
Active Essays on the Web

Takashi Yamamiya Alessandro Warth Ted Kaehler
takashi@vpri.org alex@vpri.org ted@vpri.org

Viewpoints Research Institute
1209 Grand Central Ave., Glendale, CA 91201

Abstract

This paper describes “Active Essays” and their imple-
mentation with Internet technology. An Active Essay com-
bines a written essay, program fragments, and the result-
ing live simulations into a single cohesive narrative [11].
We believe the integration of programming and natural lan-
guage makes a superior teaching medium for expressing
mathematical, scientific, and even literary ideas. It is es-
pecially effective when it can be read, run, and authored
in a web browser. We review our previous implementations
of Active Essays on the Web. Chalkboard [25] is our latest
Active Essay framework. We discuss Chalkboard’s features,
examples, design decisions, and unresolved issues.

1. Introduction

Programming languages were made for giving orders
to machines. They have evolved to be somewhat more
human-friendly and modular, which makes programs eas-
ier to maintain. Now we understand that the single most
important aspect of a program is readability, not efficiency.
An important additional goal is for a programming language
to be a good medium for learning and communication be-
tween humans.

A programming language has the notable feature that its
meaning is strict and ideas expressed in it actually run on a
machine. This property has a great benefit: when combined
with a written essay, it allows the reader to see an animated
and interactive expression of what is being taught. Neither
natural language nor mathematical formulas are as alive or
expressive. The best way to rigorously learn a complex idea

This material is based upon work supported by the National Science
Foundation under Grant No. 0639876. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

is to program it. While the program you write may not run
well at first—often, it will not run at all—the process of
debugging will lead to an elegant expression of the idea that
actually runs. The result is often good material for another
learner to read.

On the other hand, natural language is better than a pro-
gramming language to show an overview. Written language
works well to express the “Why” and “What” knowledge
that are hard to describe in a program. The combination of
a natural and a programming language in an Active Essay
has all of the advantages. It can be an excellent substitute
for a textbook.

The Internet gives people large opportunities to access
massive amounts of knowledge. But information on the web
tends to keep the form of old media like newspapers, TV,
and articles. These do not yet use the real ability of the
computer. Our project aims to re-introduce programming
languages as a way to teach powerful ideas on the web. We
want to harmonize literature and programming into a new
medium that is more expressive than each alone.

2. Background

2.1. Active Essays

An “Active Essay” is a written essay mixed with a com-
puter program. The term was coined by Alan Kay. The
goal was to provide students with a hands-on experience of
mathematical and scientific ideas via dynamic simulations.
The same concept, but without the essay is used to create
and teach dynamic content in the Etoys authoring environ-
ment [3, 4, 20].

Think of a math book that includes several paragraphs
and formulas on each page. The reader follows the author’s
idea not only by reading the text but also trying formulas.
In the case of Active Essays, programs are embedded in the
page instead of formulas. The biggest advantage of an Ac-
tive Essays is that the program actually runs and animates



the example. This is more dynamic than a formula. It is re-
ally fun to see a few lines of code generating little surprises
on the screen. Another advantage would be that you don’t
have to calculate the numbers yourself – the computer does
a faster and better job of “fiddling variables”.

2.2. World Wide Web

The Internet has made finding and publishing informa-
tion incredibly easier, but it’s content still tends to mimic
traditional media. Even though it is highly dependent on
computer technology, the web makes little use of program-
ming languages as communication media.

A programming language is the primary tool for talking
between man and machine. It could also be a good way
to exchange ideas among humans. If there were enough
support tools, it would be natural to write a blog post using a
programming language, to chat with source code, and even
to write a novel that runs as a program. Especially when the
topic is science or mathematics, a programming language is
often the most accurate way to present an idea.

It is ironic that you can’t play with a LOGO program
while you read the Wikipedia article about LOGO.

