended for writing just
a few lines of code in order to make part of a program
easier to write. Our COLA parser, which was written in
OMeta, supports this notion by allowing programmers to
create lexically-scoped syntax extensions.

3 OMeta does not support multiple inheritance.



meta NullOptimization {

opt ::= (OR <opt>*:xs) => ‘(OR ,0xs)
| (NOT <opt>:x) => < (NOT ,X)
| (MANY  <opt>:x) => ‘(MANY ,x)
| (MANY1 <opt>:x) => “(MANY1 ,x)
| (define <_>:n <opt>:v) => ‘(define ,n ,v)
| (AND <opt>*:xs) => ¢ (AND ,0xs)
| (FORM  <opt>*:xs) => ‘(FORM ,0xs)
| <_>;
}
meta OROptimization <: NullOptimization {
opt ::= (OR <opt>:x) => x
| (OR <inside>:xs) => ‘“(0R ,@xs)
| <super opt>;
inside ::= (OR <inside>:xs) <inside>:ys => (append xs ys)
| <super opt>:x <inside>:xs => (cons x xs)
| <empty> => nil;

Figure 4. Extensible pattern matching in OMeta.

meta Calc (vars) {

__init__ ::= <empty>

space =07y

var 1= <letter>:x <space>x

num ::= <num>:n <digit>:d
| <digit>:d <space>*

priExpr ::= <var>:x
| <num>:n
| > (’ <space>* <expr>:r ’)’

mulExpr ::= <mulExpr>:x ’*’ <space>*
| <mulExpr>:x ’/’ <space>x
| <priExpr>;

addExpr ::= <addExpr>:x ’+’ <space>x*
| <addExpr>:x ’-’ <space>x
| <mulExpr>;

expr 1:= <var>:x ’=’ <space>*
| <addExpr>;

rep ::= <space>* <expr>:r ’\n’

=> [self vars: [IdentityDictionary new]];

=> x;
=> [[n * ’10] + [d - ’$0]]
=> [d - ’$0];
=> [[self vars] at: x]
=> n
<space>* =>r;

<priExpr>:y => [x * y]

<priExpr>:y => [x / y]

<mulExpr>:y => [x + y]

<mulExpr>:y => [x - y]

<expr>:r => [[self vars] at: x put: r]
=> (println r);

Figure 5. A desk calculator.

Programmers may create syntax extensions inside any
COLA s-expression by writing one or more OMeta produc-
tions inside {}s. This creates a new parser object (at parsing
time) that inherits from the current parser, giving the pro-
grammer a chance to override the original parser’s produc-
tions in order to extend the language as desired. The lan-
guage extension is in scope until the end of the current s-
expression.

Figure 6 shows a COLA program that implements the
puts function (which, like the C version, prints a string fol-
lowed by the newline character to the console). In order to

make array indexing operations more convenient, puts lo-
cally extends COLA with syntax for C-style array indexing.
This enables the programmer to write s [1] where he would
otherwise have to write the less readable (char@ s i).
Note that the expression (printf "%d\n" "abcd"[0]),
which appears outside the scope of this syntax extension,
results in a parse error.

Extending our COLA parser with support for lexically-
scoped syntax extensions was straightforward:



(define puts
(lambda (s)
(let ((idx 0))

{ cola ::= <cola>:a ’[’ <cola>:i ’]’ => ‘(char@ ,a ,i)
| <super cola>; }

(while (!= s[idx] 0)

(putchar s[idx])

(set idx (+ idx 1)))

(putchar 10))))

(puts "this is a test")

works

(printf "%d\n" "abcd"[0]) ;; parse error!

Figure 6. A lexically-scoped syntax extension for C-style array accesses.

e the productions of the syntax extension are parsed using
foreign production invocation (this is possible because
the OMeta parser itself was implemented in OMeta), and

e compiling and instantiating a new parser object at pars-
ing time was an easy task, since OMeta is a dynamic lan-
guage.

This feature can just as easily be added to any other language
whose parser is implemented in OMeta (the Javascript im-
plementation described in the next section, for example).

4.2 Checking printf Calls

In order to give programmers access to operating system li-
braries, COLA programs are able to call C functions directly.
This is of course a very low-level operation, and can result in
crashes and security problems. The printf function, whose
expected number of arguments depends on a format string,
is notorious for making programs unsafe. ®

Modern C compilers are aware of this problem and im-
plement static checks in order to make sure that printf is
given the correct number of arguments. The COLA com-
piler, on the other hand, does not give printf any special
treatment. Consequently, calling printf from a C program
is somewhat safer than calling it from a COLA program.

Figure 7 shows an OMeta grammar that processes an
entire COLA program, replacing “bad” printf calls (those
whose number of arguments is not in agreement with the
format string) with the atom BAD PRINTF. For example, it
transforms the COLA program

(begin
(printf "my name is %s\n" name)
(if (> (printf "Ys = (%d,%d) %f" name x y)
5)
(£ x)))

into

6The same is true for other functions in the printf family, such as
sprintf and fprintf.