However, e.g. while the article on Logo has
some good information and examples, none on
them can be run, dynamically changed and tried,
etc. To me this is outrageous given that the
browser was done some years after HyperCard,
longer after the Apple ][, and long long after the
prior art of the 60s and 70s. – Alan Kay [12].

What kind of tool could support running examples in
an article? The abundant introductory material for science
written in Etoys is a good place to start. The history of Lit-
erate Programming shows another interesting aspect of the
topic. These were our starting points.

2.3. Literate Programming

Active Essays share ideas in common with Don Knuth’s
Literate Programming. Active Essays emphasize dynamic
experimentation, while Literate Programming focuses on
the readability of system-level programs. But, both of these
media try to combine literature and programming. Advan-
tages of Literate Programming can also be applied to Active
Essays.

Don Knuth said that even though more time is required
for writing, the total time including writing and debugging
in Literate Programming is not greater than normal pro-
gramming. This is because it takes less time to debug a
well-understood program [13]. Although it is possible that

his words arise from too much enthusiasm, integrated doc-
umentation makes it very much easier for a third person to
understand a program.

The original idea of Literate Programming was imple-
mented as the WEB system for Pascal. The WEB generates
program source code and documentation from single WEB
source file. But, to be compatible with the inflexible nature
of Pascal, the syntax of WEB is rather complicated. At-
tempts using the Smalltalk language [17] reduced this diffi-
culty.

3. Previous attempts

In 1994 Ted Kaehler built an active essay in HyperCard
that explained and ran Richard Dawkins’ example of evolv-
ing the sentence “methinks it is like a weasel” [10]. The
HyperTalk scripts for the example were in fields on cards,
and could be modified by users. The stack kept old ver-
sions of scripts, so that the user could revert after trying out
a change to a script.

In 1995, Kaehler built two active essays in web pages us-
ing Glyphic Codeworks as plugin to run the code [9]. Each
of Kaehler’s essays were awkward; the first was not on the
web, and the others required a plugin that was difficult to in-
stall. These efforts were tantalizing, and caused us to search
for an easy and capable active essay format in a web page.

Because there are many design choices when designing
an Active Essay framework on the web, we introduce our
recent attempts in historical order. These are helpful in ex-
amining possible designs and understanding our latest de-
cisions. We have made five experimental implementations
over the last few years. Those projects are described with
their features, server and client platforms, screen layouts,
and data formats. All projects use HTTP for sharing con-
tent.

3.1. Scamper Workspace

A Scamper Workspace (2004) [27] by Takashi Ya-
mamiya was an extension of Scamper, a web browser writ-
ten in Squeak. Scamper Workspace allows the reader to
execute any Smalltalk code that is present on a web page.
An author can include illustrative examples in Smalltalk on
a web page.

People often write a small amount of source code in a
blog. And it is natural that a reader may want to run this
code without any effort. In the case of Squeak, you have to
copy and paste from a web browser to Squeak. However,
Squeak contains a web browser named “Scamper”, and a
web page is just text the same as other Squeak text objects.
Scamper is very limited as a web browser, but it has enough
power to let the user read blogs.



Figure 1. Scamper Workspace.

“No Application” is Squeak’s motto. Squeak consists as
a number of objects that each have different tiny functions,
and those are connected together in a single world of ob-
jects. In that sense, there is no need for an “Application”
because an application is just an artificial boundary. So, it
seemed natural to allow Scamper to have the commands that
execute text as code.

Thoru Yamamoto created a lot of content for the Scam-
per Workspace. Figure 1 explains how to draw a robot by
Squeak functions. This is a typical one which consists of a
short story and a couple of lines of code. A reader would
execute the code while reading a story.

3.2. StackWiki

StackWiki (2005) by Takashi Yamamiya was a WYSI-
WYG authoring tool written in Squeak. A document was
saved in original binary format onto a Swiki (Squeak Wiki)
server.

StackWiki was inspired by Zest and Marmalade [19] by
Benjamin Schroeder and John Pierce. Although Zest only
used a local disk for saving data, the idea was similar to a
Wiki. You could easily make a link to another page, and
make a new page just by specifying a nonexistent name.
Additionally, Zest could include multimedia content written
in a Smalltalk-like language.

Compared to Zest, StackWiki was closer to the original
idea of HyperCard. A StackWiki project consisted of one
or more ordered pages, and relationships among pages were
defined by the page order and hyperlinks.

By using a background, selected objects can appear on
all pages. StackWiki only allows one background, though
HyperCard could handle many. The background was imple-
mented as a special “background” page. If you add some-
thing to that page, it is shown in the same place behind other
elements on all pages.

Figure 2. A screen shot of the StackWiki.

A background can be seen as a special version of macro
or template. A macro is a technique to share a common
structure in documents. It is useful to reduce redundancy
and to improve maintainability. However, it is easy to make
a macro be too complicated by including another macro in
it. The background is a better compromise for the end-user.

Each StackWiki page is stored in binary format in the
Swiki server. The Swiki is used only as a file uploading
server and web page server. StackWiki does not use any
web standard except HTTP to transport saved data. Stack-
Wiki can only read pages from a Swiki server. StackWiki is
simple and uses many built-in Squeak features. It took only
three days to implement StackWiki.

3.3. Tinlizzie WysiWiki

Tinlizzie WysiWiki (2006) [15] by Takashi Yamamiya et
al. was a wiki written in Tweak [16]. It uses OpenDocument
Format (ODF) [6] as its data format, and WebDAV as the
server.

While the data format in StackWiki was a Squeak-
specific binary, in the Tinlizzie WysiWiki, an existing stan-
dard format is used. The reason is to make the user’s data
available in other applications besides Tinlizzie WysiWiki.
A user can confidently put large amounts of important data
into this system, knowing that it can be viewed and used in
other OpenDocument application programs.

An ODF file is just a zip archive which includes XML
text and multimedia binary files. It is easy to extract one of
the multimedia binary files from the archive using an exter-
nal tool. Both internal and external resources can be refer-



Figure 3. TinLizzie WysiWiki.

enced using normal URLs. And if necessary, a new XML
tag for a Tweak-specific object can be defined. For example,
a project which includes fully dynamic behavior written as
Tweak objects can be viewed by an OpenOffice application,
although any dynamic features in it would be disabled.

Sometimes the entire state of an object does not need to
be save. For example, when text is saved during editing,
should the position of the cursor should be saved or not?
There are two strategies. One is to save everything with
a few things excepted (deep copy), and the other is to save
only the specified object types. Tinlizzie WysiWiki took the
latter course, although Tweak’s native mechanisms were the
former.

Saving only a specific state has two disadvantages. a) A
user might expect to save everything including minor state
because combining arbitrary objects in any peculiar way is
possible in Tweak. b) Each new widget needs to be im-
plemented with its own custom exporter. But the “saving
everything by default” strategy has a compatibility problem
with future version of the system. Changing the name of
just one instance variable can make reading an older project
impossible. This strategy was not taken by the project.

3.4. JavaScript Workspace

The JavaScript Workspace (2007) [26] by Takashi Ya-
mamiya is a simple web application. It uses a normal web
browser and JavaScript on the client side, and Ruby CGI on
the server side. It behaves like a Smalltalk Workspace, and
content is managed in the same manner as a Wiki.

Let us review the workspace again. A workspace is a text
editor with two additional commands, “do it” and “print it”.
The “do it” command executes the source code selected by
the user, and “print it” inserts the result in text after the cur-
sor position. It is similar to a Read Eval Print Loop (REPL)

Figure 4. JavaScript Workspace

in a dynamic language, but the use is slightly different. A
typical usage of a workspace is as documentation for the
program. An author often writes example source code in-
side the workspace, so that a user can try the actual func-
tions while reading the text. A REPL is a two-way dialog
between machine and human, while a workspace is a three
way conversation among machine, author, and user.