(begin
(printf "my name is %s\n" name)
(if (> BAD_PRINTF 5)
(f x)))

Here is a brief explanation of each production in the
grammar shown in Figure 7:

e rep (repeat) is a higher-order production that takes two
arguments, an integer n and a production p, and tries to
apply production p n times.

e fmt traverses a format string, and returns the number of
arguments it expects.

® expr visits an entire COLA program (an s-expression).
When it comes across a call to printf, it finds out how
many arguments are required by the format string and
uses rep to ensure that the call is well-formed. Other-
wise, the “bad” call is replaced by the atom BAD PRINTF.
Note that the format string is matched against the pattern
(<fmt>:n). Any string can be treated as a list; the pat-
tern above means “match a list-like value whose contents
are described by <fmt>”.

This example shows that OMeta’s seemingly orthogonal
parsing and traditional pattern matching capabilities (used
here to process format strings and COLA programs, respec-
tively) can be combined in useful ways.

5. Case Study: Javascript

We have used OMeta to implement a nearly complete sub-
set of the Javascript [2] programming language.” Our im-
plementation consists of a parser written in OMeta, and a
code generation phase implemented using a combination of
OMeta pattern matching and Scheme-style macros. It is cur-
rently being used by Dan Ingalls’ research group at Sun Labs
to run moderately-sided programs (~2k lines of code).

7 The missing features are with and try/catch.



meta P {

(printf <_>x*)

=> ’BAD_PRINTF

repnp ::=7[n="0]
| <apply p> <rep [n - ’1] p>;
fmt =% *h? <fmt>
| 2% <char> <fmt>:n => [n + 1]
| <char> <fmt>
| <empty> => ’0;
expr = (printf (<fmt>:n) <rep n ’_>)
|
|

(<expr>*:xs)
I <_>;

=> ‘(,xs)

Figure 7. Hunting for bad printf calls.

5.1 Parsing

Our Javascript parser is implemented as a 177-line OMeta
grammar. An interesting part of this grammar is its mecha-
nism for handling Javascript’s automatic semicolon insertion
rules [2]:

sc ::= {"’\n’ <space>}* {’;’ |
An’ |
Ty |

<end> };

({}s are used for aggregation.) The sc production consumes
a (logical) semicolon, which may be one of the following:

e a semicolon character
® a newline character

® nothing at all—but only if the next token is } (double
negation is used for look-ahead)

e the end of the input stream

In order to support automatic semicolon insertion, other pro-
ductions in our parser use sc instead of ’;’ directly, as
shown in stmt below:

’continue’ <sc> => ’(continue)

stmt ::=
| ’break’ <sc> => ’(break)
|

5.2 Code Generation

Our Javascript parser represents parse trees as COLA s-
expressions. These parse trees are expanded into executable
COLA expressions using Scheme-like macros.

Before the macro expansion step, parse trees are pro-
cessed by an OMeta grammar that distinguishes local vari-
ables from non-local variables so that they can be compiled
differently (this is necessary to implement the correct seman-
tics).

6. Related Work

Our work on OMeta began when we implemented our own
version of Val Schorre’s META-II [14]: a simple yet practi-

cal recognition-based compiler-writing language that could
be implemented in itself in roughly a page of code. META-II
was a wonderful tool, but it had significant limitations:

1. it did not support backtracking, which made it necessary
for the programmer to do a large amount of left-factoring
in productions, and

2. its analog of semantic actions were PRINT commands,
which meant that compilers had to generate code while
recognizing programs. (The resulting programs were
usually interpreted by a special-purpose virtual machine
which had been implemented specially for the language
being compiled.)

Once we added backtracking and semantic actions to our
language, it became equivalent in power to Bryan Ford’s
Parsing Expression Grammars (PEGs) [5]. This PEG foun-
dation relates OMeta to packrat parser generators [4] (e.g.,
Ford’s own Pappy [3] and Robert Grimm'’s Rats/ [7]). How-
ever, OMeta is not a parser generator; it is a programming
language whose control structure is based on PEGs. And un-
like previous PEG-based systems—which operate only on
streams of characters—our extensions to PEGs (see Sec-
tion 2) enable OMeta to handle arbitrary kinds of data. Also,
packrat parsers are so called because they memoize all in-
termediate results. Although the COLA port of OMeta does
memoize intermediate results, our Squeak port does not.
(Some of our experiments with PEGs indicate that the over-
head of memoization may outweigh its benefits for the com-
mon case, where backtracking is limited.)

OMeta’s ability to pattern match over arbitrary kinds of
data and the notion of productions with arguments were
inspired by the LISP70 system [16]. LISP70 used pattern
matching for general programming tasks as well as extend-
ing its own syntax. Unlike OMeta, LISP70 used an external
lexical analyzer, and was not object-oriented.

OMeta is also related to Haskell’s parser combinator li-
braries [8, 9] in that it supports parameterized and higher-
order productions. However, OMeta grammars are more
readable than those written using parser combinator li-



braries, and more extensible due to the object-oriented fea-
tures discussed in Section 3.