The workspace is an indispensable tool in Smalltalk, so
it makes sense that it would be useful in other systems. It
would be nice if there were a workspace for JavaScript. This
was the initial motivation for JavaScript Workspace. And
then it was a natural consequence to use a Wiki to save the
content.

During development, however, we realized that it was
more than just a workspace. It was an entire web appli-
cation. JavaScript Workspace has a simple user interface,
which includes a couple of buttons and one big text area.
The text area does not allow hyperlinks or emphasized text.
But, a variety of things can be made from such minimal
configuration. It is possible to make hyperlinks by assign-
ing into the location property of the window object and
rich text could be shown by modifying the DOM tree. Even
games could be created by setting up an event hander and
a timer (Figure 4). A piece of source code can do almost
anything.

Just one text box on a web page is a radical idea. It
is in the complete opposite direction of the current trend
toward rich Internet application pages. Web applications
consist of a number of hidden functions these days, but
JavaScript Workspace does not have any invisible informa-
tion. Everything on the screen can be seen as source code.
JavaScript Workspace may appear dangerous since it can
run any JavaScript code, but in fact, it is quite a safe sys-
tem.



Figure 5. TileScript

The user interface of the JavaScript Workspace was
adopted by OMeta/JS Workspace (see Section 3.6).

3.5. TileScript

TileScript (2008) [24] by Takashi Yamamiya et al. uses
Scriptaculous [2] as its GUI library and WebDAV for server
storage. Its data format was JSON.

A TileScript document consists of one or more para-
graphs, and a paragraph is either JavaScript code, a “tile
script”, or an HTML expression. A tile script is a set of
draggable tile object, where each tile represents a syntactic
element in the programming language. You can combine
tiles to construct a program using drag and drop. This is
an easy way to make a program and avoid all syntax er-
rors. JavaScript can represent more complex programs than
TileScript. HTML is used for annotation and explanation.
TileScript is a richer version of JavaScript Workspace.

The motivation of TileScript was to investigate remaking
Etoys as a web application. The initial idea was to make
tiles available in a web browser. After tiles worked, the next
step was to hook up the Etoys environment itself, which
includes event handling, scheduling and bitmap animation.
But those issues seemed too difficult for the current nature
of a web document.

Flow layout, in which the actual positions of the ele-
ments on a page are dynamically determined by the reader’s
browser, is a significant feature of a web document. You
don’t have to specify the concrete position of elements, but
rather just the logical structure.

On the other hand, Etoys allows free layout, where the
size and position of elements are fixed by the author. It as-
sumes a particular screen size. Free layout works well for
graphical application like Etoys, but if the reader’s screen

Figure 6. The OMeta/JS Workspace

size is smaller than the original, clumsy operations like
zooming and horizontal scrolling are required.

Because the goal of TileScript was not simply reproduc-
ing Etoys, but investigating new possibilities, flow layout
was adopted in TileScript. Position was supported in the
form of objects embedded HTML. TileScript provided for
variable watchers like Etoys, but those widgets were also
laid out with text flow.

3.6. OMeta/JS Workspace

The OMeta/JS Workspace (2007) [21] by Alex Warth ex-
tends its predecessor, the JavaScript Workspace, with sup-
port for arbitrary programming languages. This is done via
a user-defined function called translateCode, which is
implicitly called by the Workspace in order to translate the
code that the user wishes to execute into JavaScript, “the
assembly language of the Internet” [8].

The benefits of this almost trivial extension are twofold.
First, it makes it possible for the user to express his ideas in
the language that is best suited for the job, which is espe-
cially important for active essays. For example, when dis-
cussing differential geometry, it makes much more sense to
write programs in a language like Logo than in JavaScript.
In this case, the user can define translateCode to
be a function that translates Logo to JavaScript.∗ (Such
translators are fairly straightforward to implement using
OMeta [23].) This enables the user to get out from under the
limitations of JavaScript, effectively putting him in charge
of his own software destiny.

Second, the flexibility provided by translateCode
turns the web browser into a convenient platform in which
to experiment with new programming language ideas. In
∗See http://jarrett.cs.ucla.edu/ometa-js/#Logo



the past year, the OMeta/JS Workspace has been used as the
user interface of a number of experimental programming
languages, e.g., Etude (a language for describing music)†,
Worlds/JS (a language that enables programmers to control
the scope of side effects) [22], and even OMeta/JS itself.
Users are able experiment with these new languages inside
the web browser, without having to download any additional
software, which makes our research much more accessible.

4. Chalkboard

Figure 7. Chalkboard

Chalkboard by Takashi Yamamiya is the latest attempt
of an authoring tool for Active Essays on the Web. In this
project, some design decisions were based on past work,
these decisions are described at section 4.3, 4.4 and 4.5. In
short, because the aim of Chalkboard is to provide a simple
and robust platform for Active Essays, the simpler way was
always chosen.

4.1. Document structure

Figure 8 shows a typical Chalkboard project. You can
use standard HTML formats like normal paragraph, header,
list, hyper text and source code (<pre> element). Source
code is shown in a fixed pitch font and gray background.

You can execute any text in the document, but the run
command and include function only work with code in-
side a <pre> element.

To make a new project, you simply access a nonex-
istent URL on the Chalkboard, or make a new link as
./#NewProject with the link command. When the
project is saved, a new project is created.

There are two ways of running a program in a project.
The primary case is using a “do it” or “print it” command
on each fragment of code in order. A reader invokes this

†See http://jarrett.cs.ucla.edu/ometa-js/#Etude

Figure 8. Chalkboard Document

command on program text, and experiments with the con-
tent step by step. Another way is to use the “run” command
to execute all of the code.

The include function provides a way to use a project
as a library. When as the include is called, the specified
project its executed in the same way as the “run” command,
except there are no visual effects. It allows an author to hide
unessential parts of the program.

4.2. Chalkboard’s user interface

The screen of Chalkboard is made up of the following
parts:

• Tools: There are command buttons in the top-most
area. Every function of Chalkboard can be invoked
from this tool bar.

home Link to the home page.

save Save the page to the server.

run Evaluate all JavaScript expressions within the
source code areas. Each result is printed in the
transcript area. If an error happens, the border
surrounding the source code becomes red and the
editor area is scrolled to show it. Once the error
is fixed, the border becomes black.



do it Evaluate the selected expression or the selected
line if there is no selection. The resulting value
is shown in the transcript.

print it The same as do it, but print the result just to
the right of the expression.

h1, h2, h3 Make selected lines into a header. These
generate <h1>, <h2>, <h3> HTML ele-
ments respectively.

pre Make the selected lines into a source code area.

p Make selected lines into a paragraph.

list Toggle to a list item or normal paragraph.

link Assumes selected string is a URL, and it makes
it into a hyperlink.

edit Toggle browse and edit mode. This is unneces-
sary in most browsers. But, some web browsers
disable the event handler in editor mode, and hy-
perlinks work only in browse mode.

• Editor: The largest area on screen is a text editor where
you can write descriptive text and JavaScript code.

• Play Area: The top right area is referenced from the
global variable PlayArea. It is typically used to show
a graphical object with a Canvas element. The source
code in the editor draws on this Canvas.

• Transcript: Results of “do it” and “run” commands are
printed on the right bottom area. It is also used to show
general output via the display function.

4.3. Client and Server platform

A web application requires both client and server pro-
grams. To keep the development process simple, the
Apache web server and WebDAV protocols are used as the
server logic of TileScript, OMeta/JS, and Chalkboard. With
WebDAV, the remote server can be used in the same manner
as local storage. In addition, version control is provided by
a Subversion module.

Each project is specified by a URL with the name of the
project after a hash mark (#). Normally, a hash element is
used to point to a place within a document, but we treat it
as a project name. An advantage of this trick is that a web
browser doesn’t wipe and reload the JavaScript when you
change projects. A disadvantage is that Internet Explorer
doesn’t handle these URLs properly in the history list. This
method is derived from the way GMail [1] works.