7. Conclusions and Future Work

We have shown that OMeta’s pattern matching is a great
tool for implementing various tasks in the domain of pro-
gramming language implementation (e.g., lexical analyzers,
parsers, visitors, etc.). This makes OMeta particularly well-
suited as a medium for experimenting with new designs
for programming languages and extensions to existing lan-
guages.

Although our initial implementation of OMeta was writ-
ten in COLA [11], OMeta can also be implemented us-
ing more conventional languages. With Yoshiki Ohshima,
for example, we implemented a port of OMeta in Squeak
Smalltalk (where OMeta is being used to experiment with
alternative syntaxes for the Squeak EToys system). Ports to
other languages like Scheme [1] and Common LISP [15]
should be relatively straightforward.

While OMeta’s parameterized productions provide great
expressive power, it is unfortunate that our language does
not allow a production’s arguments to be pattern-matched
against in the production’s body. For example, it would be
nice to be able to write

p::=0
| <_>:n ...
instead of

pn::=7(==n 0)
I -3

but the former is not possible because OMeta’s produc-
tion arguments are passed on the stack, whereas all pattern
matching is done on the input stream. LISP70 had a better
mechanism for argument passing that consisted of inserting
the arguments of a production application at the beginning
of the input stream (that they could be matched against). We
plan to adopt this mechanism in OMeta.

We also plan to improve the performance of our OMeta
implementations; it should be possible for them to perform
competitively with state-of-the-art packrat parser implemen-
tations such as Robert Grimm’s Rats! [7].

8. Acknowledgments

The authors would like to thank Alan Kay for inspiring
this project and providing valuable insights. We would also
like to thank Yoshiki Ohshima for making the Squeak port
of OMeta possible, and Todd Millstein, Benjamin Titzer,
Stephen Murrell, Takashi Yamamiya, Paul Eggert, Jamie
Douglass, Tom Bergan, and Mike Mammarella for useful
comments on this work.

References

[1] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas,
I. N. I. Adams, D. P. Friedman, E. Kohlbecker, G. L.

Steele, D. H. Bartley, R. Halstead, D. Oxley, G. J. Sussman,
G. Brooks, C. Hanson, K. M. Pitman, and M. Wand. Revised
report on the algorithmic language Scheme. SIGPLAN Lisp
Pointers, IV(3):1-55, 1991.

[2] ECMA. ECMAScript language specification.

[3] B. Ford. Pappy: a parser generator for Haskell. http:
//pdos.csail.mit.edu/~baford/packrat/thesis/.

[4] B. Ford. Packrat parsing: simple, powerful, lazy, linear time,
functional pearl. In ICFP ’02: Proceedings of the seventh
ACM SIGPLAN international conference on Functional
programming, pages 36—47, New York, NY, USA, 2002.
ACM Press.

[5] B. Ford. Parsing Expression Grammars: a recognition-based
syntactic foundation. In POPL ’04: Proceedings of the
31st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 111-122, New York, NY,
USA, 2004. ACM Press.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Addison-Wesley Professional, January 1995.

[7]1 R. Grimm. Better extensibility through modular syntax. In
PLDI ’06: Proceedings of the 2006 ACM SIGPLAN confer-
ence on Programming language design and implementation,
pages 38-51, New York, NY, USA, 2006. ACM Press.

[8] G. Hutton and E. Meijer. Monadic parsing in Haskell. J.
Funct. Program., 8(4):437—444, 1998.

[9] D. Leijen and E. Meijer. Parsec: Direct style monadic parser
combinators for the real world. Technical Report Technical
Report UU-CS-2001-35, Universiteit Utrecht, 2001.

[10] T.J. Parr and R. W. Quong. Adding semantic and syntactic
predicates to LL(k): pred-LL(k). In Computational Complex-
ity, pages 263-277, 1994.

[11] L. Piumarta. Open, extensible programming systems. Keynote
talk, Dynamic Languages Symposium, 2006.

[12] G. Rossum. Python reference manual. Technical report,
Centre for Mathematics and Computer Science, Amsterdam,
The Netherlands, 1995.

[13] D. J. Salomon and G. V. Cormack. Scannerless NSLR(1)
parsing of programming languages. In PLDI ’89: Proceed-
ings of the ACM SIGPLAN 1989 Conference on Programming
language design and implementation, pages 170—178, New
York, NY, USA, 1989. ACM Press.

[14] D. V. Schorre. META-II: a syntax-oriented compiler writing
language. In Proceedings of the 1964 19th ACM national
conference, pages 41.301-41.3011, New York, NY, USA,
1964. ACM Press.

[15] G. L. Steele. An overview of Common Lisp. In LFP
'82: Proceedings of the 1982 ACM symposium on LISP
and functional programming, pages 98—-107, New York, NY,
USA, 1982. ACM Press.

[16] L. G. Tesler, H. J. Enea, and D. C. Smith. The LISP70 pattern
matching system. In Proc. of the 3rd IJCAI, pages 671-676,
Stanford, MA, 1973.