4.4. Screen layout

There are two options for screen layout. One is free lay-
out, which allows the user to place an object in any position

on the screen. Squeak-based projects, Etoys, StackWiki and
Tinlizzie WysiWiki are designed in this style. Another op-
tion is flow layout, in which objects in a page are aligned in
paragraphs, and the position on the screen is adjusted based
on the screen width. TileScript is designed with this style.
Flow layout was chosen for Chalkboard because of usability
on the web, as explained in section 3.5.

4.5. Data format

Powerful file formats and interoperability are in a trade
off relationship. Squeak exports the internal memory as a
project file. This is powerful and easy for rapid develop-
ment. However, it is difficult to maintain compatibility be-
cause it depends on all of Squeak. Chalkboard uses HTML
as its data format. The main part of the file is the explana-
tory text, and the program is extracted from the PRE ele-
ments.

There is a special simplicity in Chalkboard’s UI. Only
logical format commands for a paragraph are supported.
There are no emphasis or font size commands. This can
help an author avoid strange looking layouts depending on
the web browser.

5. Related Work

Emergence [18] is an active essay based on Conway’s
Game of Life. It is implemented as a series of web pages
that, using a combination of text and Java applets, explain
the rules of the system and enable the reader to interact with
a live simulation. Unfortunately, the system is exposed as
a black box that cannot be inspected or modified by the
reader.

The LogoWiki [7] was a Javascript-based implementa-
tion of the Logo programming language that enabled users
to run, modify, and share programs in the web browser.

SophieScript [14] is a scripting language that makes it
possible for active assays to be built on top of the Sophie
multimedia editing environment.

The Lively Kernel [5] is a Smalltalk-like programming
environment that operates inside the web browser. Its mech-
anism for enabling users to share their projects was inspired
by our JavaScript Workspace implementation.

6. Conclusion and Future Work

We have briefly discussed the concept of Active Essays,
and their implementation as Internet applications. Quite a
few prototypes have been developed over the past years.
Based on our experiments, we have developed Chalkboard
as an Active Essay web application using a normal web
browser and a WebDAV server.



To allow collaboration between users, we are consider-
ing more sophisticated extensions to Chalkboard:

• Versioning
The most effective way to learn from content in Chalk-
board is not only following the author’s intention, but
also modifying minor parts of the project to see how
it effects the result. Sometimes a reader might want to
save for future use a project that is halfway modified,
but not want to break the original project. In this case,
keeping on the server versions for each user indepen-
dently is useful.

• Guidance
Some projects in Chalkboard offer the reader a chance
to follow step by step instruction, as a in tutorial. In
this case, it is desirable to keep track of the reader’s
behavior and record an error when some problem oc-
curs.

7. Acknowledgments

We owe Alan Kay thanks for his encouragement. The
layout design of Chalkboard is based on his idea of how to
teach students the basic ideas of computer science. Scott
Wallace and Yoshiki Ohshima often have joined our discus-
sions. And we would like to express thanks for the valu-
able insights that Kim Rose, Ian Piumarta, Bert Freuden-
berg, Hesam Samimi, and other colleagues have given us.

References

[1] Gmail. http://mail.google.com.
[2] Scriptaculous website. http://script.aculo.us.
[3] Squeak Etoys website. http://squeakland.org.
[4] B. J. Allen-Conn and K. Rose. Powerful Ideas in the Class-

room. Viewpoints Research Institute, Inc., August 2003.
[5] D. I. Antero Taivalsaari, Tommi Mikkonen and K. Palacz.

Web browser as an application platform: The lively kernel
experience. SML Technical Report TR-2008-175, 2008.

[6] M. Brauer, P. Durusau, G. Edwards, D. Faure, T. Magliery,
B. Radius, and D. Vogelheim. Open Document Format
for Office Applications (OpenDocument) v1.0. http:
//docs.oasis-open.org/office/v1.0.

[7] A. Bryant. Logowiki. http://web.archive.org/
web/20060708094224/http://www.logowiki.
net/.

[8] D. Ingalls. Message on squeak-dev mailing list. http:
//lists.squeakfoundation.org/pipermail/
squeak-dev/2008-September/131243.html,
September 2008.

[9] T. Kaehler. Active Essays. http://web.
archive.org/web/19970104044631/http:
//www.research.apple.com/research/proj/
learning_concepts/evolution_active_
essay/active_essay.html, 1995.

[10] T. Kaehler. An Active Essay on Evolution. Apple Research
Note RN-95-51, 1995.

[11] A. Kay. Active essays. http://web.archive.
org/web/20060710213801/http://www.
squeakland.org/whatis/a_essays.html.

[12] A. Kay. A “little demo”. http://www.redhat.
com/archives/olpc-software/2006-April/
msg00035.html.

[13] D. E. Knuth. Literate programming. Center for the Study of
Language and Information, Stanford, CA, USA, 1992.

[14] J. Lincke, R. Hirschfeld, M. Rüger, and M. Masuch. So-
phiescript - active content in multimedia documents. In C5
’08: Proceedings of the Sixth International Conference on
Creating, Connecting and Collaborating through Comput-
ing (c5 2008), pages 21–28, Washington, DC, USA, 2008.
IEEE Computer Society.

[15] Y. Ohshima, T. Yamamiya, S. Wallace, and A. Raab. Tin-
lizziewysiwiki and wikiphone: Alternative approaches to
asynchronous and synchronous collaboration on the web. In
C5 ’07: Proceedings of the Fifth International Conference
on Creating, Connecting and Collaborating through Com-
puting, pages 36–46, Washington, DC, USA, 2007. IEEE
Computer Society.

[16] A. Raab. Tweak. http://tweakproject.org/.
[17] T. Reenskaug and A. L. Skaar. An environment for liter-

ate smalltalk programming. In OOPSLA ’89: Conference
proceedings on Object-oriented programming systems, lan-
guages and applications, pages 337–345, New York, NY,
USA, 1989. ACM.

[18] M. Resnick and B. Silverman. Exploring emer-
gence. http://llk.media.mit.edu/projects/
emergence/, 1996.

[19] B. Schroeder and J. Pierce. Zest and marmalade. http:
//ll4.csail.mit.edu/slides/zest.tgz.

[20] J. Steinmetz. Squeak: Open Personal Computing and Multi-
media, chapter Computers and Squeak as Environments for
Learning, pages 471–476. Prentice Hall PTR, 2001.

[21] A. Warth. OMeta/JS Workspace. http://jarrett.
cs.ucla.edu/ometa-js/.

[22] A. Warth and A. Kay. Worlds: Controlling the Scope of
Side Effects. VPRI Research Note RN-2008-003, http:
//www.vpri.org/pdf/rn2008001_worlds.pdf,
2008.

[23] A. Warth and I. Piumarta. OMeta: an object-oriented lan-
guage for pattern matching. In DLS ’07: Proceedings of the
2007 symposium on Dynamic languages, pages 11–19, New
York, NY, USA, 2007. ACM.

[24] A. Warth, T. Yamamiya, Y. Ohshima, and S. Wallace. To-
ward a more scalable end-user scripting language. In C5 ’08:
Proceedings of the Sixth International Conference on Creat-
ing, Connecting and Collaborating through Computing (c5
2008), pages 172–178, Washington, DC, USA, 2008. IEEE
Computer Society.

[25] T. Yamamiya. Chalkboard. http://tinlizzie.org/
chalkboard/.

[26] T. Yamamiya. JavaScript Workspace. http://
metatoys.org/propella/js/workspace.cgi.

[27] T. Yamamiya. Scamper Workspace. http://
languagegame.org:8080/propella/91.


